1
|
Sato K, Hirayama Y, Mizutani A, Yao J, Higashino J, Kamitaka Y, Muranaka Y, Yamazaki K, Nishii R, Kobayashi M, Kawai K. Potential Application of the Myocardial Scintigraphy Agent [ 123I]BMIPP in Colon Cancer Cell Imaging. Int J Mol Sci 2024; 25:7747. [PMID: 39062992 PMCID: PMC11277422 DOI: 10.3390/ijms25147747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
[123I]β-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Radiological Center, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Yuka Hirayama
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Jinya Higashino
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Yuto Kamitaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuka Muranaka
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ryuichi Nishii
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko Minami, Higashi-ku, Nagoya 461-8673, Japan;
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
2
|
Tamaki N, Manabe O. Current status and perspectives of nuclear cardiology. Ann Nucl Med 2024; 38:20-30. [PMID: 37891375 DOI: 10.1007/s12149-023-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Nuclear cardiology has long been used to identify myocardial ischemia for appropriate treatment strategies for stable coronary artery disease (CAD). After the Ischemia Trial, it is time to reevaluate the significance of ischemia assessment. Functional imaging continues to play pivotal role in detecting microcirculatory disturbances. PET provides a clear image of blood flow distribution and is useful for the quantitative evaluation of myocardial flow reserve (MFR), which plays an important role in predicting treatment strategies and improving prognosis in CAD. Heart failure has become a major area of focus in cardiovascular medicine. Radionuclide imaging has been widely applied in this field. FDG PET is useful in identifying cardiac sarcoidosis and active inflammation. Clinical values of I-123 MIBG and BMIPP SPECT have been reported worldwide from Japan. Additionally, clinical experiences of Tc-99m pyrophosphate imaging have recently gained attention for assessing cardiac amyloidosis. Cardiac PET/CT and PET/MR imaging permit combined assessment of metabolic/functional/structural analyses of various cardiac diseases. While other non-invasive imaging modalities have rapidly been developed, the roles of radionuclide imaging remain to be valuable for early and accurate diagnosis and patient management in most cases of chronic CAD and various cardiovascular diseases.
Collapse
Affiliation(s)
- Nagara Tamaki
- Kyoto College of Medical Science, Kyoto, Japan.
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Osamu Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
3
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
4
|
Muranaka Y, Mizutani A, Kobayashi M, Nakamoto K, Matsue M, Takagi F, Okazaki K, Nishi K, Yamazaki K, Nishii R, Shikano N, Okamoto S, Maki H, Kawai K. 123I-BMIPP, a Radiopharmaceutical for Myocardial Fatty Acid Metabolism Scintigraphy, Could Be Utilized in Bacterial Infection Imaging. Pharmaceutics 2022; 14:pharmaceutics14051008. [PMID: 35631596 PMCID: PMC9143722 DOI: 10.3390/pharmaceutics14051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we evaluated the use of 15-(4-123I-iodophenyl)-3(R,S)-methylpentadecanoic acid (123I-BMIPP) to visualize fatty acid metabolism in bacteria for bacterial infection imaging. We found that 123I-BMIPP, which is used for fatty acid metabolism scintigraphy in Japan, accumulated markedly in Escherichia coli EC-14 similar to 18F-FDG, which has previously been studied for bacterial imaging. To elucidate the underlying mechanism, we evaluated changes in 123I-BMIPP accumulation under low-temperature conditions and in the presence of a CD36 inhibitor. The uptake of 123I-BMIPP by EC-14 was mediated via the CD36-like fatty-acid-transporting membrane protein and accumulated by fatty acid metabolism. In model mice infected with EC-14, the biological distribution and whole-body imaging were assessed using 123I-BMIPP and 18F-FDG. The 123I-BMIPP biodistribution study showed that, 8 h after infection, the ratio of 123I-BMIPP accumulated in infected muscle to that in control muscle was 1.31 at 60 min after 123I-BMIPP injection. In whole-body imaging 1.5 h after 123I-BMIPP administration and 9.5 h after infection, infected muscle exhibited a 1.33-times higher contrast than non-infected muscle. Thus, 123I-BMIPP shows potential for visualizing fatty acid metabolism of bacteria for imaging bacterial infections.
Collapse
Affiliation(s)
- Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (Y.M.); (K.N.)
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (M.K.); (S.O.)
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (M.K.); (S.O.)
| | - Koya Nakamoto
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (Y.M.); (K.N.)
| | - Miki Matsue
- Ishikawa Prefectural Institute of Public Health and Environmental Science, 1-11, Taiyogaoka, Kanazawa 920-1154, Japan;
| | - Fumika Takagi
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka 561-0825, Japan; (F.T.); (K.O.); (H.M.)
| | - Kenichi Okazaki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka 561-0825, Japan; (F.T.); (K.O.); (H.M.)
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (K.Y.); (R.N.)
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (K.Y.); (R.N.)
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki 300-0394, Japan;
| | - Shigefumi Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (M.K.); (S.O.)
- Advanced Health Care Science Research Unit, Innovative Integrated Bio-Research Core Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Hideki Maki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka 561-0825, Japan; (F.T.); (K.O.); (H.M.)
| | - Keiichi Kawai
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (Y.M.); (K.N.)
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-76-265-2527; Fax: +81-76-234-4366
| |
Collapse
|
5
|
Jouni H, Chareonthaitawee P. Diagnostic performance of F 18 FDG PET in cardiac sarcoidosis: Are we getting closer to the truth? J Nucl Cardiol 2020; 27:2116-2117. [PMID: 30771161 DOI: 10.1007/s12350-019-01653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Hayan Jouni
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
6
|
|
7
|
Kumita S, Yoshinaga K, Miyagawa M, Momose M, Kiso K, Kasai T, Naya M. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis-2018 update: Japanese Society of Nuclear Cardiology recommendations. J Nucl Cardiol 2019; 26:1414-1433. [PMID: 31197741 DOI: 10.1007/s12350-019-01755-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| | - Masao Miyagawa
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Mitsuru Momose
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Keisuke Kiso
- Department of Radiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tokuo Kasai
- Department of Cardiology, Niigata University School of Medicine, Niigata, Japan
| | - Masanao Naya
- Department of Cardiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Travin MI, Matsunari I, Thomas GS, Nakajima K, Yoshinaga K. How do we establish cardiac sympathetic nervous system imaging with 123I-mIBG in clinical practice? Perspectives and lessons from Japan and the US. J Nucl Cardiol 2019; 26:1434-1451. [PMID: 30178272 DOI: 10.1007/s12350-018-1394-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Cardiac denervation is associated with progressive left ventricular (LV) dysfunction, ventricular arrhythmias, and sudden cardiac death (SCD) in heart failure (HF). In this regard, it is important to evaluate cardiac-specific sympathetic nervous system (SNS) function. The radiotracer Iodine-123 meta-iodobenzylguanidine (123I-mIBG) can noninvasively evaluate pre-synaptic SNS function. Recent multicenter trials have shown 123I-mIBG to have strong predictive value for fatal arrhythmias and cardiac death in HF. 123I-mIBG was initially developed in the USA in the 1970s. In 1992, the Japanese Ministry of Health and Labour approved 123I-mIBG for the assessment of cardiac function. Following approval, the Japanese nuclear cardiology community developed 123I-mIBG imaging services in various medical centers. Japanese groups have been trying to establish the clinical utility of 123I-mIBG and standardize parameters for data acquisition and image analysis. The US Food and Drug Administration (FDA) has approved clinical use of 123I-mIBG for cardiac and non-cardiac imaging. However, clinical use of 123I-mIBG in the US has been very limited. The number of 123I-mIBG studies in Japan has also been limited. There are similarities and differences between the two countries. To establish the clinical utility of 123I-mIBG in both countries, it is important to characterize the situations of 123I-mIBG in each.
Collapse
Affiliation(s)
- Mark I Travin
- Department of Radiology/Division of Nuclear Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ichiro Matsunari
- Division of Nuclear Medicine, Department of Radiology, Saitama Medical University, Moroyama, Japan
| | - Gregory S Thomas
- Memorial Care Heart, & Vascular Institute, Long Beach Medical Center, Long Beach, CA, USA
- Division of Cardiology, University of California, Irvine, Orange, CA, USA
| | - Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan.
| |
Collapse
|
9
|
Manabe O, Kikuchi T, Scholte AJHA, El Mahdiui M, Nishii R, Zhang MR, Suzuki E, Yoshinaga K. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018; 25:1204-1236. [PMID: 29196910 PMCID: PMC6133155 DOI: 10.1007/s12350-017-1131-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disease burden worldwide. Nuclear myocardial perfusion imaging with either single-photon emission computed tomography or positron emission tomography has been used extensively to perform diagnosis, monitor therapies, and predict cardiovascular events. Several radiopharmaceutical tracers have recently been developed to evaluate CVD by targeting myocardial perfusion, metabolism, innervation, and inflammation. This article reviews old and newer used in nuclear cardiac imaging.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed El Mahdiui
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ryuichi Nishii
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Eriko Suzuki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| |
Collapse
|
10
|
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow. J Nucl Cardiol 2018; 25:635-651. [PMID: 27444500 DOI: 10.1007/s12350-016-0591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Indexed: 12/22/2022]
Abstract
With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
11
|
Nakajima K, Scholte AJHA, Nakata T, Dimitriu-Leen AC, Chikamori T, Vitola JV, Yoshinaga K. Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine: Perspectives from Japan and Europe. J Nucl Cardiol 2017; 24:952-960. [PMID: 28290098 DOI: 10.1007/s12350-017-0818-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging, 123I-meta-iodobenzylguanidine (123I-MIBG) was approved by the Japanese Ministry of Health, Labour and Welfare in 1992 and has therefore been widely used since in clinical settings. 123I-MIBG was also later approved by the Food and Drug Administration (FDA) in the United States of America (USA) and it was expected to achieve broad acceptance. In Europe, 123I-MIBG is currently used only for clinical research. This review article is based on a joint symposium of the Japanese Society of Nuclear Cardiology (JSNC) and the American Society of Nuclear Cardiology (ASNC), which was held in the annual meeting of JSNC in July 2016. JSNC members and a member of ASNC discussed the standardization of 123I-MIBG parameters, and clinical aspects of 123I-MIBG with a view to further promoting 123I-MIBG imaging in Asia, the USA, Europe, and the rest of the world.
Collapse
Affiliation(s)
- Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomoaki Nakata
- Department of Cardiology, Hakodate Goryokaku Hospital, Hakodate, Japan
| | | | | | | | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| |
Collapse
|
12
|
Yoshinaga K, Tamaki N. Improving the worldwide quality of nuclear cardiology practice and research: The role of the official journal. J Nucl Cardiol 2017; 24:335-337. [PMID: 27604108 DOI: 10.1007/s12350-016-0655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
13
|
Ohira H, Yoshinaga K, Manabe O, Oyama-Manabe N, Tsujino I, Nishimura M, Tamaki N. Clinical Application of 18F-fluorodeoxyglucose PET and LGE CMR in Cardiac Sarcoidosis. ACTA ACUST UNITED AC 2017. [DOI: 10.17996/anc.17-00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hiroshi Ohira
- First Department of Medicine, Hokkaido University Hospital
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Ichizo Tsujino
- First Department of Medicine, Hokkaido University Hospital
| | | | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectual University of Medicine
| |
Collapse
|
14
|
Yoshinaga K, Miyagawa M, Kiso K, Ishida Y. Japanese Guidelines for Cardiac Sarcoidosis. ACTA ACUST UNITED AC 2017. [DOI: 10.17996/anc.17-00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences
| | - Masao Miyagawa
- Department of Radiology, Ehime University Graduate School of Medicine
| | - Keisuke Kiso
- Department of Radiology, National Cerebral and Cardiovascular Center
| | | |
Collapse
|
15
|
DePuey EG. Comparisons and contrasts in the practice of nuclear cardiology in the United States and Japan. J Nucl Cardiol 2016; 23:1493-1498. [PMID: 27620885 DOI: 10.1007/s12350-016-0656-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There are interesting differences between the practice of Nuclear Cardiology in Japan and that in the United States and associated unique challenges. Differences in patient body habitus and the perceived importance of limiting patient radiation dose have resulted in different radiopharmaceutical and imaging protocol preferences. Governmental approval and reimbursement policies for various radiopharmaceuticals have promulgated adoption of different clinical applications. Both countries have experienced a significant decline in the number of nuclear cardiology studies performed, in part due to decreased governmental funding and reimbursement and to the emergence of competing modalities. Whereas precertification and test substitution have impacted negatively on the sustainability and growth of nuclear cardiology in the United States, in Japan those deterrents have not yet been encountered. Instead, communication barriers between nuclear medicine physicians and referring cardiologists are cited as a more significant barrier.
Collapse
Affiliation(s)
- E Gordon DePuey
- Division of Nuclear Medicine, Department of Radiology, Mt. Sinai St. Luke's and Mt. Sinai West Hospitals, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|