1
|
Aleksa G, Jaruševičius P, Pacaitytė A, Vajauskas D. Comparative Analysis of Cardiac SPECT Myocardial Perfusion Imaging: Full-Ring Solid-State Detectors Versus Dedicated Cardiac Fixed-Angle Gamma Camera. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:665. [PMID: 40282956 PMCID: PMC12028854 DOI: 10.3390/medicina61040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a well-established technique for evaluating myocardial perfusion and function in patients with suspected or known coronary artery disease. While conventional dual-detector SPECT scanners have limitations in spatial resolution and photon detection sensitivity, recent advancements, including full-ring solid-state cadmium zinc telluride (CZT) detectors, offer enhanced image quality and improved diagnostic accuracy. This study aimed to compare the performance of Veriton-CT, a full-ring CZT SPECT system, with GE Discovery 530c, a dedicated cardiac fixed-angle gamma camera, in myocardial perfusion imaging and their correlation with coronary angiography findings. Materials and Methods: This was a prospective study that analyzed 21 patients who underwent MPI at the Department of Nuclear Medicine, Lithuanian University of Health Sciences, Kauno Klinikos. A one-day stress-rest protocol using 99mTc-Sestamibi was employed, with stress testing performed via bicycle ergometry or pharmacological induction. MPI was first conducted using GE Discovery 530c (GE Health Care, Boston, MA, USA), followed by imaging on Veriton-CT, which included low-dose CT for attenuation correction. The summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) were analyzed and compared between both imaging modalities. Coronary angiography results were retrospectively collected, and lesion-based analysis was performed to assess the correlation between imaging results and the presence of significant coronary artery stenosis (≥35% and ≥70% narrowing). Image quality and the certainty of distinguishing the inferior myocardial wall from extracardiac structures were also evaluated by two independent researchers with differing levels of experience. Results: Among the 14 patients included in the final analysis, Veriton-CT was more likely to classify MPI scans as normal (64.3%) compared to GE Discovery 530c (28.6%). Additionally, Veriton-CT provided a better assessment of the right coronary artery (RCA) basin, showing greater agreement with coronary angiography findings than GE Discovery 530c, although the difference was not statistically significant. No significant differences in lesion overlap were observed for the left anterior descending artery (LAD) or left circumflex artery (LCx) basins. Furthermore, the image quality assessment revealed slightly better delineation of extracardiac structures using Veriton-CT (Spectrum Dynamics Medical, Caesarea, Israel), particularly when evaluated by an experienced researcher. However, no significant difference was observed when assessed by a less experienced observer. Conclusions: Our findings suggest that Veriton-CT, with its full-ring CZT detector system, may offer advantages over fixed-angle gamma cameras in improving image quality and reducing attenuation artifacts in MPI. Although the difference in correlations with coronary angiography findings was not statistically significant, Veriton-CT showed a trend toward better agreement, particularly in the RCA basin. These results indicate that full-ring SPECT imaging could improve the diagnostic accuracy of non-invasive MPI, potentially reducing the need for unnecessary invasive angiography. Further studies with larger patient cohorts are required to confirm these findings and evaluate the clinical impact of full-ring SPECT technology in myocardial perfusion imaging.
Collapse
Affiliation(s)
- Gytis Aleksa
- Radiology Clinic, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (P.J.); (D.V.)
| | - Paulius Jaruševičius
- Radiology Clinic, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (P.J.); (D.V.)
- Department of Nuclear Medicine, Radiology Clinic, Lithuanian University of Health Sciences, Kaunas Clinics, 44307 Kaunas, Lithuania
| | - Andrė Pacaitytė
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Donatas Vajauskas
- Radiology Clinic, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (P.J.); (D.V.)
- Department of Nuclear Medicine, Radiology Clinic, Lithuanian University of Health Sciences, Kaunas Clinics, 44307 Kaunas, Lithuania
| |
Collapse
|
2
|
Caobelli F, Dweck MR, Albano D, Gheysens O, Georgoulias P, Nekolla S, Lairez O, Leccisotti L, Lubberink M, Massalha S, Nappi C, Rischpler C, Saraste A, Hyafil F. Hybrid cardiovascular imaging. A clinical consensus statement of the european association of nuclear medicine (EANM) and the european association of cardiovascular imaging (EACVI) of the ESC. Eur J Nucl Med Mol Imaging 2025; 52:1095-1118. [PMID: 39436435 PMCID: PMC11754344 DOI: 10.1007/s00259-024-06946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
Hybrid imaging consists of a combination of two or more imaging modalities, which equally contribute to image information. To date, hybrid cardiovascular imaging can be performed by either merging images acquired on different scanners, or with truly hybrid PET/CT and PET/MR scanners. The European Association of Nuclear Medicine (EANM), and the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC) aim to review clinical situations that may benefit from the use of hybrid cardiac imaging and provide advice on acquisition protocols providing the most relevant information to reach diagnosis in various clinical situations.
Collapse
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Marc R Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Domenico Albano
- Department of Nuclear Medicine, University of Brescia, Brescia, Italy
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stephan Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Olivier Lairez
- National Institute of Health and Medical Research (INSERM), I2MC, U1297, Toulouse, France
| | - Lucia Leccisotti
- Department of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marc Lubberink
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
| | | | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | | | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Fabien Hyafil
- Department of Nuclear Medicine, AP-HP, European Hospital Georges-Pompidou, University of Paris-Cité, 75015, Paris, France
| |
Collapse
|
3
|
Miller RJH, Slomka PJ. Current status and future directions in artificial intelligence for nuclear cardiology. Expert Rev Cardiovasc Ther 2024; 22:367-378. [PMID: 39001698 DOI: 10.1080/14779072.2024.2380764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Myocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management. AREAS COVERED PubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification. EXPERT OPINION There is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Massalha S, Kennedy J, Hussein E, Mahida B, Keidar Z. Cardiovascular Imaging in Women. Semin Nucl Med 2024; 54:191-205. [PMID: 38395672 DOI: 10.1053/j.semnuclmed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Multimodality cardiovascular imaging is a cornerstone diagnostic tool in the diagnosis, risk stratification, and management of cardiovascular diseases, whether those involving the coronary tree, myocardial, or pericardial diseases in general and particularly in women. This manuscript aims to shed some light and summarize the very features of cardiovascular disease in women, explore their unique characteristics and discuss the role of cardiovascular imaging in ischemic heart disease and cardiomyopathies. The role of four imaging modalities will be discussed including nuclear medicine, echocardiography, noninvasive coronary angiography, and cardiac magnetic resonance.
Collapse
Affiliation(s)
- Samia Massalha
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Department of Nuclear Medicine, Rambam Health Care Campus, Haifa. Israel.
| | - John Kennedy
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Essam Hussein
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa. Israel
| | - Besma Mahida
- Nuclear Medicine BICHAT Hospital Assistance Publique Hôpitaux de Paris, Paris. France; LVTS, Inserm U1148, Équipe 4 (Imagerie Cardio-Vasculaire), Paris, France
| | - Zohar Keidar
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|