1
|
Huan Y, Yue H, Song Y, Zhang W, Wei B, Tang Q. Whey Protein Isolate-Encapsulated Astaxanthin Nanoemulsion More Effectively Mitigates Skeletal Muscle Atrophy in Dexamethasone-Induced Mice. Nutrients 2025; 17:750. [PMID: 40077620 PMCID: PMC11901752 DOI: 10.3390/nu17050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Skeletal muscle, as the largest organ in the body and the main protein pool, is crucial for various physiological processes, but atrophy of skeletal muscle can result from glucocorticoids, including dexamethasone, or from aging. Astaxanthin (AST) is a ketocarotenoid with a variety of physiological activities. However, the clinical application of AST is hampered by its strong hydrophobicity, intense off-flavors, and susceptibility to oxidation. METHODS In this study, we prepared whey protein isolate (WPI)-encapsulated AST nanoemulsion (WPI-AST, W-A) and investigated its alleviating effects on dexamethasone-induced skeletal muscle atrophy. RESULTS The optimal concentration of astaxanthin was determined to be 30 mg/mL with an oil/water ratio of 1:5. The W-A was a typical oil-in-water (O/W) emulsion with a particle size of about 110 nm. The bioaccessibility of astaxanthin was significantly improved, with the off-flavors of astaxanthin effectively masked. After oral administration, the W-A further ameliorated skeletal muscle atrophy by inhibiting skeletal muscle catabolism, promoting skeletal muscle production, and inhibiting mitochondrial autophagy compared with the same dose of WPI and AST. In addition to this, the W-A further improved the glycometabolism of skeletal muscle by reducing the expression of Foxo3 and increasing the expression of PGC-1α. CONCLUSIONS In conclusion, the W-A nanoemulsion demonstrated good therapeutic value in alleviating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Han Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Yanli Song
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Wenmei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| |
Collapse
|
2
|
Guida C, Aguiar AC, Magalhães AER, Soares MG, Cunha RL. Impact of ultrasound process on cassava starch nanoparticles and Pickering emulsions stability. Food Res Int 2024; 192:114810. [PMID: 39147505 DOI: 10.1016/j.foodres.2024.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Using green techniques to convert native starches into nanoparticles is an interesting approach to producing stabilizers for Pickering emulsions, aiming at highly stable emulsions in clean label products. Nanoprecipitation was used to prepare the Pickering starch nanoparticles, while ultrasound technique has been used to modulate the size of these nanoparticles at the same time as the emulsion was developed. Thus, the main objective of this study was to evaluate the stabilizing effect of cassava starch nanoparticles (SNP) produced by the nanoprecipitation technique combined with ultrasound treatment carried out in the presence of water and oil (more hydrophobic physicochemical environment), different from previous studies that carry out the mechanical treatment only in the presence of water. The results showed that the increased ultrasound energy input could reduce particle size (117.58 to 55.75 nm) and polydispersity (0.958 to 0.547) in aqueous dispersions. Subsequently, Pickering emulsions stabilized by SNPs showed that increasing emulsification (ultrasonication) time led to smaller droplet sizes and monomodal size distribution. Despite flocculation, long-term ultrasonication (6 and 9 min) caused little variation in the droplet size after 7 days of storage. The cavitation effects favored the interaction between oil droplets through weak attraction forces and particle sharing, favoring the Pickering stabilization against droplet coalescence. Our results show the potential to use only physical modifications to obtain nanoparticles that can produce coalescence-stable emulsions that are environmentally friendly.
Collapse
Affiliation(s)
- Carolina Guida
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil
| | - Ana Carolina Aguiar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | - Ana Elisa Ramos Magalhães
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil
| | - Marcelo Gomes Soares
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
3
|
AnnaDurai KS, Chandrasekaran N, Velraja S, Hikku GS, Parvathi VD. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop 2024; 257:107290. [PMID: 38909722 DOI: 10.1016/j.actatropica.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.
Collapse
Affiliation(s)
- Kavitha Sri AnnaDurai
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India
| | | | - Supriya Velraja
- Department of Clinical Nutrition, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai 600116, Tamil Nadu, India
| | - Gnanadhas Sobhin Hikku
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamilnadu, India; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhu X, Das RS, Bhavya ML, Garcia-Vaquero M, Tiwari BK. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. ULTRASONICS SONOCHEMISTRY 2024; 105:106850. [PMID: 38520893 PMCID: PMC10979275 DOI: 10.1016/j.ultsonch.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Acoustic cavitation, an intriguing phenomenon resulting from the interaction of sound waves with a liquid medium, has emerged as a promising avenue in agri-food processing, offering opportunities to enhance established processes improving primary production of ingredients and further food processing. This comprehensive review provides an in-depth analysis of the mechanisms, design considerations, challenges and scale-up strategies associated with acoustic cavitation for agri-food applications. The paper starts by elucidating the fundamental principles of acoustic cavitation and its measurement, delving then into the diverse effects of different parameters associated with, the acoustic wave, mechanical design and operation of the ultrasonic system, along with those related to the food matrix. The technological advancements achieved in the design and set-up of ultrasonic reactors addressing limitations during scale up are also discussed. The design, engineering and mathematical modelling of ultrasonic equipment tailored for agri-food applications are explored, along with strategies to maximize cavitation intensity and efficiency in the application of brining, freezing, drying, emulsification, filtration and extraction. Advanced US equipment, such as multi-transducers (tubular resonator, FLOW:WAVE®) and larger processing surface areas through innovative designing (Barbell horn, CascatrodesTM), are one of the most promising strategies to ensure consistency of US operations at industrial scale. This review paper aims to provide valuable insights into harnessing acoustic cavitation's potential for up-scaling applications in food processing via critical examination of current research and advancements, while identifying future directions and opportunities for further research and innovation.
Collapse
Affiliation(s)
- Xianglu Zhu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Rahel Suchintita Das
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland
| | - Mysore Lokesh Bhavya
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland.
| |
Collapse
|
5
|
da Silva BD, Rosario DKAD, Conte-Junior CA. Can droplet size influence antibacterial activity in ultrasound-prepared essential oil nanoemulsions? Crit Rev Food Sci Nutr 2023; 63:12567-12577. [PMID: 35900149 DOI: 10.1080/10408398.2022.2103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Essential oil nanoemulsion may have improved antibacterial properties over pure oil and can be used for food preservation. Ultrasonic cavitation is the most common mechanism for producing nanoemulsions, and the impact of processing parameters on droplet properties needs to be elucidated. A systematic literature search was performed in four databases (Science Direct, Web of Science, Scopus and PubMed), and 987 articles were found, 16 of which were eligible for the present study. A meta-analysis was performed to qualitatively assess which process parameters (power, sonication time, essential oil, and tween 80 concentration) can influence the final droplet size and polydispersity and how droplet size is associated with antibacterial activity. We observed that power, essential oil, and tween 80 concentrations added during processing are the critical variables for forming smaller droplets. Ratios of up to 3:1 (surfactant:oil) can produce droplets smaller than 180 nm with antibacterial properties superior to pure oil or isolated compounds. The improved properties of nanoemulsions are associated with the size and chemical composition of the droplet since the proportion of the hydrophobic core (EO) and the hydrophilic outer layer (Tween 80) directly influences the antibacterial mechanism of action.
Collapse
Affiliation(s)
- Bruno Dutra da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Denes Kaic Alves do Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Engineering, Center for Agrarian Sciences and Engineering, Universidade Federal do Espírito Santo (UFES), Alto Universitário, Alegre, ES, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Engineering, Center for Agrarian Sciences and Engineering, Universidade Federal do Espírito Santo (UFES), Alto Universitário, Alegre, ES, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Manickam S, Camilla Boffito D, Flores EMM, Leveque JM, Pflieger R, Pollet BG, Ashokkumar M. Ultrasonics and sonochemistry: Editors' perspective. ULTRASONICS SONOCHEMISTRY 2023; 99:106540. [PMID: 37542752 PMCID: PMC10430610 DOI: 10.1016/j.ultsonch.2023.106540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Ultrasonic waves can induce physical and chemical changes in liquid media via acoustic cavitation. Various applications have benefitted from utilizing these effects, including but not limited to the synthesis of functional materials, emulsification, cleaning, and processing. Several books and review articles in the public domain cover both fundamental and applied aspects of ultrasonics and sonochemistry. The Editors of the Ultrasonics Sonochemistry journal possess diverse expertise in this field, from theoretical and experimental aspects of acoustic cavitation to materials synthesis, environmental remediation, and sonoprocessing. This article provides Editors' perspectives on various aspects of ultrasonics and sonochemistry that may benefit students and early career researchers.
Collapse
Affiliation(s)
- Sivakumar Manickam
- University of Technology Brunei, Faculty of Engineering, Gadong, Brunei Darussalam.
| | | | | | - Jean-Marc Leveque
- University Savoie Mont Blanc, Department of Sciences and Mountain Training, Le Bourget du Lac, France
| | - Rachel Pflieger
- Université Montpellier, Marcoule Institute in Separation Chemistry (ICSM), Marcoule, France
| | - Bruno G Pollet
- Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | |
Collapse
|
7
|
Molina RE, Bohrer BM, Mejia SMV. Phosphate alternatives for meat processing and challenges for the industry: A critical review. Food Res Int 2023; 166:112624. [PMID: 36914330 DOI: 10.1016/j.foodres.2023.112624] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Meat and meat products provide high levels of nutrition and many health benefits to consumers, yet a controversy exists regarding the use of non-meat additives, such as the inorganic phosphates that are commonly used in meat processing, and particularly their relationship to cardiovascular health and kidney complications. Inorganic phosphates are salts of phosphoric acid (e.g., sodium phosphate, potassium phosphate, or calcium phosphate), whereas organic phosphates are ester compounds (e.g., the phospholipids found in cell membranes). In this sense, the meat industry remains active in its efforts to improve formulations for processed meat products with the use of natural ingredients. Despite efforts to improve formulations, many processed meat products still contain inorganic phosphates, which are used for their technological contributions to meat chemistry including improvements in water-holding capacity and protein solubilization. This review provides a thorough evaluation of phosphate substitutes in meat formulations and other processing technologies that can help eliminate phosphates from the formulations of processed meat products. In general, several ingredients have been evaluated as replacements for inorganic phosphates with varying degrees of success such as plant-based ingredients (e.g., starches, fibers, or seeds), fungi ingredients (e.g., mushrooms and mushroom extracts), algae ingredients, animal-based ingredients (e.g., meat/seafood, dairy, or egg materials), and inorganic compounds (i.e., minerals). Although these ingredients have shown some favorable effects in certain meat products, none have exactly matched the many functions of inorganic phosphates, so the support of extrinsic technologies, such as tumbling, ultrasound, high-pressure processing (HPP), and pulsed electric field (PEF), may be necessary to achieve similar physiochemical properties as conventional products. The meat industry should continue to investigate ways to scientifically innovate the formulations of, and the technologies used in, processed meat products while also listening to (and acting upon) the feedback from consumers.
Collapse
Affiliation(s)
- Rafael Eduardo Molina
- Departamento de producción animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia. Carrera 30, #45-03, Edificio 561A, 111321 Bogotá, Colombia
| | - Benjamin M Bohrer
- Department of Animal Sciences. The Ohio State University. 2029, Fyffe Road, Columbus OH 43210, United States
| | - Sandra Milena Vásquez Mejia
- Departamento de producción animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia. Carrera 30, #45-03, Edificio 561A, 111321 Bogotá, Colombia.
| |
Collapse
|
8
|
Sviridov A, Mazina S, Ostapenko A, Nikolaev A, Timoshenko V. Antibacterial Effect of Acoustic Cavitation Promoted by Mesoporous Silicon Nanoparticles. Int J Mol Sci 2023; 24:ijms24021065. [PMID: 36674582 PMCID: PMC9866259 DOI: 10.3390/ijms24021065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As-prepared mesoporous silicon nanoparticles, which were synthesized by electrochemical etching of crystalline silicon wafers followed by high-energy milling in water, were explored as a sonosensitizer in aqueous media under irradiation with low-intensity ultrasound at 0.88 MHz. Due to the mixed oxide-hydride coating of the nanoparticles' surfaces, they showed both acceptable colloidal stability and sonosensitization of the acoustic cavitation. The latter was directly measured and quantified as a cavitation energy index, i.e., time integral of the magnitude of ultrasound subharmonics. The index turned out to be several times greater for nanoparticle suspensions as compared to pure water, and it depended nonmonotonically on nanoparticle concentration. In vitro tests with Lactobacillus casei revealed a dramatic drop of the bacterial viability and damage of the cells after ultrasonic irradiation with intensity of about 1 W/cm2 in the presence of nanoparticles, which themselves are almost non-toxic at the studied concentrations of about 1 mg/mL. The experimental results prove that nanoparticle-sensitized cavitation bubbles nearby bacteria can cause bacterial lysis and death. The sonosensitizing properties of freshly prepared mesoporous silicon nanoparticles are beneficial for their application in mild antibacterial therapy and treatment of liquid media.
Collapse
Affiliation(s)
- Andrey Sviridov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Svetlana Mazina
- Research and Technical Centre of Radiation-Chemical Safety and Hygiene, FMBA, Schukinskaya St 40, 123182 Moscow, Russia
- Faculty of Land and Environmental Management, State University of Land Use Planning, Kazakov St. 15, 105064 Moscow, Russia
- Faculty of Ecology, Peoples Friendship University of Russia, Miklukho-Maklaya St. 6, 123182 Moscow, Russia
| | - Anna Ostapenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Alexander Nikolaev
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Victor Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Phys-Bio Institute, National Research Nuclear University (MEPhI), Kashirskoye Sh. 31, 115409 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Polat Yemiş G, Sezer E, Sıçramaz H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil ( Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules 2022; 27:7298. [PMID: 36364124 PMCID: PMC9658201 DOI: 10.3390/molecules27217298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2024] Open
Abstract
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00-4.67 mg/mL and 5.00-7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
- Sakarya University Research, Development, and Application Center (SARGEM), Serdivan 54187, Turkey
| | - Elif Sezer
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| | - Hatice Sıçramaz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| |
Collapse
|
12
|
Budama-Kilinc Y, Gok B, Kecel-Gunduz S, Altuntas E. Development of nanoformulation for hyperpigmentation disorders: experimental evaluations, in vitro efficacy and in silico molecular docking studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|
14
|
Effects of High-Intensity Ultrasound Treatments on the Physicochemical and Structural Characteristics of Sodium Caseinate (SC) and the Stability of SC-Coated Oil-in-Water (O/W) Emulsions. Foods 2022; 11:foods11182817. [PMID: 36140961 PMCID: PMC9498016 DOI: 10.3390/foods11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of high-intensity ultrasound treatment (0, 3, 6, 9 min) on physicochemical and structural characteristics of SC and the storage, thermal and freeze–thaw stability of SC O/W emulsions were investigated. The results showed that ultrasound treatment reduced the particle size of SC, although there were no obvious changes in zeta potential, profiles and weights. Ultrasound treatment improved surface hydrophobicity and fluorescence intensity of SC and changed ultraviolet–visible (UV–Vis) spectroscopy but had no influence on the secondary structure of SC. This indicates that ultrasounds might destroy the tertiary structure but leave most of the integral secondary structure. A scanning electron microscope (SEM) also showed that ultrasound-treated SC presented small aggregates and a loose structure. The physicochemical and structural changes of SC benefited the ability of protein adsorbing oil droplets and emulsion stability. Under stresses such as storage, thermal and freeze–thawing, the oil droplets of treated emulsions were still uniform and stable, especially at 6 min and 9 min. Overall, the high-intensity ultrasounds made the SC present small aggregates and a loose structure improving the SC O/W emulsions stability under storage, thermal and freeze–thawing environment and have great potential to stabilize the SC prepared O/W emulsions.
Collapse
|
15
|
Alderees F, Akter S, Mereddy R, Sultanbawa Y. Formulation, characterization, and stability of food grade oil‐in‐water nanoemulsions of essential oils of
Tasmannia lanceolata
,
Backhousia citriodora
and
Syzygium anisatum. J Food Saf 2022. [DOI: 10.1111/jfs.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fahad Alderees
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Saleha Akter
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries Queensland Government, Health and Food Sciences Precinct Coopers Plains Qld Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| |
Collapse
|
16
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Enhancing the storage stability of Pickering emulsion using esterified buckwheat starch with improved structure and morphology. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Amiri-Rigi A, Abbasi S, Emmambux MN. Background, Limitations, and Future Perspectives in Food Grade Microemulsions and Nanoemulsions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2059808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Atefeh Amiri-Rigi
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Soleiman Abbasi
- Food Colloids and Rheology Laboratory, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Naushad Emmambux
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Inapurapu SP, Pullakhandam R, Bodiga S, Yaduvanshi PS, Bodiga VL. Physicochemical studies of sunflower oil based vitamin D nanoemulsions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2016440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Santhi Priya Inapurapu
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Raghu Pullakhandam
- Micronutrient Division, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Sreedhar Bodiga
- Department of Basic and Social Sciences, Forest College and Research Institute, Mulugu, Telangana, India
| | | | - Vijaya Lakshmi Bodiga
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
21
|
One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Res Int 2021; 150:110757. [PMID: 34865775 DOI: 10.1016/j.foodres.2021.110757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Phytosterols oleogel-based flavor emulsions were successfully fabricated for the first time using natural tea saponin as emulsifier and one-pot ultrasonic technique. The effects of ultrasonic time and power, surfactant concentration, and type of flavor oils (e.g., orange, lemon and peppermint) on the emulsion droplet size were investigated. Submicron emulsions with a dispersed phase made by flavor oil (20 wt%) + phytosterol (4 wt%) were stabilized with 3 wt% saponin were obtained by applying an ultrasonic time of 5 min and ultrasonic power of 280 W. The natural tea saponin emulsions exhibited a superior stability and encapsulation efficiency of phytosterol, compared to traditional emulsifiers. Flavor oil-phytosterol enriched powders were prepared by spray-drying and characterized by SEM, XRD and repose angle. The natural saponin encapsulated oil + phytosterol powders had excellent fluidity, redispersion behavior and low phytosterol crystallinity. It was demonstrated that ultrasound is an effective and suitable technique for fabricating fortified flavor emulsions and microcapsules, which may be used for developing functional lipids-based applications in the food, beverage and cosmetic industries.
Collapse
|
22
|
Liu C, Wang X. The physicochemical properties and stability of flaxseed oil emulsions: effects of emulsification methods and the ratio of soybean protein isolate to soy lecithin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6407-6416. [PMID: 33969885 DOI: 10.1002/jsfa.11311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The properties and stability of emulsion rely greatly on the emulsification method and emulsifier. In this study, different emulsification methods (high-speed homogenization, ultrasonic treatment and their combination) were employed for the preparation of emulsions stabilized by soybean protein isolate (SPI) and soy lecithin (SLT) at three ratios. The microstructure, hydrodynamic average diameter, ζ-potential, creaming stability and low-field nuclear magnetic resonance relaxation behaviors of emulsions were investigated. RESULTS The results indicated that the influence of emulsification method was closely related to the ratio of SPI/SLT. Overall, the SPI-SLT-stabilized emulsion treated by ultrasound showed better stability and uniformity, while the combined treatment of high-speed homogenization and ultrasound was helpful in improving the uniformity and stability of SPI-stabilized Pickering emulsion. However, the SLT-stabilized emulsions all exhibited worse uniformity in terms of particle size distribution and polydispersity index. CONCLUSION These results will be helpful for selecting an appropriate emulsification method and emulsifier to improve the stability of emulsions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Conghui Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
24
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Vélez-Erazo EM, Silva IL, Comunian T, Kurozawa LE, Hubinger MD. Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3765-3779. [PMID: 34471300 DOI: 10.1007/s13197-020-04834-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Chia oil is susceptible to oxidation and to make this oil application into foodstuffs possible, chia-oil based microparticles were produced. Oil-in-water emulsions were produced by ultrasound and their stability was maximized using a central composite rotational design (X1: pea protein X2: oil concentration). Hi-Cap® 100 (HC) or maltodextrin (MD) were used as carrier agents in spray drying. The validated formulation with 13.50% (w/w) oil and 3.87% (w/w) pea protein presented the best stability conditions (no phase separation for 7 days, monomodal size distribution, and 1.59 μm of moda diameter). Particles showed high encapsulation efficiency (87.71 and 91.97% for MD and HC, respectively) and low water activity and moisture values (0.114-0.150% and 2.64-3.41%, respectively). HC particles exhibited better physicochemical and structural characteristics, apart from their good reconstitution, which shows the potential of this approach as a viable alternative for the use of rich-plant ingredients, such as chia oil and pea protein.
Collapse
Affiliation(s)
- Eliana M Vélez-Erazo
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Isabela Lima Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Talita Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Louise E Kurozawa
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| |
Collapse
|
26
|
Ozturk OK, Turasan H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
González MM, Zalazar AL, Pedreira JD, Campos CA, Gliemmo MF. Lemongrass and cinnamon oil nanoemulsions: Formulation and study of their physical stability and activity against Zygosaccharomyces bailii. FOOD SCI TECHNOL INT 2021; 27:485-498. [PMID: 34487460 DOI: 10.1177/1082013220969100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The optimal conditions for elaborating oil/water nanoemulsions of lemongrass (LG), cinnamon bark (CB) and cinnamon leaves (CL) essential oils and their antimicrobial activity against Zygosaccharomyces bailii at pH 4.00 were studied. The effect of the emulsification methodology on the physical stability and antimicrobial activity of the nanoemulsions were also evaluated. Furthermore, the sensory impact of nanoemulsions added to an apple juice was tested. LG and CL nanoemulsions were elaborated by ultrasonication and CB nanoemulsion, by high-speed homogenization. They were stable for at least 120 days at 25 °C. They exhibited antimicrobial activity against Z. bailii being CB the most effective since it showed the smallest MIC value (156.3 mg/l), followed by LG (468.8 mg/l) and CL (1250.0 mg/l). A slight increase in growth rate was observed due to ultrasonication. An additive interaction in relation to the inhibitory effect between LG and CB nanoemulsions against Z. bailii was observed. While nanoemulsions obtained would be used as natural antimicrobial agents in food and beverage products, only LG nanoemulsion at MIC concentration diluted was acceptable in juice showing the sensory impact of essential oils on foods.
Collapse
Affiliation(s)
- Malena M González
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, de la República Argentina
| | - Aldana L Zalazar
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta D Pedreira
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen A Campos
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Gliemmo
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Zeng C, Liu Y, Ding Z, Xia H, Guo S. Physicochemical properties and antibacterial activity of hydrophobic deep eutectic solvent-in-water nanoemulsion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
30
|
Khadhraoui B, Ummat V, Tiwari BK, Fabiano-Tixier AS, Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. ULTRASONICS SONOCHEMISTRY 2021; 76:105625. [PMID: 34147916 PMCID: PMC8225985 DOI: 10.1016/j.ultsonch.2021.105625] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Ultrasound has a significant effect on the rate of various processes in food, perfume, cosmetic, pharmaceutical, bio-fuel, materials, or fine chemical industries, despite some shortcomings. Combination with other conventional or innovative techniques can overcome these limitations, enhance energy, momentum and mass transfer, and has been successfully demonstrated in many recent studies. Various ultrasound combined hybrid and innovative techniques are systematically summarized in this review for the first time. Ultrasound can be combined with diverse conventional techniques including Soxhlet, Clevenger, enzyme, hydrotropes, ionic liquids, Deep Eutectic Solvents (DES) or Natural Deep Eutectic Solvents (NADES), to enhance mixing and micro-mixing, reduced thermal and concentration gradients, and selective extraction. Moreover, combinations of ultrasound with other innovative techniques such as microwave, extrusion, supercritical fluid, subcritical and pressure liquids, Instant controlled pressure drop (DIC), Pulsed Electric Field (PEF), Ultra-Violet (UV) or Infra-Red (IR) radiations, Counter-current chromatography (CCC), or centrifugal partition chromatographs (CPC) can enable reduced equipment size, faster response to process control, faster start-up, increased production, and elimination of process steps. The theories and applications of these ultrasound combined hybrid and innovative techniques as well as their advantages and limitations are compared, and further perspectives are proposed. This review provides new insights into advances in ultrasound combined techniques and their application at research, educational, and industrial level in modern food and plant-based chemistry.
Collapse
Affiliation(s)
- B Khadhraoui
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - V Ummat
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - B K Tiwari
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland.
| | - A S Fabiano-Tixier
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - F Chemat
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France.
| |
Collapse
|
31
|
Kildaci I, Budama-Kilinc Y, Kecel-Gunduz S, Altuntas E. Linseed Oil Nanoemulsions for treatment of Atopic Dermatitis disease: Formulation, characterization, in vitro and in silico evaluations. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Silva M, Chandrapala J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | |
Collapse
|
33
|
Umego EC, He R, Huang G, Dai C, Ma H. Ultrasound‐assisted fermentation: Mechanisms, technologies, and challenges. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ekene Christopher Umego
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Technology University of Nigeria Enugu Nigeria
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Guoping Huang
- Institute of Life Sciences Jiangsu University Zhenjiang China
| | - Chuanhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| |
Collapse
|
34
|
Yu Z, Su Y, Zhang Y, Zhu P, Mei Z, Zhou X, Yu H. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chem 2021; 357:129805. [PMID: 33915466 DOI: 10.1016/j.foodchem.2021.129805] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
Conventional food fermentation is time-consuming, and maturation of fermented foods normally requires a huge space for long-term storage. Ultrasound is a technology that emerged in the food industry to improve the efficacy of food fermentation and presents great potentials in maturation of fermented foods to produce fermented foods with high quality. Proliferation of microorganisms was observed along with promoted enzyme activities and metabolic performance when treated by a short-term ultrasonication (<30 min) at a relatively low-power (≤100 W). Additionally, ultrasound at a high-power level (≥100 W) was highlighted to promote the maturation of fermented foods through promoting Maillard reaction, oxidation, esterification, and proteolysis. As a result of promoted fermentation and maturation, texture, color, flavor and taste of fermented foods were improved. All the reviewed studies have indicated that ultrasound at the proper conditions would be a promising technique to produce fermented foods with high-quality.
Collapse
Affiliation(s)
- Zhou Yu
- School of Biology, Food and Environment, Hefei University, 99 Jinxiu Avenue, Hefei 230022, Anhui, China
| | - Ying Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yilong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Peiyi Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Zilun Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xinning Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
35
|
Zhou L, Zhang J, Xing L, Zhang W. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Rajamma DB, Anandan S, Yusof NSM, Pollet BG, Ashokkumar M. Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods. ULTRASONICS SONOCHEMISTRY 2021; 72:105413. [PMID: 33338865 PMCID: PMC7803795 DOI: 10.1016/j.ultsonch.2020.105413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Abstract
Acoustic cavitation and sonochemical reactions play a significant role in various applications of ultrasound. A number of dosimetry methods are in practice to quantify the amount of radicals generated by acoustic cavitation. In this study, hydroxyl radical (OH) yields measured by Weissler, Fricke and terephthalic acid dosimetry methods have been compared to evaluate the validities of these methods using a 490 kHz high frequency sonochemical reactor. The OH yields obtained after 5 min sonication at 490 kHz from Weissler and Fricke dosimetries were 200 µM and 289 µM, respectively. Whereas, the OH yield was found to be very low (8 µM) when terephthalic acid dosimetry was used under similar experimental conditions. While the results agree with those reported by Iida et al. (Microchem. J., 80 (2005) 159), further mechanistic details and interfering reactions have been discussed in this study. For example, the amount of OH determined by the Weissler and Fricke methods may have some uncertainty due to the formation of HO2 in the presence of oxygen. In order to account for the major discrepancy observed with the terephthalic acid dosimetry method, high performance liquid chromatography (HPLC) analysis was performed, where two additional products other than 2-hydroxy terephthalic acid were observed. Electrospray ionization mass spectrometry (ESI-MS) analysis showed the formation of 2,5-dihydroxyterephthalic acid as one of the by-products along with other unidentified by-products. Despite the formation of additional products consuming OH, the reason for a very low OH yield obtained by this dosimetry could not be justified, questioning the applicability of this method, which has been used to quantify OH yields generated not only by acoustic cavitation, but also by other processes such as γ-radiolysis. The authors are hoping that this Opinion Paper may initiate further discussion among researchers working in sonochemistry area that could help resolve the uncertainties around using these dosimetry methods.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Nor Saadah Mohd Yusof
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Gløshaugen, Kolbjørn Hejes v1B, NO-7491 Trondheim, Norway.
| | | |
Collapse
|
37
|
Espinosa-Sandoval L, Ochoa-Martínez C, Ayala-Aponte A, Pastrana L, Gonçalves C, Cerqueira MA. Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:878. [PMID: 33808246 PMCID: PMC8067034 DOI: 10.3390/nano11040878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
The food industry has increased its interest in using "consumer-friendly" and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and -42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and -1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.
Collapse
Affiliation(s)
- Luz Espinosa-Sandoval
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Claudia Ochoa-Martínez
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Alfredo Ayala-Aponte
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| |
Collapse
|
38
|
Zhao K, Wu J, Li X, Li Z, Chen Y. Advances of Ultrasonic Scaling Removal Technology and Heat Transfer Enhancement Technology. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kelin Zhao
- Zhengzhou University Research Center of Energy–Saving Technology School of Mechanical and Power Engineering 450001 Zhengzhou hina
| | - Jinxing Wu
- Zhengzhou University Research Center of Energy–Saving Technology School of Mechanical and Power Engineering 450001 Zhengzhou hina
| | - Xue Li
- Zhengzhou University Research Center of Energy–Saving Technology School of Mechanical and Power Engineering 450001 Zhengzhou hina
| | - Zhe Li
- Zhengzhou University Research Center of Energy–Saving Technology School of Mechanical and Power Engineering 450001 Zhengzhou hina
| | - Yabo Chen
- Zhengzhou University Research Center of Energy–Saving Technology School of Mechanical and Power Engineering 450001 Zhengzhou hina
| |
Collapse
|
39
|
|
40
|
Silva M, Zisu B, Chandrapala J. Stability of oil–water primary emulsions stabilised with varying levels of casein and whey proteins affected by high‐intensity ultrasound. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayumi Silva
- School of Science RMIT University Bundoora Vic.3083Australia
| | - Bogdan Zisu
- Spraying Systems, Fluid AirSpraying Systems Co. Pty Ltd Melbourne Vic.3029Australia
| | | |
Collapse
|
41
|
Vélez-Erazo EM, Saturno RP, Marson GV, Hubinger MD. Spent brewer’s yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Res Int 2021; 140:109853. [DOI: 10.1016/j.foodres.2020.109853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
|
42
|
Cardoso‐Ugarte GA, López‐Malo A, Palou E, Ramírez‐Corona N, Jiménez‐Fernández M, Jiménez‐Munguía MT. Stability of oregano essential oil encapsulated in double (w/o/w) emulsions prepared with mechanical or high‐pressure homogenization and its effect in
Aspergillus niger
inhibition. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Aurelio López‐Malo
- Departamento de Ingeniería Química Alimentos y AmbientalUniversidad de las Américas Puebla Puebla Mexico
| | - Enrique Palou
- Departamento de Ingeniería Química Alimentos y AmbientalUniversidad de las Américas Puebla Puebla Mexico
| | - Nelly Ramírez‐Corona
- Departamento de Ingeniería Química Alimentos y AmbientalUniversidad de las Américas Puebla Puebla Mexico
| | | | | |
Collapse
|
43
|
Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products - a review. J DAIRY RES 2020; 87:501-512. [PMID: 33353571 DOI: 10.1017/s0022029920001107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of low and high frequency ultrasound on the production of volatile compounds along with their derivation and corresponding off-flavours in milk and milk products are discussed in this review. The review will simultaneously discuss possible mechanisms of applied ultrasound and their respective chemical and physical effects on milk components in relation to the production of volatile compounds. Ultrasound offers potential benefits in dairy applications over conventional heat treatment processes. Physical effects enhance the positive alteration of the physicochemical properties of milk proteins and fat. However, chemical effects propagated by free radical generation cause redox oxidations which in turn produce undesirable volatile compounds such as aldehydes, ketones, acids, esters, alcohols and sulphur, producing off-flavours. The extent of volatile compounds produced depends on ultrasonic processing conditions such as sonication time, temperature and frequency. Low frequency ultrasound limits free radical formation and results in few volatile compounds, while high ultrasonic frequency induces greater level of free radical formation. Furthermore, the compositional variations in terms of milk proteins and fat within the milk systems influence the production of volatile compounds. These factors could be controlled and optimized to reduce the production of undesirable volatiles, eliminate off-flavours, and promote the application of ultrasound technology in the dairy field.
Collapse
|
44
|
Yalçinöz Ş, Erçelebi E. Influence of hydrocolloid addition on physical properties and rheology of olive oil in bitter orange juice (O/W) nano-emulsions prepared with blends of different surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Şelale Yalçinöz
- Faculty of Engineering, Department of Food Engineering, The University of Gaziantep, Gaziantep, Turkey
| | - Emine Erçelebi
- Faculty of Engineering, Department of Food Engineering, The University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
45
|
Costa JM, Almeida Neto AFD. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review. ULTRASONICS SONOCHEMISTRY 2020; 68:105193. [PMID: 32505102 DOI: 10.1016/j.ultsonch.2020.105193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/10/2023]
Abstract
The development of electrodeposited materials with improved technological properties has been attracting the attention of researchers and companies from different industrial sectors. Many studies have demonstrated that the electrodeposition and synthesis of alloys and composite materials assisted by ultrasound may promote the de-agglomeration of particles in the electrolytic solution due to microturbulence, microjets, shock waves, and breaking of Van der Waals forces. The sonoelectrochemical technique, in which the ultrasound probe acts as a working electrode, also has been used for the formation of nanostructures in greater quantity, in addition to accelerating the electrolysis process and eliminating the reaction products on the electrode surface. Regarding the morphological aspects, the acoustic cavitation promotes the formation of smooth and uniform surfaces with incorporated particles homogeneously distributed. These changes have a direct impact on the composition and physical properties of the material, such as corrosion resistance, magnetization, wear, and microhardness. Despite the widespread use of acoustic cavitation in the synthesis of nanostructured materials, the discussion of how process variables such as acoustic power, frequency, and type of ultrasound device, as well as their effects still are scarce. In this sense, this review discusses the influence of ultrasound technology on obtaining electrodeposited coatings. The trends and challenges in this research field were reviewed from 2014 to 2019. Moreover, the effects of process variables in electrodeposition and how these ones change the technological properties of these materials were evaluated.
Collapse
Affiliation(s)
- Josiel Martins Costa
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil
| |
Collapse
|
46
|
Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Wang L, Guan X, Zheng C, Wang N, Lu H, Huang Z. New Low-Energy Method for Nanoemulsion Formation: pH Regulation Based on Fatty Acid/Amine Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10082-10090. [PMID: 32787050 DOI: 10.1021/acs.langmuir.0c01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phase inversion composition methods and phase inversion temperature methods are the common methods for nanoemulsion formation. The mechanisms governing both PIC and PIT are the same: composition or temperature can trigger a change in the surfactant spontaneous curvature during the emulsification process. It is anticipated that pH may also induce a change in the spontaneous curvature of pH-responsive surfactants to prepare nanoemulsions. Therefore, fatty acid/amine complexes were synthesized through electrostatic interactions. Based on these complexes, nanoemulsions were successfully prepared by pH regulation. Electrical conductivity and pH measurements were employed to determine the phase inversion process. Dynamic light scattering, digital fluorescence microscopy, and transmission electron microscopy were employed to characterize the droplet size and morphology of the nanoemulsion. The effects of complex concentration, NaCl concentration, and pH of the system were investigated. The developed method, phase inversion pH (PIpH) method, is a moderate and easy-control method. Using this method, the size distributions of nanoemulsion are monomodal and narrow. Nanoemulsion prepared by PIpH has a unique pH-responsive behavior that can be controllably regulated among nanoemulsions, emulsions, and phase separation systems.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xueqian Guan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Cunchuan Zheng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Zhiyu Huang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
48
|
Banasaz S, Morozova K, Ferrentino G, Scampicchio M. Encapsulation of Lipid-Soluble Bioactives by Nanoemulsions. Molecules 2020; 25:E3966. [PMID: 32878137 PMCID: PMC7504786 DOI: 10.3390/molecules25173966] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023] Open
Abstract
Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined.
Collapse
Affiliation(s)
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.B.); (G.F.); (M.S.)
| | | | | |
Collapse
|
49
|
Teng F, He M, Xu J, Chen F, Wu C, Wang Z, Li Y. Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Sci Rep 2020; 10:14010. [PMID: 32814779 PMCID: PMC7438485 DOI: 10.1038/s41598-020-70462-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylcholine-soybean protein isolate (PC-SPI) nanoemulsions were prepared by ultrasonication. The effects of preparation conditions (SPI and PC addition, ultrasonic power and time) on the structural properties of the nanoemulsions and their storage stability were investigated. The results showed that the most optimal adsorption capacity and adsorption tightness at the oil-water interface under optimal conditions (1.5% SPI, 0.20% PC, 500 W ultrasonic power and 9 min ultrasonic time) were exhibited by the SPI-PC conjugate, which demonstrated that this nanoemulsions can be categorized as a high-quality emulsion suitable for research. To test its stability, and the high-quality nanoemulsion of β-carotene was stored. After degradation of the nanoemulsions during storage, β-carotene was released. The β-carotene retention rate of the high-quality emulsion was maintained above 86% at different temperatures in the absence of light for up to 30 days. This study provides new information for the development of transport and stability systems for nanoemulsions.
Collapse
Affiliation(s)
- Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Fanfan Chen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Changling Wu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Harbin Institute of Food Industry, Harbin, 150030, Heilongjiang, China.
- Heilongjiang Academy of Green Food Science, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
50
|
Encapsulation of a bioactive peptide in a formulation of W1/O/W2-type double emulsions: Formation and stability. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|