1
|
Li Y, Li J, Leng A, Zhang G, Qu J. Cardiac complications caused by biliary diseases: A review of clinical manifestations, pathogenesis and treatment strategies of cholecardia syndrome. Pharmacol Res 2024; 199:107006. [PMID: 38000562 DOI: 10.1016/j.phrs.2023.107006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Gallbladder and biliary diseases (GBDs) are one of the most common digestive diseases. The connections between GBDs and several organs other than the liver have gradually surfaced accompanied by the changes in people's diet structure and the continuous improvement of medical diagnosis technology. Among them, cholecardia syndrome that takes the heart as the important target of GBDs complications has been paid close attention. However, there are still no systematic report about its corresponding clinical manifestations and pathogenesis. This review summarized recent reported types of cholecardia syndrome and found that arrhythmia, myocardial injury, acute coronary syndrome and heart failure are common in the general population. Besides, the clinical diagnosis rate of intrahepatic cholestasis of pregnancy (ICP) and Alagille syndrome associated with gene mutation is also increasing. Accordingly, the underlying pathogenesis including abnormal secretion of bile acid, gene mutation, translocation and deletion (JAG1, NOTCH2, ABCG5/8 and CYP7A1), nerve reflex and autonomic neuropathy were further revealed. Finally, the potential treatment measures and clinical medication represented by ursodeoxycholic acid were summarized to provide assistance for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jinghong Li
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Aijing Leng
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China.
| |
Collapse
|
2
|
Wang H, Wang X, Li Q, Chen S, Liu L, Wei Z, Wang L, Liu Y, Zhao X, He L, Wang J, Xing Q. Analysis of JAG1 gene variant in Chinese patients with Alagille syndrome. Gene 2012; 499:191-3. [PMID: 22405927 DOI: 10.1016/j.gene.2012.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Alagille syndrome (AGS) is an autosomal dominant disorder characterized by bile duct paucity. It can be caused by variations in the JAG1 gene encoding a protein of Notch ligand and by variations in the NOTCH2 gene encoding a Notch receptor. In this study we identified 15 different JAG1 gene variations in 17 Chinese patients, nine of which were novel alterations including c.766G > T, c.819delC, c.826delT, c.3099_3100delCA, c.1323_1326delCTGG, c.1771_1775delGTGCGinsT, c.1868delG, c. 2791_2792insA and c.866delG. These alterations were located in the extracellular domain of JAG1, in particular in the DSL and EGF-like repeat domain. All the specific variations in five inheritance cases investigated were de novo. Furthermore, no sequence variation of NOTCH2 was detected in JAG1 alteration negative patients.
Collapse
Affiliation(s)
- Honglian Wang
- Children's Hospital of Fudan University, Shanghai, China; Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses transcription factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result.
Collapse
Affiliation(s)
- David J McCulley
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | |
Collapse
|