1
|
Rahimi-Balaei M, Jiao X, Dalvand A, Shabanipour S, Chung SH, Amiri S, Kong J, Marzban H. Mutations in the Reelin pathway are associated with abnormal expression of microglial IgG FC receptors in the cerebellar cortex. Mol Biol Rep 2020; 47:5323-5331. [PMID: 32594343 DOI: 10.1007/s11033-020-05614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
Microglia are the immune cells of the central nervous system involved in a variety of developmental processes, such as regulation of cell death and survival, spatial patterning, and contribute to the development of Purkinje cells (PCs) during migration. Microglia express immunoglobulin G Fc receptors (FcgRs). In this report, we describe microglial FcgR expression and its relation to abnormal PC migration in the cerebellum during development. To detect microglial FcgR, the direct anti-IgG (secondary antisera) and high concentrations of Triton X-100 were applied as a method for labeling microglial cells without the use of any specific primary antiserum. By using Acp2-/- mice, which show an excessive PC migration into the molecular layer (ml), and 3 different types of mice with a null to alter the Reelin pathway (Reeler-, Dab1 (SCM)-, and Apoer mutant mice), we studied the location of PCs and the expression of FcgRs. Wild type littermates were used as controls in all studies. We show that the expression of microglial FcgRs was absent and PCs were ectopically located in the white matter in the cerebella of all mutant mice, except for the Acp2-/- mice (PCs were located in the ml). These results suggest a role for FcgRs in the Reelin signaling pathway, not in regulating PC migration, but rather in the adaptation to an environment with a relatively large number of ectopically located PCs. However, the exact correlation between the ectopic location of PCs and lack of FcgRs in Reeler, SCM, and Apoer-/- mice and the presence of FcgRs and directed PC location in the ml in Acp2-/- mice are yet to be determined.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Azadeh Dalvand
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shahin Shabanipour
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shayan Amiri
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jimig Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Rahimi-Balaei M, Buchok M, Vihko P, Parkinson FE, Marzban H. Loss of prostatic acid phosphatase and α-synuclein cause motor circuit degeneration without altering cerebellar patterning. PLoS One 2019; 14:e0222234. [PMID: 31509576 PMCID: PMC6738605 DOI: 10.1371/journal.pone.0222234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some diseases such as prostate cancer. PAP is also present in the central nervous system. In this study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is indicated that mice deficient in transmembrane PAP display neurological alterations. By using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cortex development appears to be normal. Compartmentation genes expression such as zebrin II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal cerebellum. These data indicate that although aggregation of PAP and SNCA causes severe neurodegenerative diseases, PAP-/- with absence of the Snca does not appear to interrupt the cerebellar architecture development and zone and stripe pattern formation. These findings question the physiological and pathological role of SNCA and PAP during cerebellar development or suggest existence of the possible compensatory mechanisms in the absence of these genes.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Buchok
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pirkko Vihko
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Fiona E. Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
3
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|