1
|
Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets. Nutrients 2020; 12:nu12072115. [PMID: 32708852 PMCID: PMC7400953 DOI: 10.3390/nu12072115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host-microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer's patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.
Collapse
|
2
|
Liu Y, Chang J, Wang P, Yin QQ, Huang WW, Liu CQ, Bai XX, Zhu Q, Gao TZ, Zhou P. Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol. AMB Express 2019; 9:137. [PMID: 31482249 PMCID: PMC6722165 DOI: 10.1186/s13568-019-0863-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Deoxynivalenol (DON) is one of the mycotoxins most frequently encountering in cereal-based foods throughout the world. Saccharomyces cerevisiae was used to alleviate porcine jejunal epithelia cell (IPEC-J2) injury induced by DON in this study. The results indicated that cell viability and proliferation rates were significantly decreased when DON concentrations were increased from 0 to 64 µM after 24 h incubation (p < 0.05). The longer incubation time and higher DON concentrations would cause more serious effects on cell viability. S. cerevisiae could significantly degrade DON and decrease lactic dehydrogenase (LDH) release in the cells induced by DON (p < 0.05). DON (4 µM) could increase necrotic and apoptotic cell rates as well as decrease viable cell rates, compared with the control group (p < 0.05). However, S. cerevisiae addition in the DON group could decrease necrotic, late apoptotic and early apoptotic cell rates by 38.05%, 46.37% and 44.78% respectively, increase viable cell rates by 2.35%, compared with the single DON group (p < 0.05). In addition, S. cerevisiae addition could up-regulate mRNA abundances of IL-6, IL-8 and IL-10 in IPEC-J2 cells (p < 0.05), but down-regulate mRNA abundances of tight junction proteins (TJP-1) and occludin by 36.13% and 50.18% at 1 µM of DON (p < 0.05). It could be concluded that S. cerevisiae was able to alleviate IPEC-J2 cell damage exposed to DON.
Collapse
|
3
|
Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis. Toxins (Basel) 2018; 10:toxins10110464. [PMID: 30423940 PMCID: PMC6266275 DOI: 10.3390/toxins10110464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Deoxynivalenol (DON) is a toxin found in cereals as well as in processed products such as pasta, and causes substantial economic losses for stock breeding as it induces vomiting, reduced feeding, and reduced growth rates in piglets. Oxidative phosphorylation, TCA-cycle, transcription, and translation have been hypothesized to be leading pathways that are affected by DON. We used an application of high and low glucose to examine oxidative phosphorylation and anaerobic glycolysis. A change in the metabolic status of IPEC-J2 was observed and confirmed by microarray data. Measurements of oxygen consumption resulted in a significant reduction, if DON attacks from the basolateral. Furthermore, we found a dose-dependent effect with a significant reduction at 2000 ng/mL. In addition, SLC7A11 and PHB, the genes with the highest regulation in our microarray analyses under low glucose supply, were investigated and showed a variable regulation on protein level. Lactate production and glucose consumption was investigated to examine the impact of DON on anaerobic glycolysis and we observed a significant increase in 2000 blhigh and a decrease in 2000 aphigh. Interestingly, both groups as well as 200 blhigh showed a significant higher de novo protein synthesis when compared to the control. These results indicate the direct or indirect impact of DON on metabolic pathways in IPEC-J2.
Collapse
|
4
|
Sobral MMC, Faria MA, Cunha SC, Ferreira IMPLVO. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. CHEMOSPHERE 2018; 202:538-548. [PMID: 29587235 DOI: 10.1016/j.chemosphere.2018.03.122] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 05/27/2023]
Abstract
Aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1) and ochratoxin A (OTA) are toxic fungal metabolites co-occurring naturally in the environment. This study aimed to evaluate the toxicological interactions of these mycotoxins concerning additive, antagonistic and synergistic toxicity towards human cells. The theoretical biology-based Combination index-isobologram method was used to evaluate the individual and binary effect of these toxins and determine the type of the interaction using as models Caco-2 (intestinal) and HepG2 (hepatic) cells. Cytotoxicity was assessed using the MTT test at the concentrations of 0.625-20 μM for all the compounds. DON exerted the highest toxicity toward both cells, OTA and AFB1 also showed a dose-effect response, whereas no toxicity was verified for FB1. Synergism or antagonism effects occurred when exposing AFB1-DON and AFB1-OTA on Caco-2 cells at higher or lower concentrations, respectively; while DON-OTA showed synergism throughout all inhibition levels. Concerning HepG2, AFB1-DON exerted a strong synergism, regardless of the level; whereas AFB1-OTA had slight synergism/nearly additive effect; and, OTA-DON had a moderate antagonism/nearly additive effect. Synergistic strengths as high as a dose reduction index of 10 for AFB1-DON were observed in hepatic cells. Taken together our findings indicate that the toxicological effects differ regarding the type of mycotoxins used for combinations and the stronger synergistic effect was observed for mixtures containing DON in both cells. Therefore, even though DON has not been classified as to its carcinogenicity to humans, this mycotoxin may present a serious threat to health, mainly when co-occurring in the environment.
Collapse
Affiliation(s)
- M Madalena C Sobral
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal.
| | - Sara C Cunha
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
5
|
The Effects of Deoxynivalenol and Zearalenone on the Pig Large Intestine. A Light and Electron Microscopy Study. Toxins (Basel) 2018; 10:toxins10040148. [PMID: 29617295 PMCID: PMC5923314 DOI: 10.3390/toxins10040148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/21/2022] Open
Abstract
The contamination of feed with mycotoxins results in reduced growth, feed refusal, immunosuppression, and health problems. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important mycotoxins. The aim of the study was to examine the effects of low doses of these mycotoxins on the histological structure and ultrastructure of the large intestine in the pig. The study was performed on 36 immature gilts of mixed breed (White Polish Big × Polish White Earhanging), which were divided into four groups administrated per os with ZEN at 40 µg/kg BW, DON at 12 µg/kg BW, a mixture of ZEN (40 µg/kg BW) and DON (12 µg/kg BW) or a placebo. The pigs were killed by intravenous overdose of pentobarbital after one, three, and six weeks of treatment. The cecum, ascending and descending colon samples were prepared for light and electron microscopy. Administration of toxins did not influence the architecture of the mucosa and submucosa in the large intestine. ZEN and ZEN + DON significantly decreased the number of goblet cells in the cecum and descending colon. The mycotoxins changed the number of lymphocytes and plasma cells in the large intestine, which usually increased in number. However, this effect differed between the intestine segments and toxins. Mycotoxins induced some changes in the ultrastructure of the mucosal epithelium. They did not affect the expression of proliferative cell nuclear antigen and the intestinal barrier permeability. The obtained results indicate that mycotoxins especially ZEN may influence the defense mechanisms of the large intestine.
Collapse
|
6
|
Zhang ZQ, Wang SB, Wang RG, Zhang W, Wang PL, Su XO. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. Toxins (Basel) 2016; 8:toxins8100270. [PMID: 27669298 PMCID: PMC5086631 DOI: 10.3390/toxins8100270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Deoxynivalenol (DON) is a widespread trichothecene mycotoxin that commonly contaminates cereal crops and has various toxic effects in animals and humans. DON primarily targets the gastrointestinal tract, the first barrier against ingested food contaminants. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based phosphoproteomic approach was employed to elucidate the molecular mechanisms underlying DON-mediated intestinal toxicity in porcine epithelial cells (IPEC-J2) exposed to 20 μM DON for 60 min. There were 4153 unique phosphopeptides, representing 389 phosphorylation sites, detected in 1821 phosphoproteins. We found that 289 phosphopeptides corresponding to 255 phosphoproteins were differentially phosphorylated in response to DON. Comprehensive Gene Ontology (GO) analysis combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that, in addition to previously well-characterized mitogen-activated protein kinase (MAPK) signaling, DON exposure altered phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase/signal transducer, and activator of transcription (JAK/STAT) pathways. These pathways are involved in a wide range of biological processes, including apoptosis, the intestinal barrier, intestinal inflammation, and the intestinal absorption of glucose. DON-induced changes are likely to contribute to the intestinal dysfunction. Overall, identification of relevant signaling pathways yielded new insights into the molecular mechanisms underlying DON-induced intestinal toxicity, and might help in the development of improved mechanism-based risk assessments in animals and humans.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Song-Bo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Guo Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
7
|
Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. ACTA ACUST UNITED AC 2015; 68:157-66. [PMID: 26679981 DOI: 10.1016/j.etp.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/27/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN), produced by microfungi of the Fusarium family, are among the most commonly occurring mycotoxins. They are considered important factors affecting human and animal health as well as livestock productivity. The aim of this study was to determine the effect of low doses of these mycotoxins on the histological structure of the pig duodenum. The study was performed on 72 gilts, with initial weights of approximately 25kg, divided into 4 equal groups. Group I received per os ZEN (40μg/kg BW), group II-DON (12μg/kg BW), group III-ZEN (40μg/kg BW) and DON (12μg/kg BW), and group IV-vehicle. The pigs were killed after 1, 2, 3, 4, 5 and 6 weeks of the treatment, and the duodenum samples were prepared for histological investigations. The slides were digitalized and subjected to morphometrical analysis. The treatment with DON and ZEN did not change the architecture of the mucosa or the ratio between goblet and adsorptive cells in the epithelium. The administration of DON induced an increase in the number of lymphocytes in the mucosal epithelium. Both mycotoxins, administered alone or together, increased the quantity of lymphocytes, plasma cells and macrophages with black-brown granules in the lamina propria. The time-courses of changes in the number of defense system cells evoked by DON and ZEN were different. In conclusion, dietary exposure to low doses of Fusarium mycotoxins should be considered an important risk factor for subclinical inflammation in the small intestine.
Collapse
Affiliation(s)
- Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland.
| | - Barbara Przybylska-Gornowicz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Krystyna Targońska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Magdalena Prusik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
8
|
Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, Prusik M, Ziółkowska N, Zielonka Ł, Gajęcki M, Gajęcka M. The effects of low doses of two Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins (Basel) 2015; 7:4684-705. [PMID: 26569306 PMCID: PMC4663528 DOI: 10.3390/toxins7114684] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/05/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Immature gilts were administered per os with zearalenone (ZEN) at 40 μg/kg BW (group Z, n = 9), deoxynivalenol (DON) at 12 μg/kg BW (group D, n = 9), a mixture of ZEN and DON (group M, n = 9) or a placebo (group C, n = 9) over a period of six weeks. The pigs were sacrificed after one, three, or six weeks of the treatment (12 pigs per each time-point). Histological investigations revealed an increase in the mucosal thickness and the crypt depth as well as a decrease in the ratio of the villus height to the crypt depth in groups D and M after six weeks of exposure to the mycotoxins. The number of goblet cells in the villus epithelium was elevated in groups Z and M after one week and in group D after three weeks. The administration of ZEN increased the lymphocyte number in the villus epithelium after 1 week and the plasma cell quantity in the lamina propria after one, three, and six weeks of the experiment. DON treatment resulted in an increase in the lymphocyte number in the villus epithelium and the lamina propria after six weeks, and in the plasma cell quantity in the lamina propria after one, three, and six weeks of exposure. In group M, lymphocyte counts in the epithelium and the lamina propria increased significantly after six weeks. Neither mycotoxin induced significant adverse changes in the ultrastructure of the mucosal epithelium and the lamina propria or in the intestinal barrier permeability. Our results indicate that immune cells are the principal target of low doses of ZEN and DON.
Collapse
Affiliation(s)
- Barbara Przybylska-Gornowicz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Michał Tarasiuk
- BIOMIN Polska Sp. z o.o., Grochowska 16, 04-217 Warszawa, Poland.
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Magdalena Prusik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| |
Collapse
|
9
|
Glentis A, Gurchenkov V, Matic Vignjevic D. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh Migr 2015; 8:236-45. [PMID: 24727304 DOI: 10.4161/cam.28733] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are thin sheets of self-assembled extracellular matrices that are essential for embryonic development and for the homeostasis of adult tissues. They play a role in structuring, protecting, polarizing, and compartmentalizing cells, as well as in supplying them with growth factors. All basement membranes are built from laminin and collagen IV networks stabilized by nidogen/perlecan bridges. The precise composition of basement membranes, however, varies between different tissues. Even though basement membranes represent physical barriers that delimit different tissues, they are breached in many physiological or pathological processes, including development, the immune response, and tumor invasion. Here, we provide a brief overview of the molecular composition of basement membranes and the process of their assembly. We will then illustrate the heterogeneity of basement membranes using two examples, the epithelial basement membrane in the gut and the vascular basement membrane. Finally, we examine the different strategies cells use to breach the basement membrane.
Collapse
|
10
|
Akbari P, Braber S, Alizadeh A, Verheijden KAT, Schoterman MHC, Kraneveld AD, Garssen J, Fink-Gremmels J. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Monolayers and B6C3F1 Mice. J Nutr 2015; 145:1604-13. [PMID: 26019243 DOI: 10.3945/jn.114.209486] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/08/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The integrity of the epithelial layer in the gastrointestinal tract protects organisms from exposure to luminal antigens, which are considered the primary cause of chronic intestinal inflammation and allergic responses. The common wheat-associated fungal toxin deoxynivalenol acts as a specific disruptor of the intestinal tight junction network and hence might contribute to the pathogenesis of inflammatory bowel diseases. OBJECTIVE The aim of the current study was to assess whether defined galacto-oligosaccharides (GOSs) can prevent deoxynivalenol-induced epithelial dysfunction. METHODS Human epithelial intestinal Caco-2 cells, pretreated with different concentrations of GOSs (0.5%, 1%, and 2%) for 24 h, were stimulated with 4.2-μM deoxynivalenol (24 h), and 6/7-wk-old male B6C3F1 mice were fed a diet supplemented with 1% GOSs for 2 wk before being orally exposed to deoxynivalenol (25 mg/kg body weight, 6 h). Barrier integrity was determined by measuring transepithelial electrical resistance (TEER) and intestinal permeability to marker molecules. A calcium switch assay was conducted to study the assembly of epithelial tight junction proteins. Alterations in tight junction and cytokine expression were assessed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, or ELISA, and their localization was visualized by immunofluorescence microscopy. Sections of the proximal and distal small intestine were stained with hematoxylin/eosin for histomorphometric analysis. RESULTS The in vitro data showed that medium supplemented with 2% GOSs improved tight junction assembly reaching an acceleration of 85% after 6 h (P < 0.05). In turn, GOSs prevented the deoxynivalenol-induced loss of epithelial barrier function as measured by TEER (114% of control), and paracellular flux of Lucifer yellow (82.7% of prechallenge values, P < 0.05). Moreover, GOSs stabilized the expression and cellular distribution of claudin3 and suppressed by >50% the deoxynivalenol-induced synthesis and release of interleukin-8 [IL8/chemokine CXC motif ligand (CXCL8)] (P < 0.05). In mice, GOSs prevented the deoxynivalenol-induced mRNA overexpression of claudin3 (P = 0.022) and CXCL8 homolog keratinocyte hemoattractant (Kc) (Cxcl1) (P = 0.06) as well as the deoxynivalenol-induced morphologic defects. CONCLUSIONS The results demonstrate that GOSs stimulate the tight junction assembly and in turn mitigate the deleterious effects of deoxynivalenol on the intestinal barrier of Caco-2 cells and on villus architecture of B6C3F1 mice.
Collapse
Affiliation(s)
- Peyman Akbari
- Divisions of Veterinary Pharmacy, Pharmacology, and Toxicology, and Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Divisions of Veterinary Pharmacy, Pharmacology, and Toxicology, and
| | - Arash Alizadeh
- Divisions of Veterinary Pharmacy, Pharmacology, and Toxicology, and Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kim A T Verheijden
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Aletta D Kraneveld
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs. Toxins (Basel) 2015; 7:2071-95. [PMID: 26067367 PMCID: PMC4488690 DOI: 10.3390/toxins7062071] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) is one of the major mycotoxins produced by Fusarium fungi, and exposure to this mycotoxin requires an assessment of the potential adverse effects, even at low toxin levels. The aim of this study was to investigate the effects of a short-term, low-dose DON exposure on various gut health parameters in pigs. Piglets received a commercial feed or the same feed contaminated with DON (0.9 mg/kg feed) for 10 days, and two hours after a DON bolus (0.28 mg/kg BW), weight gain was determined and samples of different segments of the intestine were collected. Even the selected low dose of DON in the diet negatively affected weight gain and induced histomorphological alterations in the duodenum and jejunum. The mRNA expression of different tight junction (TJ) proteins, especially occludin, of inflammatory markers, like interleukin-1 beta and interleukin-10 and the oxidative stress marker heme-oxigenase1, were affected along the intestine by low levels of DON in the diet. Taken together, our results indicate that even after low-level exposure to DON, which has been generally considered as acceptable in animal feeds, clinically-relevant changes are measurable in markers of gut health and integrity.
Collapse
|
12
|
Escrivá L, Font G, Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem Toxicol 2015; 78:185-206. [DOI: 10.1016/j.fct.2015.02.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
|
13
|
Wu M, Xiao H, Ren W, Yin J, Tan B, Liu G, Li L, Nyachoti CM, Xiong X, Wu G. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. PLoS One 2014; 9:e100591. [PMID: 24984001 PMCID: PMC4077692 DOI: 10.1371/journal.pone.0100591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/26/2014] [Indexed: 12/30/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.
Collapse
Affiliation(s)
- Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | - Lili Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | | | - Xia Xiong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- * E-mail:
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- Department of Animal Science, Texas A&M University, College Station, Texas, United State of America
| |
Collapse
|
14
|
Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 2014; 6:1615-43. [PMID: 24859243 PMCID: PMC4052256 DOI: 10.3390/toxins6051615] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/28/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
The natural food contaminants, mycotoxins, are regarded as an important risk factor for human and animal health, as up to 25% of the world's crop production may be contaminated. The Fusarium genus produces large quantities of fusariotoxins, among which the trichothecenes are considered as a ubiquitous problem worldwide. The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants. An increasing number of studies suggest that intestinal epithelial cells are targets for deoxynivalenol (DON) and other Type B trichothecenes (TCTB). In humans, various adverse digestive symptoms are observed on acute exposure, and in animals, these toxins induce pathological lesions, including necrosis of the intestinal epithelium. They affect the integrity of the intestinal epithelium through alterations in cell morphology and differentiation and in the barrier function. Moreover, DON and TCTB modulate the activity of intestinal epithelium in its role in immune responsiveness. TCTB affect cytokine production by intestinal or immune cells and are supposed to interfere with the cross-talk between epithelial cells and other intestinal immune cells. This review summarizes our current knowledge of the effects of DON and other TCTB on the intestine.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| | - Isabelle P Oswald
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| |
Collapse
|