1
|
Li S, Yang R, Zhao Z, Xie M, Zhou Y, Zeng Q, Zhu X, Zhang X. The multifunctional role of hydroxyapatite nanoparticles as an emerging tool in tumor therapy. Acta Biomater 2025:S1742-7061(25)00344-7. [PMID: 40374135 DOI: 10.1016/j.actbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Hydroxyapatite nanoparticles (HANPs) are well-known nanomaterials for bone regeneration or repair. In recent years, HANPs have emerged as a potential tool in tumor therapy because of the numerous advantages the nanoparticles offer, including the diverse physicochemical properties, the selective anti-tumor effect, intrinsic immunomodulatory activity, ability to reverse of drug or immune tolerance, allowance of ion substation, good drug-loading capabilities, etc. Notably, the physicochemical properties of the particles, such as size and shape, significantly influence their anti-tumor efficacy. Therefore, to offer a comprehensive understanding of the key properties of HANPs and the involving molecular mechanisms, and provide crucial cues for rational design and development of novel HANPs-based anti-tumor platforms, this review summarizes various synthesis methods of HANPs with controlled physiochemical characteristics and highlights the multifaceted effects such as interactions with tumor cells and immune cells, regulation of the tumor microenvironment (TME), overcoming drug or immune resistance, and their potentials as effective drug carriers. This review also outlines the emerging strategies leveraging HANPs for tumor therapy and diagnostic imaging. At last, we discuss the challenges HANPs face when used for tumor treatment. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HANPs) have emerged as a promising tool in tumor therapy without compromising biocompatibility. This review highlights the unique and multifaceted features of HANPs in tumor therapy, including the selective induction of tumor cell apoptosis, engagement in immune regulation, reversal of drug or immune resistance, and the loading of diverse anti-tumor drugs or biomaterials. Additionally, this review emphasizes the influence of the intrinsic physicochemical properties of HANPs on their anti-tumor activity, and explores the emerging strategies that leverage HANPs for tumor therapy and diagnostic imaging. In summary, this work aims to provide a comprehensive and deep understanding of the role of HANPs in tumor therapy and is significant for the improved design of HANP-based platforms for tumor therapy.
Collapse
Affiliation(s)
- Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Ruinan Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Zhengyi Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064
| | - Mengzhang Xie
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| |
Collapse
|
2
|
Bravo-Reyna CC, Mejía-Cervantes J, Verduzco-Vázquez AT, Sánchez-Rodríguez CC, Cuervo-Vargas L, Medina-Velázquez LA, Gómez-Vergara V, Hinojosa CA, Anaya-Ayala JE. [Development, techniques, and utility of experimental animal models of thoracic and abdominal aortic aneurysms]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2024; 94:373-380. [PMID: 38478992 PMCID: PMC11259408 DOI: 10.24875/acm.23000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 07/21/2024] Open
Abstract
Aneurysms are clinical entities that can develop and affect human aorta; and although in most cases they have an asymptomatic course, these pathological dilatations can lead to a lethal outcome when rupture occurs, thus the establishment of predictors is crucial for death prevention. Essential events that take place in the vessel wall have been identified and described, such as inflammation, proteolysis, smooth muscle cell apoptosis, angiogenesis, and vascular remodeling. Porcine and ovine models have been useful for the development and evaluation of endovascular devices of the aorta. However, since the worldwide introduction and adoption of these minimally invasive techniques for aneurysm repair, there is lesser availability of diseased aortic tissue for molecular, cellular, and histopathological analysis, therefore over the last three decades it has been proposed various small species models that have allowed the focal induction of these lesions for the study of physiopathological mechanisms and possible useful biomarkers as diagnostic and therapeutic targets. The present review article presents and discusses the animal models available as their applications, characteristics, advantages, and limitations for the development of preclinical studies, and their importance in the comprehension of this pathology in humans.
Collapse
Affiliation(s)
- Carlos C. Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Jacqueline Mejía-Cervantes
- Sección Angiología, Cirugía Vascular y Endovascular, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Ana T. Verduzco-Vázquez
- Sección Angiología, Cirugía Vascular y Endovascular, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | | | | | | | - Víctor Gómez-Vergara
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Carlos A. Hinojosa
- Sección Angiología, Cirugía Vascular y Endovascular, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Javier E. Anaya-Ayala
- Sección Angiología, Cirugía Vascular y Endovascular, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
- Dirección Médica, Hospital Ángeles Universidad. Ciudad de México, México
| |
Collapse
|
3
|
Mejia-Cervantes J, Anaya-Ayala JE, Solano-Mendívil E, Gonzalez-Hernandez I, Aramburo JC, Medina-Velazquez LA, Ignacio-Alvarez E, Hinojosa CA. Utility of multimodal molecular imaging in the diagnosis and decision-making in arterial diseases. Pol J Radiol 2024; 89:e6-e12. [PMID: 38371892 PMCID: PMC10867980 DOI: 10.5114/pjr.2024.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024] Open
Abstract
Arterial diseases are prevalent in the general population, particularly in the elderly, and they are among the main causes of morbidity and mortality worldwide. Nuclear imaging is a useful tool in diagnosis and follow-up in different areas of medicine, and over the last 2 decades, these study modalities have become more relevant in the field of angiology and vascular surgery due to their potential benefit in the interpretation of pathophysiological mechanisms associated with the natural history and severity of diseases that affect the circulation such as vasculitis, degenerative aortic aneurysms (AA), peripheral arterial disease (PAD), and complications following reconstructive procedures such as graft infections. The literature has shown evidence of an important number of radiotracers for specific molecules involved in the activity of these entities and their utility as predictors during surveillance and possible therapeutic targets. The present narrative review aims to describe the use of nuclear medicine, imaging methods, and radiotracers that have been applied in arterial diseases, as well as the advantages and considerations, their importance in the diagnosis and follow-up of these complex groups of patients, and future perspectives.
Collapse
Affiliation(s)
- Jacqueline Mejia-Cervantes
- Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Javier E. Anaya-Ayala
- Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Dirección Médica, Hospital Ángeles Universidad, Mexico City, Mexico
| | - Ezequiel Solano-Mendívil
- Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isaac Gonzalez-Hernandez
- Department of Nuclear Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan C. Aramburo
- Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Eleazar Ignacio-Alvarez
- Department of Nuclear Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A. Hinojosa
- Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
Lu X, Zhu M, Zhao L, Qi F, Zou H, He P, Zhou H, Shi K, Du J. 68Ga-labeled WVP peptide as a novel PET probe for molecular biological diagnosis of unstable thoracic aortic aneurysm and early dissection: an animal study. Front Cardiovasc Med 2023; 10:1048927. [PMID: 37378402 PMCID: PMC10291320 DOI: 10.3389/fcvm.2023.1048927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Type IV collagen (Col-IV) is a prospective biomarker for diagnosing and treating of unstable thoracic aortic aneurysm and dissection (TAAD). This study aims to evaluate the feasibility of 68Ga-labeled WVP peptide (68Ga-DOTA-WVP) as a novel Col-IV-targeted probe for TAAD biological diagnosis using PET/CT. METHODS WVP peptide was modified with bifunctional chelator DOTA for 68Ga radiolabeling. Immunohistochemical staining was used to evaluate the expression and location of Col-IV and elastin in aortas treated with 3-aminopropionitrile fumarate (BAPN) at different time points (0, 2, and 4 weeks). The imaging performance of 68Ga-DOTA-WVP was investigated using Micro-PET/CT in a BAPN-induced TAAD mouse model. The relationship between 68Ga-DOTA-WVP uptake in aortic lesions and the serum levels of TAAD-related biomarkers including D-dimer, C-reactive protein (CRP), and serum soluble suppression of tumorigenicity-2 (sST2) was also analyzed. RESULTS 68Ga-DOTA-WVP was readily prepared with high radiochemical purity and stability in vitro. 68Ga-DOTA-WVP Micro-PET/CT could detect Col-IV exposure of unstable aneurysms and early dissection in BAPN-induced TAAD mice, but little 68Ga-DOTA-WVP uptake was shown in the control group at each imaging time point. The differences of Col-IV expression and distribution of 68Ga-DOTA-WVP both in TAAD and control groups further verified the imaging efficiency of 68Ga-DOTA-WVP PET/CT. Additionally, a higher sST2 level was found in the imaging positive (n = 14) than the negative (n = 8) group (9.60 ± 1.14 vs. 8.44 ± 0.52, P = 0.014). CONCLUSION 68Ga-DOTA-WVP could trace the exposure and abnormal deposition of Col-IV in enlarged and early injured aortas, showing a potential for biological diagnosis, whole-body screening, and progression monitoring of TAAD.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Heng Zou
- Department of Clinical Medicine, Cellomics (Shenzhen) Co., Ltd, Shenzhen, China
| | - Peng He
- Department of Medical Research, Xiangpeng Youkang (Beijing) Technology Co., Ltd, Beijing, China
| | - Haizhong Zhou
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Jie Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Derlin T, Spencer BA, Mamach M, Abdelhafez Y, Nardo L, Badawi RD, Cherry SR, Bengel FM. Exploring Vessel Wall Biology In Vivo by Ultrasensitive Total-Body PET. J Nucl Med 2023; 64:416-422. [PMID: 36175139 PMCID: PMC10071799 DOI: 10.2967/jnumed.122.264550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ultrasensitive, high-resolution, extended-field-of-view total-body (TB) PET using the first-of-its-kind 194-cm axial-field-of-view uEXPLORER may facilitate the interrogation of biologic hallmarks of hitherto difficult-to-evaluate low-signal vessel wall pathology in cardiovascular disease. Methods: Healthy volunteers were imaged serially for up to 12 h after a standard dose of 18F-FDG (n = 15) or for up to 3 h after injection of a very low dose (about 5% of a standard dose; n = 15). A cohort undergoing standard 18F-FDG PET (n = 15) on a conventional scanner with a 22-cm axial field of view served as a comparison group. Arterial wall signal, crosstalk with hematopoietic and lymphoid organs, and image quality were analyzed using standardized techniques. Results: TB PET depicted the large vessel walls with excellent quality. The arterial wall could be imaged with high contrast up to 12 h after tracer injection. Ultralow-dose TB 18F-FDG images yielded a vessel wall signal and target-to-background ratio comparable to those of conventional-dose, short-axial-field-of-view PET. Crosstalk between vessel wall and lymphoid organs was identified with better accuracy in both TB PET cohorts than in conventional PET. Conclusion: TB PET enables detailed assessment of in vivo vessel wall biology and its crosstalk with other organs over an extended time window after tracer injection or at an ultralow tracer dose. These initial observations support the feasibility of serial imaging in low-risk populations and will stimulate future mechanistic studies or therapy monitoring in atherosclerosis and other vessel wall pathologies.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany;
| | - Benjamin A Spencer
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Martin Mamach
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany; and
| | - Yasser Abdelhafez
- Department of Radiology, University of California, Davis, Davis, California
| | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Davis, California
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Radiology, University of California, Davis, Davis, California
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Radiology, University of California, Davis, Davis, California
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Feher A, Sinusas AJ. Evaluation of cardiac allograft vasculopathy by positron emission tomography. J Nucl Cardiol 2021; 28:2616-2628. [PMID: 33389637 DOI: 10.1007/s12350-020-02438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Cardiac allograft vasculopathy (CAV) remains one of the most important late occurring complications in heart transplant (HT) recipients significantly effecting graft survival. Recently, there has been tremendous focus on the development of effective and safe non-invasive diagnostic strategies for the diagnosis of CAV employing a wide range of imaging technologies. During the past decade multiple studies have been published using positron emission tomography (PET) myocardial perfusion imaging, establishing the value of PET myocardial blood flow quantification for the evaluation of CAV. These independent investigations demonstrate that PET can be successfully used to establish the diagnosis of CAV, can be utilized for prognostication and may be used for serial monitoring of HT recipients. In addition, molecular imaging techniques have started to emerge as new tools to enhance our knowledge to better understand the pathophysiology of CAV.
Collapse
Affiliation(s)
- Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA.
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Baolei G, Can C, Peng L, Yan S, Cheng Y, Hui T, Minzhi L, Daqiao G, Weiguo F. Molecular Imaging of Abdominal Aortic Aneurysms with Positron Emission Tomography: A Systematic Review. Eur J Vasc Endovasc Surg 2021; 62:969-980. [PMID: 34696984 DOI: 10.1016/j.ejvs.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Previous studies on the relationship between positron emission tomography (PET) images and abdominal aortic aneurysm (AAA) progression have shown contradictory results, and the objective of this study was to systematically review the role of PET in predicting AAA prognosis. DATA SOURCES PubMed, Embase, and Web of Science were searched for studies evaluating the correlation between PET imaging results and AAA growth, repair, or rupture. REVIEW METHODS Two authors independently performed the study search, data extraction, and quality assessment following a standard method. RESULTS Of the 11 studies included in this review, nine used 18F-fluorodeoxyglucose (18F-FDG) PET and computed tomography (CT) imaging, whereas the remaining two used 18F-sodium fluoride (18F-NaF) PET/CT and 18F-FDG PET/magnetic resonance imaging (MRI). Findings from the 18F-FDG PET/CT studies were contradictory. Six studies found no significant association or correlation, and two studies found a significant negative correlation between 18F-FDG uptake and AAA expansion. Additionally, one study found that the 18F-FDG uptake was statistically positively related to the expansion rate in a specific AAA subgroup whose AAAs expanded significantly. Two studies suggested that increased 18F-FDG uptake was significantly associated with AAA repair, while the other studies either found no association between 18F-FDG uptake and AAA rupture or repair or failed to report the occurrence of clinical events. One PET/CT study that used 18F-NaF as a tracer showed that an increased tracer uptake was significantly associated with AAA growth and clinical events. Finally, the 18F-FDG PET/MRI study indicated that 18F-FDG uptake was not significantly correlated with AAA expansion. CONCLUSION A definitive role for 18F-FDG PET imaging for AAA prognosis awaits further investigation, and new PET tracers such as 18F-NaF have the potential to be a promising method for predicting AAA clinical outcomes.
Collapse
Affiliation(s)
- Guo Baolei
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Chen Can
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Peng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Cheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tan Hui
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Minzhi
- Department of Medical Statistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo Daqiao
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fu Weiguo
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
9
|
Akerele MI, Karakatsanis NA, Forsythe RO, Dweck MR, Syed M, Aykroyd RG, Sourbron S, Newby DE, Tsoumpas C. Iterative reconstruction incorporating background correction improves quantification of [ 18F]-NaF PET/CT images of patients with abdominal aortic aneurysm. J Nucl Cardiol 2021; 28:1875-1886. [PMID: 31721093 PMCID: PMC8648624 DOI: 10.1007/s12350-019-01940-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND A confounding issue in [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) is the spill in contamination from the bone into the aneurysm. This study investigates and corrects for this spill in contamination using the background correction (BC) technique without the need to manually exclude the part of the AAA region close to the bone. METHODS Seventy-two (72) datasets of patients with AAA were reconstructed with the standard ordered subset expectation maximization (OSEM) algorithm incorporating point spread function (PSF) modelling. The spill in effect in the aneurysm was investigated using two target regions of interest (ROIs): one covering the entire aneurysm (AAA), and the other covering the aneurysm but excluding the part close to the bone (AAAexc). ROI analysis was performed by comparing the maximum SUV in the target ROI (SUVmax(T)), the corrected cSUVmax (SUVmax(T) - SUVmean(B)) and the target-to-blood ratio (TBR = SUVmax(T)/SUVmean(B)) with respect to the mean SUV in the right atrium region. RESULTS There is a statistically significant higher [18F]-NaF uptake in the aneurysm than normal aorta and this is not correlated with the aneurysm size. There is also a significant difference in aneurysm uptake for OSEM and OSEM + PSF (but not OSEM + PSF + BC) when quantifying with AAA and AAAexc due to the spill in from the bone. This spill in effect depends on proximity of the aneurysms to the bone as close aneurysms suffer more from spill in than farther ones. CONCLUSION The background correction (OSEM + PSF + BC) technique provided more robust AAA quantitative assessments regardless of the AAA ROI delineation method, and thus it can be considered as an effective spill in correction method for [18F]-NaF AAA studies.
Collapse
Affiliation(s)
- Mercy I Akerele
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL, UK
| | - Nicolas A Karakatsanis
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA
| | - Rachael O Forsythe
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maaz Syed
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Steven Sourbron
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL, UK
| | - David E Newby
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL, UK.
| |
Collapse
|
10
|
Ghaghada KB, Ren P, Devkota L, Starosolski Z, Zhang C, Vela D, Stupin IV, Tanifum EA, Annapragada AV, Shen YH, LeMaire SA. Early Detection of Aortic Degeneration in a Mouse Model of Sporadic Aortic Aneurysm and Dissection Using Nanoparticle Contrast-Enhanced Computed Tomography. Arterioscler Thromb Vasc Biol 2021; 41:1534-1548. [PMID: 33535789 PMCID: PMC7990703 DOI: 10.1161/atvbaha.120.315210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ketan B Ghaghada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Laxman Devkota
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Pediatrics, Section of Hematology-Oncology (L.D.), Baylor College of Medicine, Houston, TX
| | - Zbigniew Starosolski
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Deborah Vela
- Department of Cardiovascular Pathology Research (D.V.), Texas Heart Institute, Houston
| | - Igor V Stupin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
| | - Eric A Tanifum
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
| | - Ananth V Annapragada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Ying H Shen
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery (Y.H.S., S.A.L.), Texas Heart Institute, Houston
| | - Scott A LeMaire
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery (Y.H.S., S.A.L.), Texas Heart Institute, Houston
| |
Collapse
|
11
|
Acute Aortic Dissection Initially Suspected on 18F-FDG PET/CT. Clin Nucl Med 2020; 45:819-820. [PMID: 32701812 DOI: 10.1097/rlu.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 64-year-old man with anal cancer underwent follow-up F-FDG PET/CT to evaluate chemoradiation therapy response 5 months after an initial PET/CT. The follow-up F-FDG PET/CT demonstrated new FDG-avid curvilinear soft tissue adjacent to the abdominal aorta, interpreted as an aortic dissection. Despite lack of clinical symptoms, the patient was directed to an emergency room the same day, where a contrast-enhanced CT confirmed an aortic aneurysm with dissection. The patient underwent endovascular surgical repair the following day. This case demonstrates that newly FDG-avid aortic soft tissue should be recognized and may need further evaluation to characterize clinically significant vascular pathology.
Collapse
|
12
|
Shannon AH, Chordia MD, Spinosa MD, Su G, Ladd Z, Pan D, Upchurch GR, Sharma AK. Single-Photon Emission Computed Tomography Imaging Using Formyl Peptide Receptor 1 Ligand Can Diagnose Aortic Aneurysms in a Mouse Model. J Surg Res 2020; 251:239-247. [PMID: 32172010 DOI: 10.1016/j.jss.2020.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our previous studies showed that neutrophil infiltration and activation plays an important role in the pathogenesis of abdominal aortic aneurysms (AAA). However, there is a lack of noninvasive, inflammatory cell-specific molecular imaging methods to provide early diagnosis of AAA formation. Formyl peptide receptor 1 (FPR1) is rapidly upregulated on neutrophils during inflammation. Therefore, it is hypothesized that the use of cinnamoyl-F-(D)L-F-(D)L-F-K (cFLFLF), a PEGylated peptide ligand that binds FPR1 on activated neutrophils, would permit accurate and noninvasive diagnosis of AAA via single-photon emission computed tomography (SPECT) imaging. MATERIALS AND METHODS Male C57BL/6 (wild-type) mice were treated with topical elastase (0.4 U/mL type 1 porcine pancreatic elastase) or heat-inactivated elastase (control), and aortic diameter was measured by video micrometry. Comparative histology was performed on Day 14 to assess neutrophil infiltration in aortic tissue. We performed near-infrared fluorescence imaging using c-FLFLF-Cy7 probe on Days 7 and 14 postelastase treatment and measured fluorescence intensity ex vivo in excised aortic tissue. A separate group of animals were injected with 99mTc-c-FLFLF 2 h before SPECT imaging on Day 14 using a SPECT/computed tomography/positron emission tomography trimodal scanner. Coexpression of neutrophils with c-FLFLF was also performed on aortic tissue by immunostaining on Day 14. RESULTS Aortic diameter was significantly increased in the elastase group compared with controls on Days 7 and 14. Simultaneously, a marked increase in neutrophil infiltration and elastin degradation as well as decrease in smooth muscle integrity were observed in aortic tissue after elastase treatment compared with controls. Moreover, a significant increase in fluorescence intensity of c-FLFLF-Cy7 imaging probe was also observed in elastase-treated mice on Day 7 (approximately twofold increase) and Day 14 (approximately 2.5-fold increase) compared with respective controls. SPECT imaging demonstrated a multifold increase in signal intensity for 99mTc-cFLFLF radiolabel probe in mice with AAA compared with controls on Day 14. Immunostaining of aortic tissue with c-FLFLF-Cy5 demonstrated a marked increase in coexpression with neutrophils in AAA compared with controls. CONCLUSIONS cFLFLF, a novel FPR1 ligand, enables quantifiable, noninvasive diagnosis and progression of AAAs. Clinical application of this inflammatory, cell-specific molecular probe using SPECT imaging may permit early diagnosis of AAA formation, enabling targeted therapeutic interventions and preventing impending aortic rupture.
Collapse
Affiliation(s)
| | - Mahendra D Chordia
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Michael D Spinosa
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Dongfeng Pan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | | | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida.
| |
Collapse
|
13
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
14
|
Koracevic GP. Aortic dissection and aneurysm are hypertensive target organ damages and should be listed in the guidelines. Am J Emerg Med 2019; 37:365-366. [PMID: 30686330 DOI: 10.1016/j.ajem.2018.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Goran P Koracevic
- Department of Cardiology, Clinical Centre and Medical Faculty, University of Nis, Nis, Serbia.
| |
Collapse
|
15
|
Bhave NM, Nienaber CA, Clough RE, Eagle KA. Multimodality Imaging of Thoracic Aortic Diseases in Adults. JACC Cardiovasc Imaging 2018; 11:902-919. [DOI: 10.1016/j.jcmg.2018.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/28/2022]
|
16
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018; 25:320-330. [PMID: 29119374 DOI: 10.1007/s12350-017-1120-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Several original articles and editorials have been published in the Journal of Nuclear Cardiology in 2017. It has become a tradition at the beginning of each year to summarize some of these key articles in 2 sister reviews. In this first part one, we will discuss some of the progress made in the field of heart failure (cardio-oncology, myocardial blood flow, viability, dyssynchrony, and risk stratification), inflammation, molecular and hybrid imaging using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|