1
|
Mundada V, Karabulut G, Kapoor R, Malvandi A, Feng H. Fabricating dehydrated albumen with a novel variable frequency ultrasonic drying method: Drying kinetics, physiochemical and foaming characteristics. Int J Biol Macromol 2024; 283:137664. [PMID: 39561847 DOI: 10.1016/j.ijbiomac.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Albumen, primarily composed of ovalbumin, is a vital, nutrient-rich ingredient in the food industry. Drying is a critical step in low-water-activity albumen powder production, allowing extended shelf-life and reduced costs in handling, transportation, and storage of albumen products. Traditional drying methods, such as spray drying (SD) and hot air drying (HAD), often degrade albumen. This study explores variable frequency contact ultrasonic drying (CUD) as a novel and green alternative, operating at a central frequency of 20 kHz with sound amplitudes of 0 %, 40 %, and 60 %, and temperatures of 40 °C and 60 °C. The drying kinetics, physical, and foaming properties of CUD-dried albumen proteins were compared with those of hot-air-, spray-, and freeze-dried (FD) samples. Compared to HAD, CUD significantly enhanced the drying process, as evidenced by a 240 % increase in effective moisture diffusivity, a 66-78 % reduction in activation energy (Ea), and a 27 % reduction in drying time. Moreover, CUD maintained higher protein integrity, evident from a 24-35 % decrease in enthalpies, more β-turn and random coil structures, and increased free sulfhydryl groups. Notably, CUD at 40 °C significantly improved foaming capacity by 88 %, and at 60 °C, it enhanced foaming stability by 34 %, outperforming other drying methods. Protein solubility of CUD-albumen was improved by 10-12 % compared to HAD and was slightly better than FD. CUD-albumen showed a brighter color with a 26 % lower browning index than the HAD samples. Overall, CUD emerges as an effective and sustainable method for drying high-protein materials, ensuring high-quality albumen powders.
Collapse
Affiliation(s)
- Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Türkiye
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amir Malvandi
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
2
|
Nainggolan EA, Banout J, Urbanova K. Recent Trends in the Pre-Drying, Drying, and Post-Drying Processes for Cassava Tuber: A Review. Foods 2024; 13:1778. [PMID: 38891006 PMCID: PMC11171685 DOI: 10.3390/foods13111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Cassava tuber is an essential staple crop in tropical regions with versatile applications in the food, feed, and industrial sectors. However, its high moisture content and perishable nature necessitate efficient preservation methods to extend its shelf life and enhance its value. Pre-drying, drying, and post-drying processes play pivotal roles in maintaining the quality and usability of cassava products. This review comprehensively examines the current status and future directions in the pre-drying, drying, and post-drying processes of cassava tuber. Various pre-drying or pretreatment methods and drying techniques are evaluated for their impacts on drying kinetics and product quality. Additionally, challenges and limitations in achieving high-quality processing of cassava flour are identified. Future directions in cassava drying methods emphasize the integration of combined pre-drying and drying techniques to optimize resource utilization and processing efficiency. Furthermore, the adoption of advanced online measurement and control technologies in drying equipment is highlighted for real-time monitoring and optimization of drying parameters. The importance of optimizing existing processes to establish a comprehensive cassava industrial chain and foster the development of the cassava deep-processing industry is emphasized. This review provides valuable insights into the current trends and future prospects in cassava drying technologies, aiming to facilitate sustainable and efficient utilization of cassava resources for various applications.
Collapse
Affiliation(s)
- Ellyas Alga Nainggolan
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
- Department of Bioprocess Engineering, Faculty of Biotechnology, Institut Teknologi Del, Jl. Sisingamangaraja, Sitoluama, Laguboti, Toba 22381, Indonesia
| | - Jan Banout
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
| | - Klara Urbanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
| |
Collapse
|
3
|
Sultana A, Aghajanzadeh S, Thibault B, Ratti C, Khalloufi S. Exploring conventional and emerging dehydration technologies for slurry/liquid food matrices and their impact on porosity of powders: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13347. [PMID: 38650473 DOI: 10.1111/1541-4337.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The contribution of dehydration to the growing market of food powders from slurry/liquid matrices is inevitable. To overcome the challenges posed by conventional drying technologies, several innovative approaches have emerged. However, industrial implementation is limited due to insufficient information on the best-suited drying technologies for targeted products. Therefore, this review aimed to compare various conventional and emerging dehydration technologies (such as active freeze, supercritical, agitated thin-film, and vortex chamber drying) based on their fundamental principles, potential applications, and limitations. Additionally, this article reviewed the effects of drying technologies on porosity, which greatly influence the solubility, rehydration, and stability of powder. The comparison between different drying technologies enables informed decision-making in selecting the appropriate one. It was found that active freeze drying is effective in producing free-flowing powders, unlike conventional freeze drying. Vortex chamber drying could be considered a viable alternative to spray drying, requiring a compact chamber than the large tower needed for spray drying. Freeze-dried, spray freeze-dried, and foam mat-dried powders exhibit higher porosity than spray-dried ones, whereas supercritical drying produces nano-porous interconnected powders. Notably, several factors like glass transition temperature, drying technologies, particle aggregation, agglomeration, and sintering impact powder porosity. However, some binders, such as maltodextrin, sucrose, and lactose, could be applied in controlled agglomeration to enhance powder porosity. Further investigation on the effect of emerging technologies on powder properties and their commercial feasibility is required to discover their potential in liquid drying. Moreover, utilizing clean-label drying ingredients like dietary fibers, derived from agricultural waste, presents promising opportunities.
Collapse
Affiliation(s)
- Afroza Sultana
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
- Department of Food Processing and Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sara Aghajanzadeh
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Bruno Thibault
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Cristina Ratti
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Hou Z, Duan X, Zhao Y, Ren G, Li L, Cao W, Liu Z, Liu W. Three-dimensional simulation of green soybean infrared-assisted spouted bed drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3206-3215. [PMID: 38072792 DOI: 10.1002/jsfa.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The current study introduces a novel infrared-assisted spouted bed drying technique for the dehydration of green soybeans, which aims to enhance the drying quality and efficiency. The investigation involves an examination of the flow pattern in the spouted bed to obtain relevant data, followed by an optimization of the entire drying process. The drying process of green soybeans was simulated using SolidWorks and ANSYS Fluent software, based on the principles of computational fluid dynamics. RESULTS The simulation test results showed that the simulation outcomes were consistent with the experimental data. The optimal conditions for the process of green soybean infrared-assisted spouted bed drying were found to be an inlet speed of 8 m/s and a temperature of 50 °C with the wavelength and power settings of the infrared board at 10 μm and 500 W, respectively. CONCLUSION The simulation method selected in this article, based on gas-solid two-phase flow dynamics, is feasible for green soybean infrared-assisted spouted bed drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyun Hou
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Collaborative Innovation Center for Food Storage Security, Zhengzhou, China
| | - Yike Zhao
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Collaborative Innovation Center for Food Storage Security, Zhengzhou, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Collaborative Innovation Center for Food Storage Security, Zhengzhou, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Collaborative Innovation Center for Food Storage Security, Zhengzhou, China
| | - Zhenbin Liu
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Collaborative Innovation Center for Food Storage Security, Zhengzhou, China
| |
Collapse
|
5
|
Thakur P, Anika, Suhag R, Dhiman A, Kumar S. Insights into the current status of bioactive value, postharvest processing opportunities and value addition of black carrot. Food Sci Biotechnol 2024; 33:721-747. [PMID: 38371691 PMCID: PMC10866833 DOI: 10.1007/s10068-023-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 02/20/2024] Open
Abstract
Black carrots are a type of carrot that is naturally dark purple or black in color. They are a good source of antioxidants, vitamins, and minerals, and have been shown to have several health benefits, including reducing the risk of cancer, heart disease, and diabetes. This review article discusses the bioactive compounds present in black carrot, including anthocyanins, phenolic acids, carotenoids, and organic acids and sugars. It also compares the bioactive compounds and antioxidant capacity of black carrot with other carrot varieties. Furthermore, it discusses various postharvest processing methods, both conventional and novel, such as encapsulation, drying, and microbial decontamination, highlighting their effects on preserving and stabilizing the bioactive compounds. The review also emphasizes the incorporation of black carrot into different food products, including dairy items, beverages, and baked goods, and their impact on nutritional enhancement. The article provides knowledge on utilizing black carrot for improved nutritional and functional outcomes.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Anika
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| |
Collapse
|
6
|
Jin W, Zhang M, Mujumdar AS. A High-Efficiency Radio-Frequency-Assisted Hot-Air Drying Method for the Production of Restructured Bitter Melon and Apple Chips. Foods 2024; 13:197. [PMID: 38254498 PMCID: PMC10814064 DOI: 10.3390/foods13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, consumers are increasingly demanding processed food products with high levels of beneficial components. Bitter melon and apple are both nutritious foods rich in bioactive compounds. In this study, restructured bitter melon and apple chips were processed using four drying techniques: hot-air drying with/without exhaust air recirculation (EAR), and radio-frequency-assisted hot-air drying (RFHAD) with/without EAR. The drying characteristics, effective moisture diffusivity (Deff), specific energy consumption (SEC), total energy consumption (TEC), and some selected quality characteristics of the dehydrated chips were evaluated. The experimental results show that the application of radio frequency (RF) energy significantly facilitates water evaporation in the drying material, resulting in a significant (p < 0.05) reduction of drying duration by 31~39% over the experimental test parameters. The higher Deff values obtained from RFHAD and RFHAD + EAR were 6.062 × 10-9 to 6.889 × 10-9 m2/s, while lower SEC values ranged from 301.57 to 328.79 kW·h/kg. Furthermore, the dried products possessed better or fairly good quality (such as a lower color difference of 5.41~6.52, a lower shrinkage ratio of 18.24~19.13%, better antioxidant capacity, higher chlorophyll, total flavonoid, and total phenolic content, a lower polyphenol oxidase activity of 49.82~52.04 U·min-1g-1, smaller diameter and thickness changes, and a lower hardness of 27.75~30.48 N) compared to those of hot-air-dried chips. The combination of RF-assisted air drying and partial recirculating of dryer exhaust air achieved the highest saving in TEC of about 12.4%, along with a lower moisture absorption capacity and no deterioration of product quality attributes. This drying concept is therefore recommended for the industrial drying of several food materials.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
7
|
Maoloni A, Cardinali F, Milanović V, Reale A, Boscaino F, Di Renzo T, Ferrocino I, Rampanti G, Garofalo C, Osimani A, Aquilanti L. Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel ( Crithmum maritimum L.) Leaves. Molecules 2023; 28:7207. [PMID: 37894688 PMCID: PMC10609079 DOI: 10.3390/molecules28207207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel spices produced using room-temperature drying, oven drying, microwave drying, and freeze drying. All the assayed methods were able to remove moisture up until water activity values below 0.6 were reached; however, except for microwave drying, none of the assayed methods were effective in reducing the loads of contaminating microorganisms. The metataxonomic analysis highlighted the presence of phytopathogens and even human pathogens, including members of the genera Bacillus, Pseudomonas, Alternaria, and Cryptococcus. When compared to fresh leaves, dried leaves showed increased L* (lightness) and c* (chroma, saturation) values and reduced hue angle. Dried leaves were also characterized by decreased levels of terpene hydrocarbons and increased levels of aldehydes, alcohols, and esters. For the sensory test, the microwave-dried samples obtained the highest appreciation by the trained panel. Overall, the collected data indicated microwave drying as the best option for producing sea fennel spices with low microbial loads, brilliant green color, and high-quality sensory traits.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Anna Reale
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Floriana Boscaino
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Tiziana Di Renzo
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| |
Collapse
|
8
|
Ren Y, Fu Y, Sun DW. Analyzing the effects of nonthermal pretreatments on the quality of microwave vacuum dehydrated beef using terahertz time-domain spectroscopy and near-infrared hyperspectral imaging. Food Chem 2023; 428:136753. [PMID: 37429244 DOI: 10.1016/j.foodchem.2023.136753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Both nonthermal pretreatment and nondestructive analysis are effective technologies in improving drying processes. This study evaluated the effects of different pretreatment methods on the quality of beef dehydrated by microwave vacuum drying (MVD) and compared the MVD process performance comprising real-time moisture content (MC), MC loss, colour content, and shrinkage rate using different optical sensing methods including terahertz time-domain spectroscopy (THz-TDS) and near-infrared hyperspectral imaging (NIR-HSI). Results indicated that osmotic pretreatment improved the drying rate of MVD beef with lower changes in colour and shrinkage rate. Both THz-TDS-based and NIR-HSI-based on-site direct scanning and in-situ in-direct sensing showed accurate prediction results, with best R2p of 0.9646 and 0.9463 for MC and R2p of 0.9817 and 0.9563 for MC loss prediction, respectively. NIR-HSI visualisation of MC results showed that ultrasound pretreatment curbed but osmotic pretreatment promoted nonuniform distribution during MVD. This research should guide improving the industrial MVD drying process.
Collapse
Affiliation(s)
- Yuqiao Ren
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin (UCD), National University of Ireland, Belfield, Dublin 4, Ireland
| | - Ying Fu
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin (UCD), National University of Ireland, Belfield, Dublin 4, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin (UCD), National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Tawfik MA, Oweda KM, Abd El-Wahab MK, Abd Allah WE. A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying. AGRICULTURE 2023; 13:1046. [DOI: 10.3390/agriculture13051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
It is known that the natural convection (NC) solar drying process is a simple and cheap method for drying foodstuffs, but it is not preferable for common users in the case of drying high-moisture content agro-products due to the slow rate of drying. Meanwhile, the forced convection (FC) drying process is most appropriate for such products, but its economic feasibility may be affected due to high initial and maintenance costs. Therefore, the present study proposed a controlled natural convection (CNC) drying mode using a solar greenhouse dryer (SGD) for drying grapes with two types of cover materials, glass and Plexiglas, through intermittent operation with a PV system to save energy as a simple and inexpensive domestic dryer instead of the common forced convection SGD and the conventional natural convection SGD. The obtained results of the new CNC drying mode using a Plexiglas SGD showed a higher drying rate than the NC drying mode and are close to the FC drying mode using the same cover material. The initial moisture content of the grapes was reduced from 5.91 g water/g dry matter to the final moisture content of 0.15 g water/g dry matter within 12 h and 15 h for the CNC and NC drying modes, respectively, using the Plexiglas SGD. Moreover, the thermal drying efficiency for the two mentioned drying modes was 12.5 and 9.7%, respectively. The Page model was found to be the most appropriate model to predict the kinetics of the SGD in all drying modes, regardless of the cover type. The new CNC drying mode using the Plexiglas SGD achieved the lowest cost per kg of dried grapes (1.26 USD/kg), the highest total saved costs over the lifespan of the dryer (USD 245.46) and the shortest payback period (1.08 years) compared to the other two dryers, NC-SGD and FC-SGD. Generally, the CNC-SGD had good performance over the NC-SGD because it is not affected by the fluctuation in the volume, velocity and direction of the inlet ambient air/wind during drying grapes as a high-moisture content product without external heating sources or complicated parts. Thus, the proposed drying system has the advantage in terms of simplicity, cheapness and saving energy compared to FC-SGD.
Collapse
Affiliation(s)
- M. A. Tawfik
- Agricultural Engineering Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled M. Oweda
- Agricultural Engineering Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - M. K. Abd El-Wahab
- Agricultural Engineering Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - W. E. Abd Allah
- Agricultural Engineering Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Pravallika K, Chakraborty S, Singhal RS. Supercritical drying of food products: An insightful review. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Mehta KA, Quek YCR, Henry CJ. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front Nutr 2023; 10:1156155. [PMID: 37006932 PMCID: PMC10061028 DOI: 10.3389/fnut.2023.1156155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Breadfruit is an underutilized but highly nutritive crop containing complex carbohydrates while being low in fat. It is also a good source of essential amino acids (leucine, isoleucine, and valine). With a better understanding of breadfruit’s morphology, its potential as a global solution to food security has been gaining popularity. Breadfruit has been forecasted to have a larger amount of suitable cultivable land area compared to major crops such as rice and wheat, making its cultivation more desirable. Due to its highly perishable nature, good post-harvesting and post-processing practices are essential to extend the shelf life of breadfruit for global transportation and consumption. This paper aims to provide a comprehensive review on various processing methods of flour and starch, nutritional significance and new food applications of this novel food staple. In this review, the effects of the different processing and post-processing methods of breadfruit flour and starch have been described, and the nutritional composition and application of breadfruit flour as an ingredient replacer in various food applications have been discussed. It is vital to understand the processing and post-processing methods of breadfruit flour to enhance its shelf-life, physicochemical and functional properties. Furthermore, a compilation of novel food applications has been done to promote its use in the food industry. In conclusion, breadfruit flour and starch are highly versatile for use in numerous food products with added health benefits.
Collapse
Affiliation(s)
- Kervyn Ajay Mehta
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yu Chin Rina Quek
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- *Correspondence: Christiani Jeyakumar Henry,
| |
Collapse
|
12
|
Adnouni M, Jiang L, Zhang X, Zhang L, Pathare PB, Roskilly A. Computational modelling for decarbonised drying of agricultural products: Sustainable processes, energy efficiency, and quality improvement. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Fan Z, Ren Z, Chen A. Multi-objective predictive control based on the cutting tobacco outlet moisture priority. Sci Rep 2023; 13:199. [PMID: 36604460 PMCID: PMC9814934 DOI: 10.1038/s41598-022-26694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
In this paper, we propose a new priority multi-objective optimization strategy of system output variables in cutting tobacco process. The proposed strategy focuses on the cutting tobacco moisture-controlled output variables optimization in feasible regions with two levels according to the priority. This study aims to provide a novel technical support for the chemical industry contained drying process. In order to alleviate the lack of degree of freedom of the system, strict set-point control is given, meanwhile, other output variables adopt zone control. Firstly, the system control output variables are optimized in ascending order of priority. Secondly, the specific lower-level target constraints are first relaxed. Finally, the relaxation of other high-priority target constraints is stopped when the optimization is feasible. Thus, the system control output variables move along the optimal target trajectory. From the perspective of practical application of engineering, under the condition of disturbance existing in the cutting tobacco drying process, the simulation shows that the proposed approach has good robustness when there is disturbance, and the previous method cannot meet the control requirement. The proposed strategy meanwhile has better tracking effect through single and multiple output variables simulation, which compared with traditional predictive control in real cutting tobacco drying process.
Collapse
Affiliation(s)
- Zhiping Fan
- School of Electrical and Electronic Engineering, Anhui Science and Technology University, Bengbu, 233000, China. .,College of Information Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Zhengyun Ren
- grid.255169.c0000 0000 9141 4786College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Angang Chen
- Guotai Junan Securities Co., Ltd., Shanghai, 200041 China
| |
Collapse
|
14
|
Pyrka I, Mantzouridou FT, Nenadis N. Optimization of olive leaves' thin layer, intermittent near-infrared-drying. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Yogi J, Dubey P, Verma SK, Kumar S, Anand A. Cumulative effect of particle properties on mixing of multi-component mixture in a vibrated packed bed. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Malakar S, Dhurve P, Arora VK. Modeling and optimization of osmo‐sonicated dehydration of garlic slices in a novel infrared dryer using artificial neural network and response surface methodology. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana India
| | - Vinkel Kumar Arora
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana India
| |
Collapse
|
17
|
Mediani A, Hamezah HS, Jam FA, Mahadi NF, Chan SXY, Rohani ER, Che Lah NH, Azlan UK, Khairul Annuar NA, Azman NAF, Bunawan H, Sarian MN, Kamal N, Abas F. A comprehensive review of drying meat products and the associated effects and changes. Front Nutr 2022; 9:1057366. [PMID: 36518998 PMCID: PMC9742493 DOI: 10.3389/fnut.2022.1057366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 08/13/2023] Open
Abstract
Preserving fresh food, such as meat, is significant in the effort of combating global food scarcity. Meat drying is a common way of preserving meat with a rich history in many cultures around the globe. In modern days, dried meat has become a well enjoyed food product in the market because of its long shelf-life, taste and health benefits. This review aims to compile information on how the types of meat, ingredients and the used drying technologies influence the characteristics of dried meat in physicochemical, microbial, biochemical and safety features along with technological future prospects in the dried meat industry. The quality of dried meat can be influenced by a variety of factors, including its production conditions and the major biochemical changes that occur throughout the drying process, which are also discussed in this review. Additionally, the sensory attributes of dried meat are also reviewed, whereby the texture of meat and the preference of the market are emphasized. There are other aspects and concerning issues that are suggested for future studies. It is well-known that reducing the water content in meat helps in preventing microbial growth, which in turn prevents the presence of harmful substances in meat. However, drying the meat can change the characteristics of the meat itself, making consumers concerned on whether dried meat is safe to be consumed on a regular basis. It is important to consider the role of microbial enzymes and microbes in the preservation of their flavor when discussing dried meats and dried meat products. The sensory, microbiological, and safety elements of dried meat are also affected by these distinctive changes, which revolve around customer preferences and health concerns, particularly how drying is efficient in eliminating/reducing hazardous bacteria from the fish. Interestingly, some studies have concentrated on increasing the efficiency of dried meat production to produce a safer range of dried meat products with less effort and time. This review compiled important information from all available online research databases. This review may help the food sector in improving the efficiency and safety of meat drying, reducing food waste, while maintaining the quality and nutritional content of dried meat.
Collapse
Affiliation(s)
- Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | | | | | - Sharon Xi Ying Chan
- Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Noor Hanini Che Lah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Ummi Kalthum Azlan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Nur Aida Fatin Azman
- Faculty of Information Science and Technology, Multimedia University, Malacca, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nurkhalida Kamal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Santos NC, Almeida RLJ, da Silva GM, Feitoza JVF, Silva VMDA, Saraiva MMT, Silva APDF, André AMMCN, Mota MMDA, Carvalho AJDBA. Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Kumar M, Madhumita M, Prabhakar PK, Basu S. Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach. Crit Rev Food Sci Nutr 2022; 64:3458-3481. [PMID: 36260084 DOI: 10.1080/10408398.2022.2132210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Refractance window (RW) dryer has an immense advantage in terms of final product quality (textural and color attributes, nutrient retention), energy consumption, and drying time over other conventional dryers. RW is a thin film drying system and a technologically evolving drying process. RW drying is an energy-efficient (re-circulation of water) short drying process as the drying of food materials occurs due to a combined mode of heat transfer conduction, radiation, and convection (hot air circulates over film). The high-quality dried product is obtained because the product temperature remains below 80 °C. RW dryer application is not only limited to drying food products, but it can also be further used for improving the gelling and emulsion properties, formation of leather and edible film, and can be used for handling high protein products, drying leafy vegetables or marine foods as this process does not change any functional properties. Due to these advantages over other drying techniques, RW drying has gained academic and industrial interest in recent years. The industrial application of this technology at large scale is becoming difficult due because of large surface area requirement for mass production. Researchers are trying to scale-up by combing this technology with others technology (Infrared, ultrasound, solar energy, and osmotic dehydration). RW dryer is now extending from the food sector to other sectors like pharmaceutical, cosmetic, pigment, edible film formation, and encapsulation. Majority of the reviews on RW drying focuses on the product quality aspects. This review paper aims to comprehend the RW drying system more mechanistically to understand better the principles, diffusion models explaining the transfer processes, and emerging novel hybrid drying approaches.
Collapse
Affiliation(s)
- Manibhushan Kumar
- Department of Food Science and Technology, National Institute Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Santanu Basu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Obajemihi OI, Cheng JH, Sun DW. Novel sequential and simultaneous infrared-accelerated drying technologies for the food industry: Principles, applications and challenges. Crit Rev Food Sci Nutr 2022; 63:1465-1482. [PMID: 36239579 DOI: 10.1080/10408398.2022.2126963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Infrared drying (IRD) is considered an innovative drying solution for the food industry with advantages of energy-saving potentials, reduced drying time and production cost-effectiveness. However, IRD also suffers from drawbacks such as weak penetrative ability, and product overheating and burning. Therefore, over the years, significant progress has been made to overcome these shortcomings by developing infrared-accelerated drying (IRAD) technology based on the combination of IRD with other drying technologies. Although several reviews have been published on IRD, no review focusing on IRAD is yet available. The current review presents up-to-date knowledge and findings on the applications of IRAD technologies for enhancing the quality and safety of food. The fundamental principles and characteristics of IRAD, energy-saving potentials, simulation and optimization approaches for enhancing efficiency, and developments in various acceleration approaches by combining with other drying techniques for achieving better end-products are discussed, and challenges and future work for developing the novel accelerated drying technology are also presented. Due to the synergistic effects of sequential or simultaneous combined drying methods, the total drying time and energy required are drastically lowered with most IRAD technologies, and consequently there are significant improvements in the sensory, nutritional, and safety attributes of dried food products with better appearance and quality. The development of multi-wavelength IRAD systems based on infrared absorption bands, and the incorporation of novel sensing techniques for real-time monitoring during drying will further enhance process efficiency and food quality and safety.
Collapse
Affiliation(s)
- Obafemi Ibitayo Obajemihi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Arslan-Tontul S, Çetin-Babaoğlu H, Aslan M, Tontul İ. Refractance window drying in the production of instant baker's yeast and its effect on the quality characteristics of bread. J Food Sci 2022; 87:4991-5000. [PMID: 36183159 DOI: 10.1111/1750-3841.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
The study aimed to produce instant dried baker's yeast (BY) by conventional or infrared-assisted refractance window drying (RWD or InfraRWD, respectively) and compare their bakery performance with commercial BY. According to the findings of the study, the total yeast count was higher than 9.60 log cfu/g in all dried BY samples, and the lowest viability was obtained in BY dried by InfraRWD at 50°C. In general, BY produced by RWD increased the physical quality parameters of bread such as specific volume, total cell count, and the number of cell areas of bread crumbs. Moreover, bread leavened by BY dried by RWD slowed down the staling rate of bread, while infrared assistance accelerated the staling. Sensorial analysis showed that bread produced by refractance window dried BY was more acceptable than commercial BY. In a conclusion, RWD can be an effective alternative to the production of instant baker's yeast, but the most quality features of BY has negatively affected by infrared assistance. PRACTICAL APPLICATION: In the drying of baker's yeast, promising advantages can be obtained by refractance window drying. The higher specific volume and superior bread crumb with a retarded staling rate were determined when bread was produced by the refractance window. This is the first time that RWD and InfraRWD have been used for the production of instant baker's yeast and it has several practical applications for bread quality.
Collapse
Affiliation(s)
- Sultan Arslan-Tontul
- Agricultural Faculty, Food Engineering Department, Selçuk University, Konya, Turkey
| | | | - Mine Aslan
- Engineering Faculty, Food Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - İsmail Tontul
- Engineering Faculty, Food Engineering Department, Necmettin Erbakan University, Konya, Turkey.,NFDS Arge, Konya, Turkey
| |
Collapse
|
22
|
An NN, Li D, Wang LJ, Wang Y. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. Crit Rev Food Sci Nutr 2022; 64:2618-2633. [PMID: 36134904 DOI: 10.1080/10408398.2022.2124947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microwave drying (MWD) is an efficient dielectric drying method in food, with advantages such as volumetric heating, fast drying, safety, and good product quality. As a key indicator of a dryer's market value, energy efficiency is of concern to sellers and dryer manufacturers. This paper systematically reviewed the quantification methods and influencing factors of energy efficiency of microwave drying in food application from different perspectives. Mechanisms and possible improvements of these factors are highlighted. Future trends in improving the energy efficiency of MWD are proposed. Energy consumption of MWD depends on a variety of factors such as equipment structure, drying conditions (microwave power, frequency, temperature, and air velocity), material properties, and combined/hybrid drying technologies. The drying system can be effectively improved if these parameters are adjusted appropriately and taking the processing cost into consideration. Although a good product can be obtained by pretreatment or combined/hybrid drying method, it may consume more energy. Future research should develop artificial intelligence, renewable energy, and computational fluid dynamics technology to pave the way for large-scale application of MWD and reduce energy consumption.
Collapse
Affiliation(s)
- Nan-Nan An
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
23
|
Pateiro M, Vargas-Ramella M, Franco D, Gomes da Cruz A, Zengin G, Kumar M, Dhama K, Lorenzo JM. The role of emerging technologies in the dehydration of berries: Quality, bioactive compounds, and shelf life. Food Chem X 2022; 16:100465. [PMID: 36225212 PMCID: PMC9550524 DOI: 10.1016/j.fochx.2022.100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Berries comprise essential nutrients necessary for healthy living. Convective, vacuum, microwave, and freeze-drying are the most common methods. Pre-treatments improve permeability, accelerate drying, and inactivate oxidation. Combined methods are recommended to assure high quality of dehydrated berries.
Berries are among the fruits with the highest nutritional and commercial value. This paper reviews the conventional and emerging dehydration methods most commonly used as postharvest treatment and discusses their efficacy in maintaining and/or improving the nutritional and functional qualities of dried berries. The characteristics of the conventional methods (e.g., convective drying, freeze-drying, spray-drying, osmotic dehydration), their pre-treatments, their combination, and intermittent drying, as well as their potential disadvantages are discussed. The use of emerging dehydration techniques (e.g., electromagnetic radiation drying, explosion puffing drying, heat pump drying, low-pressure superheated steam drying, microwave drying) allows to improve the quality of the dried berries compared to conventional techniques, in addition to reducing drying times, increasing drying speed and energy efficiency. Finally, the use of pre-treatments and the combination of technologies can enhance the quality of the final product as a result of the improvement in the effectiveness of the dehydration process.
Collapse
|
24
|
Laveriano-Santos EP, López-Yerena A, Jaime-Rodríguez C, González-Coria J, Lamuela-Raventós RM, Vallverdú-Queralt A, Romanyà J, Pérez M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants (Basel) 2022; 11:antiox11091648. [PMID: 36139723 PMCID: PMC9495970 DOI: 10.3390/antiox11091648] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.
Collapse
Affiliation(s)
- Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Johana González-Coria
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Joan Romanyà
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.R.); (M.P.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (J.R.); (M.P.)
| |
Collapse
|
25
|
A Comprehensive Review of Mathematical Modeling for Drying Processes of Fruits and Vegetables. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:6195257. [PMID: 35910694 PMCID: PMC9334071 DOI: 10.1155/2022/6195257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Drying fruits and vegetables is a procedure of food preservation with simultaneous heat, mass, and momentum transfer, which increases the shelf life of the food product. The aim of this review was to provide an overview of the researches on mathematical modeling for drying of fruits and vegetables with the special emphasis on the computational approach. Various heat-mass transport models, their applications, and modern drying technologies to the food industry have been reported in this study. Computational fluid dynamics, a new approach for solving heat and mass transfer problems, increases the accuracy of the predicted values. To investigate the parameters of drying needs a significant amount of time as well as costly laboratory and experimental efforts. Therefore, computational modeling could be an effective alternative to experimental approaches. This review will be beneficial for future studies in drying processes, especially for modeling, analysis, design, and optimization of food science and food engineering.
Collapse
|
26
|
Production of antioxidant pectin fractions, drying pretreatment methods and physicochemical properties: towards pisco grape pomace revalue. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Li B, Li X, Zhao Y, Xiong X, Ding X. Characteristics and mathematical modeling of apple slice drying in an electrohydrodynamic system with a needle‐plate electrode. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bowen Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling China
| | - Xingshu Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling China
| | - Yixue Zhao
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling China
| | - Xiufang Xiong
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling China
| | - Xinting Ding
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling China
| |
Collapse
|
28
|
Chen GL, Lin B, Zheng FJ, Yu WH, Fang XC, Shi Q, Hu YF, Verma KK. Comparison of Different Drying Methods for Asparagus [ Asparagus cochinchinensis (Lour.) Merr.] Root Volatile Compounds as Revealed Using Gas Chromatography Ion Mobility Spectrometry. Front Nutr 2022; 9:868209. [PMID: 35662938 PMCID: PMC9159512 DOI: 10.3389/fnut.2022.868209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Asparagus [Asparagus cochinchinensis (Lour.) Merr.] is a traditional herbal medicine plant commonly used to nourish yin, moisten dryness, and clear fire cough symptoms. Drying is an excellent option to conserve food materials, i.e., grains, fruits, vegetables, and herbs, reducing the raw materials volume and weight. This study aims to evaluate different drying approaches that could increase the value of asparagus, particularly as an ingredient in fast foods or as nutraceutical byproducts. The volatile components of asparagus roots were analyzed by using headspace-gas chromatography-ion mobility spectroscopy under different drying conditions, i.e., natural drying (ND) at ambient air temperature in the dark, well-ventilated room, temperature range 28-32°C, blast or oven drying at 50°C, heat pump or hot-air drying at temperature 50°C and air velocity at 1.5 ms-1 and vacuum freeze-drying at the temperature of -45°C and vacuum pressure of 10-30 Pa for 24 h. The findings revealed that the various drying processes had multiple effects on the color, odor index, and volatile compounds of the asparagus roots. As a result of the investigations, multiple characteristics of components, therefore, exploitation and comparison of various flavors; a total of 22 compounds were identified, such as alcohols, ketones, aldehydes, acids, esters, heterocyclic, and terpene. The present findings may help understand the flavor of the processed asparagus roots and find a better option for drying and processing.
Collapse
Affiliation(s)
- Gan-Lin Chen
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Feng-Jin Zheng
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Wei-Hua Yu
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Chun Fang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Qian Shi
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi-Feng Hu
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
29
|
Kayacan S, Sagdic O, Doymaz I, Karasu S. The effect of different drying methods on total bioactive properties, individual phenolic compounds, rehydration ability, color, and microstructural characteristics of Asian pear. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Selma Kayacan
- Faculty of Chemical and Metallurgical Engineering Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Ibrahim Doymaz
- Faculty of Chemical and Metallurgical Engineering Department of Chemical Engineering Yildiz Technical University Istanbul Turkey
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering Department of Food Engineering Yildiz Technical University Istanbul Turkey
| |
Collapse
|
30
|
De Martino L, Caputo L, Amato G, Iannone M, Barba AA, De Feo V. Postharvest Microwave Drying of Basil ( Ocimum basilicum L.): The Influence of Treatments on the Quality of Dried Products. Foods 2022; 11:1029. [PMID: 35407116 PMCID: PMC8998133 DOI: 10.3390/foods11071029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Edible herbs are widely used in the human diet due to their pleasant flavors and countless health benefits associated with their components having, mainly, antioxidant and anti-inflammatory therapeutic functions. Since herbs are highly perishable materials because of their high water content, to guarantee products are safe and stable over time, it is necessary that they undergo stabilization operations. The application of microwave-assisted drying, a promising technique in terms of process sustainability, for the stabilization of the aromatic herb, Ocimum basilicum L., was investigated. The activities were carried out by applying different operating conditions in order to evaluate the impact of the time/temperature combination on the final quality of dried basil. The latter was investigated via the chemical characterization of extracted essential oils and tissue damages. Conventional convective processes were also applied to perform comparisons between dried basil products both under production and the quality preservation points of view. Results showed that microwave heating is suitable as a drying method, as expected, due to the well-known interaction between vegetable tissue (rich in water) and the electromagnetic field; and that drying methods have a different influence on the chemical composition of the essential oils extracted from dried products, in terms of the number (ranging from 41 to 18 components in different dried samples) and percentage (until 67% in linalool and 21% in α-trans-bergamotene in different dried samples) of its' constituents.
Collapse
Affiliation(s)
- Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
| | - Marco Iannone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
| | - Anna Angela Barba
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
- EST Srl, University Spin-Off, Via Circumvallazione n.39, 83100 Avellino, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.M.); (L.C.); (G.A.); (M.I.); (V.D.F.)
- Institute of Food Science, CNR, Via Roma, 83100 Avellino, Italy
| |
Collapse
|
31
|
Uribe E, Gómez-Pérez LS, Pasten A, Pardo C, Puente L, Vega-Galvez A. Assessment of refractive window drying of physalis (Physalis peruviana L.) puree at different temperatures: drying kinetic prediction and retention of bioactive components. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01373-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Correlation of the cell disintegration index with Luikov's heat and mass transfer parameters for drying of pulsed electric field (PEF) pretreated plant materials. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
A Novel System—the Simultaneous Use of Ohmic Heating with Convective Drying: Sensitivity Analysis of Product Quality Against Process Variables. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Popelářová E, Vlková E, Švejstil R, Kouřimská L. The Effect of Microwave Irradiation on the Representation and Growth of Moulds in Nuts and Almonds. Foods 2022; 11:foods11020221. [PMID: 35053953 PMCID: PMC8775124 DOI: 10.3390/foods11020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Microwave (MW) irradiation is a non-destructive method that can be applied as an alternative method to inhibit the growth of microorganisms. The present study evaluated the effect of MW irradiation on the occurrence of moulds in nuts and almonds. Samples of unshelled natural almonds, pistachios, and in-shell peanuts were treated with different doses of MW irradiation (2400–4000 W). The effect of MW irradiation on mould counts was evaluated by cultivating immediately after irradiation and after 3 and 6 months of storage. The most represented genera in all analysed samples were Aspergillus (68%), Penicillium (21%), and a small amount of Cladosporium (3%). Mould numbers significantly decreased after MW treatment. The treatments with MW irradiations at 3000 and 4000 W significantly reduced the mould colony counts, and their effect persisted during storage; irradiation at 2400 W was partially effective. The strongest effect of MW irradiation was observed in in-shell peanuts. MW irradiation seems to be a promising method for maintaining the microbiological quality of nuts.
Collapse
|
35
|
Santos VCS, Souza RLD, Figueiredo RT, Alsina OLSD. A review on refractance window drying process of fruits and vegetables: its integration with renewable energies. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yogi J, Verma SK, Kumar S, Anand A. Experimental Study of Mixing of Nonspherical Particles in a Vibrated Packed Bed Mixer. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeetram Yogi
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sanjay Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anshu Anand
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
37
|
|
38
|
Onwude DI, Iranshahi K, Martynenko A, Defraeye T. Electrohydrodynamic drying: Can we scale-up the technology to make dried fruits and vegetables more nutritious and appealing? Compr Rev Food Sci Food Saf 2021; 20:5283-5313. [PMID: 34355510 DOI: 10.1111/1541-4337.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Electrohydrodynamic (EHD) drying is a promising technology to better preserve the nutritional content and sensory appeal of dried fruits and vegetables. To successfully scale up this technology, we need to rethink the current EHD dryer designs. There is also a significant potential to further enhance the nutritional content and sensory quality of the dried products by optimizing EHD process parameters. This study particularly highlights the current bottlenecks in scaling up the technology and improving nutrient retention and sensory appeal of the dried products. We discuss plausible future pathways to further develop the technology to produce highly nutritious dried products. Particular emphasis has been given to quantifying the residual nutritional and sensory properties of EHD dried products, and possible EHD dryer configurations for farmers and the industry. Concerning the nutritional content, EHD drying preserves vitamins, carotenes, and antioxidants significantly better than convective air drying. From the sensory perspective, EHD drying enhances the color of dried products, as well as their general appearance. With respect to scalability, placing the fruit on a grounded mesh electrode dries the fruit much faster and more uniformly than the grounded plate electrode. Future research should be directed toward simultaneous measurements of multiple food nutrients and sensory properties during EHD drying with a grounded mesh collector. Quantifying the impact of the food loading density on drying kinetics and energy consumption of the EHD drying process should also be a future research goal. Research comparing EHD drying with commercially available drying methods such as freeze-drying, microwave-drying, and infrared drying should also be carried out. This study gives promising insight toward developing a scalable novel thermal drying technology tailored to the requirements of the current and future society.
Collapse
Affiliation(s)
- Daniel I Onwude
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
| | - Kamran Iranshahi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zurich, Zurich, Switzerland
| | - Alex Martynenko
- Department of Engineering, Dalhousie University, Faculty of Agriculture, Truro, Nova Scotia, Canada
| | - Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Department of Engineering, Dalhousie University, Faculty of Agriculture, Truro, Nova Scotia, Canada
| |
Collapse
|
39
|
Turgut SS, Küçüköner E, Feyissa AH, Karacabey E. A novel drying system – simultaneous use of ohmic heating with convectional air drying: System design and detailed examination using CFD. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Dordevic D, Necasova L, Antonic B, Jancikova S, Tremlová B. Plastic Cutlery Alternative: Case Study with Biodegradable Spoons. Foods 2021; 10:foods10071612. [PMID: 34359482 PMCID: PMC8306448 DOI: 10.3390/foods10071612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plastics are mixtures of organic polymers that play a major role in environmental contamination worldwide. One way to reduce the waste arising from the use of plastics, especially disposable ones, can be to produce environmentally friendly cutlery. The aim of the work was the production of biodegradable spoons and evaluation of their texture, antioxidant activities and total polyphenols content. The spoons were made from a combination of the following ingredients: water, grape, proso millet, wheat, xanthan and palm oil in different concentrations. The samples were baked at 180 or 240 °C, some spoons were dried in a fruit dehydrator. According to the results of the analysis, a spoon prepared from a mixture of all three flours and with the addition of xanthan appears to be the most suitable replacement for plastic cutlery. This spoon showed high strength and antioxidant activity. It was confirmed that the use of grape flour has a beneficial effect on the nutritional profile of the experimentally produced biodegradable spoons.
Collapse
|
41
|
Rekik C, Besombes C, Hajji W, Gliguem H, Bellagha S, Mujumdar AS, Allaf K. Study of interval infrared Airflow Drying: A case study of butternut (Cucurbita moschata). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Muthurajan M, Veeramani A, Rahul T, Gupta RK, Anukiruthika T, Moses JA, Anandharamakrishnan C. Valorization of Food Industry Waste Streams Using 3D Food Printing: A Study on Noodles Prepared from Potato Peel Waste. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Chen C, Zhang M, Xu B, Chen J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- R & D Center, Yangzhou Yechun Food Production & Distribution Co, Yangzhou, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Baoguo Xu
- R & D Center, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Chen
- R & D Center, Haitong Food Group Co, Cixi, Zhejiang, China
| |
Collapse
|
44
|
Mahanti NK, Chakraborty SK, Sudhakar A, Verma DK, Shankar S, Thakur M, Singh S, Tripathy S, Gupta AK, Srivastav PP. Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Minuye M, Getachew P, Laillou A, Chitekwe S, Baye K. Effects of different drying methods and ascorbic acid pretreatment on carotenoids and polyphenols of papaya fruit in Ethiopia. Food Sci Nutr 2021; 9:3346-3353. [PMID: 34136199 PMCID: PMC8194739 DOI: 10.1002/fsn3.2324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Frequent consumption of fruits can prevent nutrient deficiencies and promote health. However, the perishability and unaffordability of fruits had led to very low levels of fruit consumption in low- and middle-income countries (LMICs). The objective of this study was to evaluate the retention of nutrients and bioactive compounds of papaya fruit (Carica papaya L) with/without ascorbic acid pretreatment and drying under different techniques, to then estimate the vitamin A intakes for vulnerable population. Yellow pulp ripped papaya fruits (i.e., >75% level of skin color/stage level 4) (n = 14), with and without ascorbic acid pretreatment were dried using (a) solar drying: open-air, tray driers, and glasshouse; (b) refractance window drying; (c) oven drying; and (d) freeze-drying (control). The fresh fruit had high moisture content (87%) and an acidic pH. The dried papaya had a water activity of 0.5-0.6. The highest TPC, TFC, total carotenoids, and ß-carotene were found in freeze-dried papaya samples, followed by refractance window, and solar glass house (p < .05). The highest retention in total carotenoids (81.5%) and ß-carotene (61.9%) relative to freeze-drying was for the refractance-window; 25 g of dried papaya could contribute to 38% of the retinol equivalents' requirement for young children. Ascorbic acid pretreatment increased the retention of total carotenoids, ß-carotene, TPC, and TFC (p < .05) by (6-11)%, (8-34)%, (7-58)%, and (6-30)%, respectively, for all the drying methods. Refractance window and solar glass house drying can improve diets and constitute a promising food systems' intervention that can increase year-round availability, accessibility, and affordability of vitamin A-rich fruits like papaya.
Collapse
Affiliation(s)
- Masresha Minuye
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
| | - Paulos Getachew
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
| | - Arnaud Laillou
- United Nations Children’s Fund (UNICEF)Addis AbabaEthiopia
| | | | - Kaleab Baye
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
46
|
Kaveh M, Chayjan RA, Golpour I, Poncet S, Seirafi F, Khezri B. Evaluation of exergy performance and onion drying properties in a multi-stage semi-industrial continuous dryer: Artificial neural networks (ANNs) and ANFIS models. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
48
|
Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes (Basel) 2021. [DOI: 10.3390/pr9040703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cucumaria frondosa is the main sea cucumber species harvested from Newfoundland waters. During processing, the viscera of sea cucumber are usually discarded as waste. As a matter of fact, sea cucumber viscera are abundant in various nutrients and promising for valorization. In the present study, sea cucumber viscera were pretreated by air drying and freeze drying, and the nutritional compositions of the dried products were investigated, including proximate composition, lipid class, fatty acid profile, and amino acid composition. The dried viscera had similar levels of ash, lipids, and proteins compared to fresh viscera. Both air- and freeze-dried viscera had total fatty acid composition similar to fresh viscera, with high levels of omega-3 polyunsaturated fatty acids (PUFAs) (30–31%), especially eicosapentaenoic acid (27–28%), and low levels of omega-6 PUFAs (~1%). The dried samples were abundant in essential amino acids (46–51%). Compared to air-dried viscera, freeze-dried viscera contained a lower content of moisture and free fatty acids, and higher content of glycine and omega-3 PUFAs in phospholipid fraction. The high content of nutritious components in dried viscera of Cucumaria frondosa indicates their great potential for valorization into high-value products.
Collapse
|
49
|
Anukiruthika T, Moses J, Anandharamakrishnan C. Electrohydrodynamic drying of foods: Principle, applications, and prospects. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Artichoke by Products as a Source of Antioxidant and Fiber: How It Can Be Affected by Drying Temperature. Foods 2021; 10:foods10020459. [PMID: 33669757 PMCID: PMC7922872 DOI: 10.3390/foods10020459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
The reuse of food industry by-products constitutes one of the essential pillars of the change from a linear to a circular economic model. Drying is one of the most affordable techniques with which to stabilize by-products, making their subsequent processing possible. However, it can affect material properties. The objective of this study was to assess the effect of the drying temperature on the drying kinetics and final quality of the main artichoke processing by-products, bracts and stems, which have never been studied as independent materials. For this purpose, air drying experiments at different temperatures (40, 60, 80, 100 and 120 °C) were carried out. The alcohol insoluble residue (AIR) and the total phenolic content (TPC), antioxidant capacity (AC) and vitamin C (VC) of the fresh and dried samples were determined. The bracts dried faster than the stems, increasing drying rate with temperature. The two by-products presented relatively large amounts of AIR, the content being higher in bracts, but better functional properties in stems. The TPC, AC and VC values of the dried samples decreased in relation to the fresh samples, with the temperatures of 40 °C (bracts) and 120 °C (stems) being the most adequate for the purposes of preserving these characteristics.
Collapse
|