1
|
Kizeev G, Witteveen I, Balmer T. Balance Performance in Aged Mice is Dependent on Unipolar Brush Cells. CEREBELLUM (LONDON, ENGLAND) 2024; 24:16. [PMID: 39699796 DOI: 10.1007/s12311-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers. Each UBC excites numerous granule cells and could contribute to computations necessary for balance-related motor function. Prior research has implicated UBCs in motor function, but their influence on balance performance remains unclear, especially in aged mice that have age-related impairment. Here we tested whether UBCs contribute to motor coordination and balance by disrupting their activity with chemogenetics in aged and young mice. Age-related balance deficits were apparent in mice > 6 months old. Disrupting the activity of a subpopulation of UBCs caused aged mice to fall off a balance beam more frequently and altered swimming behaviors that are sensitive to vestibular dysfunction. These effects were not seen in young (7-week-old) mice. Thus, disrupting the activity of UBCs impairs mice with age-related balance issues and suggest that UBCs are essential for balance and vestibular function in aged mice.
Collapse
Affiliation(s)
- Gabrielle Kizeev
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
3
|
Kizeev G, Witteveen I, Balmer T. Balance performance in aged mice is dependent on unipolar brush cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617602. [PMID: 39416048 PMCID: PMC11482929 DOI: 10.1101/2024.10.10.617602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers. Each UBC excites numerous granule cells and could contribute to computations necessary for balance-related motor function. Prior research has implicated UBCs in motor function, but their influence on balance performance remains unclear, especially in aged mice that have age-related impairment. Here we tested whether UBCs contribute to motor coordination and balance by disrupting their activity with chemogenetics in aged and young mice. Age-related balance deficits were apparent in mice > 6 months old. Disrupting the activity of a subpopulation of UBCs caused aged mice to fall off a balance beam more frequently and altered swimming behaviors that are sensitive to vestibular dysfunction. These effects were not seen in young (7-week-old) mice. Thus, disrupting the activity of UBCs impairs mice with age-related balance issues and suggest that UBCs are essential for balance and vestibular function in aged mice.
Collapse
Affiliation(s)
- Gabrielle Kizeev
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
4
|
Pali E, D’Angelo E, Prestori F. Understanding Cerebellar Input Stage through Computational and Plasticity Rules. BIOLOGY 2024; 13:403. [PMID: 38927283 PMCID: PMC11200477 DOI: 10.3390/biology13060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
- Digital Neuroscience Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| |
Collapse
|
5
|
Hariani HN, Algstam AB, Candler CT, Witteveen IF, Sidhu JK, Balmer TS. A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. eLife 2024; 12:RP88321. [PMID: 38270517 PMCID: PMC10945699 DOI: 10.7554/elife.88321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.
Collapse
Affiliation(s)
- Harsh N Hariani
- Interdisciplinary Graduate Program in Neuroscience, Arizona State UniversityTempeUnited States
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - A Brynn Algstam
- School of Life Sciences, Arizona State UniversityTempeUnited States
- Barrett Honors College, Arizona State UniversityTempeUnited States
| | - Christian T Candler
- Interdisciplinary Graduate Program in Neuroscience, Arizona State UniversityTempeUnited States
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | | | - Jasmeen K Sidhu
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Timothy S Balmer
- School of Life Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
6
|
Hariani HN, Algstam AB, Candler CT, Witteveen IF, Sidhu JK, Balmer TS. A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536335. [PMID: 37090638 PMCID: PMC10120650 DOI: 10.1101/2023.04.11.536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.
Collapse
Affiliation(s)
- Harsh N. Hariani
- Interdisciplinary Graduate Program in Neuroscience
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | - A. Brynn Algstam
- Barrett Honors College
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | - Christian T. Candler
- Interdisciplinary Graduate Program in Neuroscience
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | | | - Jasmeen K. Sidhu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | | |
Collapse
|
7
|
van der Heijden ME, Lackey EP, Perez R, Ișleyen FS, Brown AM, Donofrio SG, Lin T, Zoghbi HY, Sillitoe RV. Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. eLife 2021; 10:e68045. [PMID: 34542409 PMCID: PMC8452305 DOI: 10.7554/elife.68045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Fatma S Ișleyen
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Sarah G Donofrio
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
8
|
Kreko-Pierce T, Boiko N, Harbidge DG, Marcus DC, Stockand JD, Pugh JR. Cerebellar Ataxia Caused by Type II Unipolar Brush Cell Dysfunction in the Asic5 Knockout Mouse. Sci Rep 2020; 10:2168. [PMID: 32034189 PMCID: PMC7005805 DOI: 10.1038/s41598-020-58901-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
Unipolar brush cells (UBCs) are excitatory granular layer interneurons in the vestibulocerebellum. Here we assessed motor coordination and balance to investigate if deletion of acid-sensing ion channel 5 (Asic5), which is richly expressed in type II UBCs, is sufficient to cause ataxia. The possible cellular mechanism underpinning ataxia in this global Asic5 knockout model was elaborated using brain slice electrophysiology. Asic5 deletion impaired motor performance and decreased intrinsic UBC excitability, reducing spontaneous action potential firing by slowing maximum depolarization rate. Reduced intrinsic excitability in UBCs was partially compensated by suppression of the magnitude and duration of delayed hyperpolarizing K+ currents triggered by glutamate. Glutamate typically stimulates burst firing subsequent to this hyperpolarization in normal type II UBCs. Burst firing frequency was elevated in knockout type II UBCs because it was initiated from a more depolarized potential compared to normal cells. Findings indicate that Asic5 is important for type II UBC activity and that loss of Asic5 contributes to impaired movement, likely, at least in part, due to altered temporal processing of vestibular input.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Nina Boiko
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Donald G Harbidge
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Daniel C Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| | - Jason R Pugh
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| |
Collapse
|
9
|
Abstract
Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: ( a) extensive preprocessing of input representations (i.e., feature engineering), ( b) massively recurrent circuit architecture, ( c) linear input-output computations, ( d) sophisticated instructive signals that can be regulated and are predictive, ( e) adaptive mechanisms of plasticity with multiple timescales, and ( f) task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.
Collapse
Affiliation(s)
- Jennifer L Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
10
|
Lilley BN, Sabbah S, Hunyara JL, Gribble KD, Al-Khindi T, Xiong J, Wu Z, Berson DM, Kolodkin AL. Genetic access to neurons in the accessory optic system reveals a role for Sema6A in midbrain circuitry mediating motion perception. J Comp Neurol 2019; 527:282-296. [PMID: 30076594 PMCID: PMC6312510 DOI: 10.1002/cne.24507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023]
Abstract
The accessory optic system (AOS) detects retinal image slip and reports it to the oculomotor system for reflexive image stabilization. Here, we characterize two Cre lines that permit genetic access to AOS circuits responding to vertical motion. The first (Pcdh9-Cre) labels only one of the four subtypes of ON direction-selective retinal ganglion cells (ON-DS RGCs), those preferring ventral retinal motion. Their axons diverge from the optic tract just behind the chiasm and selectively innervate the medial terminal nucleus (MTN) of the AOS. Unlike most RGC subtypes examined, they survive after optic nerve crush. The second Cre-driver line (Pdzk1ip1-Cre) labels postsynaptic neurons in the MTN. These project predominantly to the other major terminal nucleus of the AOS, the nucleus of the optic tract (NOT). We find that the transmembrane protein semaphorin 6A (Sema6A) is required for the formation of axonal projections from the MTN to the NOT, just as it is for the retinal innervation of the MTN. These new tools permit manipulation of specific circuits in the AOS and show that Sema6A is required for establishing AOS connections in multiple locations.
Collapse
Affiliation(s)
- Brendan N. Lilley
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Current address: The Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Shai Sabbah
- Department of Neuroscience, Brown University, Providence, RI 02912
- Current address: Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - John L. Hunyara
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Katherine D. Gribble
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Timour Al-Khindi
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jiali Xiong
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Alex L. Kolodkin
- Solomon Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
11
|
Sudhakar SK, Hong S, Raikov I, Publio R, Lang C, Close T, Guo D, Negrello M, De Schutter E. Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS Comput Biol 2017; 13:e1005754. [PMID: 28934196 PMCID: PMC5626500 DOI: 10.1371/journal.pcbi.1005754] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/03/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. Patterned mossy fiber activity induces rhythmic Golgi cell activity that is synchronized by shared parallel fiber input and by gap junctions. This leads to long distance synchrony of Golgi cells along the transverse axis, powerfully regulating granule cell firing by imposing inhibition during a specific time window. The essential network mechanisms, including tunable Golgi cell oscillations, on-beam inhibition and NMDA receptors causing first winner keeps winning of granule cells, illustrate how fundamental properties of the granule layer operate in tandem to produce (1) well timed and spatially bound output, (2) a wide dynamic range of granule cell firing and (3) transient and coherent gating oscillations. These results substantially enrich our understanding of granule cell layer processing, which seems to promote spatial group selection of granule cell activity as a function of timing of mossy fiber input. The cerebellum is an organ of peculiar geometrical properties, and has been attributed the function of applying spatiotemporal transforms to sensorimotor data since Eccles. In this work we have analyzed the spatiotemporal response properties of the first part of the cerebellar circuit, the granule layer. On the basis of a biophysically plausible and large-scale model of the cerebellum, constrained by a wealth of anatomical data, we study the network dynamics and firing properties of individual cell populations in response to 'realistic' input patterns. We make specific predictions about the spatiotemporal features of granule layer processing regarding the effects of the gap junction coupled network of Golgi cells on a spatially restricted input, in an effect we denominate first-takes-all. Furthermore, we calculate that the granule cell layer has a wide dynamic range, indicating that this is a system that can transmit large variations of input intensities.
Collapse
Affiliation(s)
- Shyam Kumar Sudhakar
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Ivan Raikov
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Rodrigo Publio
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Claus Lang
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Bernstein Center of Computational Neuroscience Berlin, Berlin, Germany
| | - Thomas Close
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Daqing Guo
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Mario Negrello
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
12
|
Editorial on the honorary cerebellum issue for the retirement of Enrico Mugnaini. THE CEREBELLUM 2016; 14:487-90. [PMID: 26450590 DOI: 10.1007/s12311-015-0729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|