1
|
Bigini V, Sillo F, Giulietti S, Pontiggia D, Giovannini L, Balestrini R, Savatin DV. Oligogalacturonide application increases resistance to Fusarium head blight in durum wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3070-3091. [PMID: 38334507 DOI: 10.1093/jxb/erae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.
Collapse
Affiliation(s)
- Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Ple Aldo Moro, 5 00185 Rome, Italy
| | - Luca Giovannini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
2
|
Gozzi M, Blandino M, Bruni R, Capo L, Righetti L, Dall'Asta C. Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum. Mycotoxin Res 2024; 40:203-210. [PMID: 38236484 PMCID: PMC10834653 DOI: 10.1007/s12550-024-00521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Thirty-two varieties of common and durum wheat, hordeum, barley, and tritordeum collected over two harvesting years (2020 and 2021) were investigated for the presence of multiple Fusarium-related mycotoxins in asymptomatic plants. DON, 3-AcDON, 15-AcDON, T-2, HT-2, and ZEN together with the emerging mycotoxin ENN B and the major modified form of DON, namely DON3Glc, were quantified by means of UHPLC-MS/MS. Overall, DON and ENN B were the most frequently detected mycotoxins, albeit large inter-year variability was observed and related to different climate and weather conditions. Straws had higher mycotoxin contents than kernels and regarding DON occurrence tritordeum was found to be the most contaminated group on average for both harvesting years, while barley was the less contaminated one. Emerging mycotoxin ENN B showed comparable contents in kernels compared to straw, with a ratio close to 1 for tritordeum and barley. Regarding the occurrence of the other evaluated mycotoxins, T-2 and HT-2 toxins have been spotted in a few tritordeum samples, while ZEN has been frequently found only in straw from the harvesting year 2020. The data collected confirms the occurrence of multiple Fusarium mycotoxins in straws also from asymptomatic plants, highlighting concerns related to feed safety and animal health. The susceptibility of Tritordeum, hereby reported for the first time, suggests that careful measures in terms of monitoring, breeding, and cultural choices should be applied when dealing with his emerging crop.
Collapse
Affiliation(s)
- Marco Gozzi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy.
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| | - Luca Capo
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University, 6708, WE, Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, The Netherlands
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| |
Collapse
|
3
|
Zhang L, Zhou X, Li P, Wang Y, Hu Q, Shang Y, Chen Y, Zhu X, Feng H, Zhang C. Transcriptome Profile of Fusarium graminearum Treated by Putrescine. J Fungi (Basel) 2022; 9:jof9010060. [PMID: 36675881 PMCID: PMC9865016 DOI: 10.3390/jof9010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Fusarium graminearum (F. graminearum) is the main pathogen of Fusarium head blight (FHB) in wheat, barley, and corn. Deoxynivalenol (DON), produced by F. graminearum, is the most prevalent toxin associated with FHB. The wheat defense compound putrescine can promote DON production during F. graminearum infection. However, the underlying mechanisms of putrescine-induced DON synthesis are not well-studied. To investigate the effect of putrescine on the global transcriptional regulation of F. graminearum, we treated F. graminearum with putrescine and performed RNA deep sequencing. We found that putrescine can largely affect the transcriptome of F. graminearum. Gene ontology (GO) and KEGG enrichment analysis revealed that having a large amount of DEGs was associated with ribosome biogenesis, carboxylic acid metabolism, glycolysis/gluconeogenesis, and amino acid metabolism pathways. Co-expression analysis showed that 327 genes had similar expression patterns to FgTRI genes and were assigned to the same module. In addition, three transcription factor genes were identified as hub genes in this module, indicating that they may play important roles in DON synthesis. These results provide important clues for further analysis of the molecular mechanisms of putrescine-induced DON synthesis and will facilitate the study of the pathogenic mechanisms of FHB.
Collapse
Affiliation(s)
- Lina Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xiying Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (H.F.); (C.Z.)
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (H.F.); (C.Z.)
| |
Collapse
|
4
|
An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins (Basel) 2022; 14:toxins14060405. [PMID: 35737066 PMCID: PMC9229327 DOI: 10.3390/toxins14060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023] Open
Abstract
The present interlaboratory comparison study involved nine laboratories located throughout the world that tested for 24 regulated and non-regulated mycotoxins by applying their in-house LC-MS/MS multi-toxin method to 10 individual lots of 4 matrix commodities, including complex chicken and swine feed, soy and corn gluten. In total, more than 6000 data points were collected and analyzed statistically by calculating a consensus value in combination with a target standard deviation following a modified Horwitz equation. The performance of each participant was evaluated by a z-score assessment with a satisfying range of ±2, leading to an overall success rate of 70% for all tested compounds. Equal performance for both regulated and emerging mycotoxins indicates that participating routine laboratories have successfully expanded their analytical portfolio in view of potentially new regulations. In addition, the study design proved to be fit for the purpose of providing future certified reference materials, which surpass current analyte matrix combinations and exceed the typical scope of the regulatory framework.
Collapse
|
5
|
Bartkiene E, Bartkevics V, Berzina Z, Klementaviciute J, Sidlauskiene S, Isariene A, Zeimiene V, Lele V, Mozuriene E. Fatty acid profile and safety aspects of the edible oil prepared by artisans' at small-scale agricultural companies. Food Sci Nutr 2021; 9:5402-5414. [PMID: 34646511 PMCID: PMC8497834 DOI: 10.1002/fsn3.2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to analyze the fatty acid (FA) profiles and mycotoxin and polycyclic aromatic hydrocarbon (PAH) concentrations in sea buckthorn (SB1, SB2), flaxseed (FL3, FL4, FL5), hempseed (HE6, HE7, HE8), camelina (CA9, CA10), and mustard (MU11) edible oils, prepared by artisans' by artisanal at small-scale agricultural companies in Lithuania. The dominant FAs were palmitic and oleic acids in SB; palmitic, stearic, oleic, linoleic, and α-linolenic acids in FL; palmitic, stearic, oleic, linoleic, and α-linolenic acids in HE; palmitic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in CA; and oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in MU. In SB2 oil samples, T-2 toxin and zearalenone concentrations higher than 1.0 µg/kg were found (1.7 and 3.0 µg/kg, respectively). In sample FL4, an ochratoxin A concentration higher than 1.0 µg/kg was established (1.2 µg/kg); also, in HE8 samples, 2.0 µg/kg of zearalenone was found. None of the tested edible oils exceeded the limits for PAH concentration. Finally, because of the special place of edible oils in the human diet, not only should their contamination with mycotoxins and PAHs be controlled but also their FA profile, as an important safety characteristic, must be taken into consideration to ensure higher safety standards.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Vadims Bartkevics
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Zane Berzina
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Jolita Klementaviciute
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | - Sonata Sidlauskiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | | | - Vaida Zeimiene
- National Food and Veterinary Risk Assessment InstituteVilniusLithuania
| | - Vita Lele
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Erika Mozuriene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
6
|
Li L, Zhang T, Ren X, Li B, Wang S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112457. [PMID: 34175827 DOI: 10.1016/j.ecoenv.2021.112457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an oestrogen-like mycotoxin produced by Fusarium fungi, which has a considerable impact on human and animal health and results in substantial economic losses worldwide. This study aimed to demonstrate the reproductive injury induced by ZEA in rodents. We conducted a rigorous meta-analysis of the related literature via PubMed, Embase, and Web of Science. The scope of the study includes the following: development of reproductive organs, serum testosterone, oestradiol, and luteinizing hormone (LH) levels; parameters of Leydig cells; and parameters of semen. In total, 19 articles were reviewed. Compared with the control group, the increased relative epididymis weight, increased serum oestradiol level, and decreased LH levels in the prenatally exposed group were observed. In pubertal and adult rodents, the relative testicular weight, serum oestradiol level, Leydig cell number, and percentage of ST (+) Leydig cells decreased under ZEA exposure. In rodents at all ages, decreased serum testosterone level, sperm concentration, sperm motility rate, and increased serum deformity rate were observed in exposed groups compared with control groups. Although subgroup analysis failed to identify a clear dose-response relationship between ZEA exposure and reproductive system damage in male rodents, we still managed to confirm that zearalenone could decrease the serum testosterone level at the dosage of 50 mg/kg*day, 1.4 mg/kg*day, and 84 mg/kg*day, of prenatal, pubertal, and mature rodents respectively; pubertal zearalenone exposure impairs the quality and quantity of sperms of rodents at the dosage of 1.4 mg/kg*day and mature zearalenone exposure has the same effect at the dosage of 84 mg/kg*day. In conclusion, we found that ZEA exposure can cause considerable damage to the reproductive system of rodents of all ages. While the exact underlying mechanism of ZEA-induced toxicity in the reproductive system remains largely unknown, the theories of oestrogen-like effects and oxidative stress damage are promising.
Collapse
Affiliation(s)
- Lin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Bingxin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Raised concerns about the safety of barley grains and straw: A Swiss survey reveals a high diversity of mycotoxins and other fungal metabolites. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
9
|
Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, Sun X. Microbial detoxification of mycotoxins in food and feed. Crit Rev Food Sci Nutr 2021; 62:4951-4969. [PMID: 33663294 DOI: 10.1080/10408398.2021.1879730] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycotoxins are metabolites produced by fungi growing in food or feed, which can produce toxic effects and seriously threaten the health of humans and animals. Mycotoxins are commonly found in food and feed, and are of significant concern due to their hepatotoxicity, nephrotoxicity, carcinogenicity, mutagenicity, and ability to damage the immune and reproductive systems. Traditional physical and chemical detoxification methods to treat mycotoxins in food and feed products have limitations, such as loss of nutrients, reagent residues, and secondary pollution to the environment. Thus, there is an urgent need for new detoxification methods to effectively control mycotoxins and treat mycotoxin pollution. In recent years, microbial detoxification technology has been widely used for the degradation of mycotoxins in food and feed because this approach offers the potential for treatment with high efficiency, low toxicity, and strong specificity, without damage to nutrients. This article reviews the application of microbial detoxification technology for removal of common mycotoxins such as Aflatoxin, Ochratoxin, Zearalenone, Deoxynivalenol, and Fumonisins, and discusses the development trend of this important technology.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liangzhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
10
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Zearalenone Removal from Corn Oil by an Enzymatic Strategy. Toxins (Basel) 2020; 12:toxins12020117. [PMID: 32069863 PMCID: PMC7076758 DOI: 10.3390/toxins12020117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.
Collapse
|
12
|
Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage. Mycotoxin Res 2019; 36:127-136. [PMID: 31705430 DOI: 10.1007/s12550-019-00378-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Fusarium mycotoxins and their derivatives are frequently detected in freshly harvested forage maize. This study assessed the time course effects during ensiling of forage maize on the fate of Fusarium mycotoxins, using laboratory-scale silos and artificially contaminated raw material. A multi-mycotoxin liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was used to determine the levels of deoxynivalenol (DON), zearalenone (ZEN) and their derivatives DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, deepoxy-DON, α-zearalenol and β-zearalenol. A significant increase of DON was observed during ensiling, whereas the levels of DON-3-glucoside and its acetylated forms proportionally decreased. In contrast, levels of ZEN, α-zearalenol and β-zearalenol were not affected by the ensiling process. Based on these findings, ensiling is not a practical method for reducing the total amount of Fusarium mycotoxins present at harvest.
Collapse
|
13
|
Haile JK, N'Diaye A, Walkowiak S, Nilsen KT, Clarke JM, Kutcher HR, Steiner B, Buerstmayr H, Pozniak CJ. Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. PHYTOPATHOLOGY 2019; 109:1664-1675. [PMID: 31369363 DOI: 10.1094/phyto-03-19-0095-rvw] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fusarium head blight (FHB) is a major fungal disease affecting wheat production worldwide. Since the early 1990s, FHB, caused primarily by Fusarium graminearum, has become one of the most significant diseases faced by wheat producers in Canada and the United States. The increasing FHB problem is likely due to the increased adoption of conservation tillage practices, expansion of maize production, use of susceptible wheat varieties in rotation, and climate variability. Durum wheat (Triticum turgidum sp. durum) is notorious for its extreme susceptibility to FHB and breeding for resistance is complicated because sources of FHB resistance are rare in the primary gene pool of tetraploid wheat. Losses due to this disease include yield, test weight, seed quality, food and feed quality, and when severe, market access. More importantly, it is the contamination with mycotoxins, such as deoxynivalenol, in Fusarium-infected durum kernels that causes the most serious economic as well as food and feed safety concerns. Several studies and thorough reviews have been published on germplasm development and breeding for FHB resistance and the genetics and genomics of FHB resistance in bread or common wheat (T. aestivum); however, similar reviews have not been conducted in durum wheat. Thus, the aim of this review is to summarize and discuss the recent research efforts to mitigate FHB in durum wheat, including quantitative trait locus mapping, genome-wide association studies, genomic prediction, mutagenesis and characterization of genes and pathways involved in FHB resistance. It also highlights future directions, FHB-resistant germplasm, and the potential role of morphological traits to enhance FHB resistance in durum wheat.
Collapse
Affiliation(s)
- Jemanesh K Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - Amidou N'Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - Sean Walkowiak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - Kirby T Nilsen
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - John M Clarke
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - Hadley R Kutcher
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| | - Barbara Steiner
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Curtis J Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, S7N 5A8, SK, Saskatoon, Canada
| |
Collapse
|
14
|
Yang S, Gong P, Pan J, Wang N, Tong J, Wang M, Long M, Li P, He J. Pediococcus pentosaceus xy46 Can Absorb Zearalenone and Alleviate its Toxicity to the Reproductive Systems of Male Mice. Microorganisms 2019; 7:microorganisms7080266. [PMID: 31426404 PMCID: PMC6722568 DOI: 10.3390/microorganisms7080266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA) contamination is a very serious problem around the world as it can induce reproductive disorders in animals and affect the health of humans. Therefore, reducing the damage it causes to humans and animals is a current focus of research. In this study, we assess the removing capacity of Pediococcus pentosaceus xy46 towards ZEA and investigate the mechanism responsible for its action, thus confirming if it can alleviate ZEA toxicity to the reproductive systems of male mice. Our results show that the rate at which the strain removes ZEA is as high as 89.2% in 48 h when the concentration of ZEA is 4 μg/mL in the liquid medium. Heat and acid treatment significantly enhanced the ability of the bacteria to remove ZEA. The animal experiments results show that the oral administration of xy46 to mice (0.2 mL daily at a concentration of 109 CFU/mL for 28 days) significantly reduces the degree of testicular pathomorphological changes and apoptosis induced by ZEA when the mice are intragastric administration with 40 mg/kg ZEA daily for 28 days. Moreover, oral administration of xy46 enhances the decrease in the testosterone level and improves the oxidative stress injury induced by ZEA. Furthermore, oral administration of xy46 reverts the expression of these genes and proteins in the testicular tissues of the mice involved in the blood-testis barrier and apoptosis (e.g., Vim, caspase 12, Cldn11, N-cad, Bax, and Bcl-2). However, xy46 cannot significantly revert in some of these evaluated parameters, especially in sperm quantity and quality when the mice were given 70 mg/kg ZEA daily for 28 days. In conclusion, our results suggest that the strain Pediococcus pentosaceus xy46 can efficiently remove ZEA from the liquid medium, the mechanism responsible for its action is absorption, and it can alleviate the toxicity of ZEA to the reproductive systems of male mice when the mice are given 40 mg/kg ZEA daily, However, it cannot completely alleviate the reproductive toxicity of higher dosage of zearalenone through its ability to adsorb ZEA.
Collapse
Affiliation(s)
- Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
15
|
Wang N, Wu W, Pan J, Long M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms 2019; 7:microorganisms7070208. [PMID: 31330922 PMCID: PMC6680894 DOI: 10.3390/microorganisms7070208] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
16
|
Towards A New Approach for the Description of Cyclo⁻2,4-Dihydroxybenzoate, A Substance Which Effectively Mimics Zearalenone in Imprinted Polymers Designed for Analyzing Selected Mycotoxins in Urine. Int J Mol Sci 2019; 20:ijms20071588. [PMID: 30934909 PMCID: PMC6479585 DOI: 10.3390/ijms20071588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
A method of purifying cyclododecyl 2,4-dihydroxybenzoate as a potential replacement template molecule for preparation of molecularly-imprinted polymers for isolation of zearalenone in urine was developed. Full physicochemical characteristics of cyclododecyl 2,4-dihydroxybenzoate for the first time included crystallographic analysis and molecular modelling, which made possible the determination of the similarity between the cyclododecyl 2,4-dihydroxybenzoate and zearalenone molecules. The obtained molecularly-imprinted polymers show very high in vitro selectivity towards zearalenone due to specific interactions (e.g., hydrogen bonding, molecular recognition interaction). The achieved extraction recovery exceeds 94% at the tested concentration levels (20–500 ng·mL−1) with a relative standard deviation below 2%. Immunosorbents were found to have lower recoveries (below 92.5%) and RSD value between 2 and 4% for higher concentrations of the studied substance (400 ng·mL−1).
Collapse
|
17
|
Wang L, Liao Y, Peng Z, Chen L, Zhang W, Nüssler AK, Shi S, Liu L, Yang W. Food raw materials and food production occurrences of deoxynivalenol in different regions. Trends Food Sci Technol 2019; 83:41-52. [DOI: 10.1016/j.tifs.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Bissonnette KM, Kolb FL, Ames KA, Bradley CA. Effect of Wheat Cultivar on the Concentration of Fusarium Mycotoxins in Wheat Stems. PLANT DISEASE 2018; 102:2539-2544. [PMID: 30252626 DOI: 10.1094/pdis-12-17-2034-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective control of Fusarium-mycotoxin accumulation in grain affected by Fusarium head blight (FHB) (caused by Fusarium graminearum) begins with selecting moderately resistant wheat cultivars; however, little is known about how this resistance affects mycotoxin levels in the stem. A study was conducted from 2011 to 2014 in a mist-irrigated FHB nursery in Urbana, IL to determine whether the FHB resistance class of a cultivar (very susceptible, susceptible, moderately susceptible, and moderately resistant) affects the concentration of Fusarium mycotoxins in the stem. FHB incidence, FHB severity, and Fusarium-damaged kernel ratings were collected and used to calculate FHB index; incidence, severity, and kernel damage (ISK) index; and deoxynivalenol (DON), incidence, severity, and kernel damage (DISK) index. Grain was assayed for levels of DON, and the bottom 25 cm of plant stems was collected from each plot and assayed for DON, 3-acetyl-deoxynivalenol (3ADON), and 15-acetyl-deoxynivalenol (15ADON). Significant differences in DON concentration in the grain were detected among cultivars (P = 0.0001) and for the concentration of all DON (P = 0.003), 3ADON (P = 0.03), and 15ADON (P < 0.0001) in the stem. Significant differences among resistance classes were observed for FHB index value (P < 0.0001), ISK index (P = 0.006), and DISK index (P = 0.004). In all years of this study, the concentration of DON in the grain and the concentrations of all mycotoxins in the stem were consistently lower in the moderately resistant cultivars. All three indices were poor indicators of mycotoxin concentrations in the stem. Overall, the selection of a moderately resistant cultivar provides effective control of DON accumulation in the grain and mycotoxin accumulation in the stem.
Collapse
Affiliation(s)
| | - Frederic L Kolb
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Keith A Ames
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Princeton 42445
| |
Collapse
|
19
|
Wang N, Li P, Wang M, Chen S, Huang S, Long M, Yang S, He J. The Protective Role of Bacillus velezensis A2 on the Biochemical and Hepatic Toxicity of Zearalenone in Mice. Toxins (Basel) 2018; 10:toxins10110449. [PMID: 30384460 PMCID: PMC6267044 DOI: 10.3390/toxins10110449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin produced by Fusarium that seriously compromises the safety of animal and human health. In this study, our aim was to evaluate the protective effect of Bacillus velezensis A2 against biochemical and pathological changes induced by zearalenone in mice. Kunming mice (n = 40; 25 ± 2 g) were allotted to four treatment groups: a control group (basic feed); a ZEN group (basic feed with a ZEN dose of 60 mg/kg); an A2 strain fermented feed group (150 g of feed mixed with 150 mL of sterile distilled water and inoculated with 5 mL of phosphate buffer salt (PBS) resuspended A2 strain); and an A2 strain fermented ZEN-contaminated feed group. (A2 strain group 150 mL pure bacterial distilled water system mixed with 150 g ZEN-contaminated feed.) Our results showed that the Bacillus velezensis A2 strain can completely degrade the ZEN-contaminated feed within 5 days. (The concentration of ZEN in fermentation was 60 μg/mL.) After the mice fed for 28 days, compared with the control group, the activities of AST and ALT were increased, the activities of glutathione peroxidase (GSH-PX) and total superoxide dismutase (T-SOD) were decreased, and the amount of creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and malondialdehyde (MDA) in the ZEN group were increased in the mice serum (p < 0.05; p < 0.01). However, compared with the ZEN group, these biochemical levels were reversed in the A2 strain fermented feed group and in the A2 strain fermented ZEN-contaminated feed group (p < 0.05; p < 0.01). Furthermore, histopathological analysis only showed pathological changes of the mice liver in the ZEN group. The results showed that Bacillus velezensis A2 as additive could effectively remove ZEN contamination in the feed and protect the mice against the toxic damage of ZEN. In conclusion, Bacillus velezensis A2 has great potential use as a microbial feed additive to detoxify the toxicity of zearalenone in production practice.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Si Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Sheng Huang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
20
|
Wang N, Li P, Pan J, Wang M, Long M, Zang J, Yang S. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Sci Rep 2018; 8:13646. [PMID: 30206282 PMCID: PMC6133983 DOI: 10.1038/s41598-018-32006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin occurring in food and feeds, and it can cause oxidative damage and apoptosis in the testis, liver, and kidney. A current concern for researchers is how to reduce the harm it causes to humans and animals. In this study, our aim was to isolate and identify a novel and efficient ZEN-detoxifying strain of bacteria, and we aimed to assess the protective effect of the isolated strain on kidney damage caused by ZEN in mice. Our results indicated that a strain of Bacillus velezensis (B. velezensis), named A2, could completely degrade ZEN (7.45 μg/mL) after three days of incubation at 37 °C in the Luria-Bertani (LB) medium. This fermentation broth of the B. velezensis A2 strain was given to mice. The histopathological analysis indicated that the fermentation broth from the B. velezensis A2 strain reduced the degree of renal injury that is induced by ZEN. Furthermore, it greatly reduced the increase in serum levels of creatinine (CRE), uric acid (UA), and urea nitrogen (BUN) caused by ZEN. In addition, B. velezensis A2 strain also significantly inhibited the increase of malonaldehyde (MDA) content, and reversed the decreases of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities caused by ZEN. Studies have shown that ZEN is involved in the regulation of mRNA and protein levels of genes involved in the ER stress-induced apoptotic pathway, such as heavy chain binding protein (BIP), C-/-EBP homologous protein (CHOP), cysteine Aspartate-specific protease-12 (Caspase-12), c-Jun N-terminal kinase (JNK), and BCL2-related X protein (Bcl-2 and Bax). However, when mice were administered the fermentation broth of the B. velezensis A2 strain, it significantly reversed the expressions of these genes in their kidney tissue. In conclusion, our results indicate that the newly identified strain of B. velezensis A2, has a protective effect from renal injury induced by ZEN in mice. This strain has a potential application in the detoxification of ZEN in feed and protects animals from ZEN poisoning.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jian Zang
- Testing& Analysis Center, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
21
|
Multi-Mycotoxin Occurrence in Dairy Cattle Feeds from the Gauteng Province of South Africa: A Pilot Study Using UHPLC-QTOF-MS/MS. Toxins (Basel) 2018; 10:toxins10070294. [PMID: 30013005 PMCID: PMC6071188 DOI: 10.3390/toxins10070294] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
The indispensable nature of toxigenic fungi and mycotoxins in agricultural systems is of worldwide concern, hence the need for surveillance studies to preserve public health. Thirteen dairy farms were surveyed and 40 dairy feeds of varying nature collected and analyzed for mycotoxins. Estimated levels of aflatoxins (AFs), fumonisin B1 (FB1), ochratoxin A (OTA), citrinin (CIT), zearalenone (ZEN), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), deoxynivalenol (DON), 3- and 15-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2), and beauvericin (BEA) were established using liquid chromatography-tandem mass spectrometry. Highest frequencies (40/40) were found for AFG2 (range: <LOQ—116.1 ppb), α-ZEL (range: 0.98–13.24 ppb), and β-ZEL (range: 0.73–4.71 ppb), followed by AFB2 at 37/40 (range: <LOQ—23.88 ppb), BEA at 36/40 (range: <LOQ—55.99 ppb), HT-2 at 35/40 (range: <LOQ—312.95 ppb), and FB1 at 34/40 (range: <LOQ—1389.62 ppb). Apart from samples exceeding regulatory limits for total AFs in dairy feeds due to the high amounts of AFG2 and AFB2, levels of other mycotoxins were regarded as safe for dairy production in South Africa. This is the first-time the natural occurrence of the cold climate HT-2 in South African feeds was documented. Persistent co-occurrence of multiple mycotoxins across samples, however, may elicit synergistic and/or additive effects in hosts, hence raising concerns about their impacts and how such interactions may affect the dairy livestock sector.
Collapse
|
22
|
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 2018; 215:55-64. [PMID: 30172309 DOI: 10.1016/j.micres.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/16/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) disease in cereal crops worldwide. Infection with this fungal phytopathogen can regularly cause severe yield and quality losses and mycotoxin contamination in grains. In previous other studies, one research group reported that pyrrolnitrin had an ability to suppress of mycelial growth of F. graminearum. Other groups revealed that phenazine-1-carboxamide, a derivative of phenazine-1-carboxylic acid, could also inhibit the growth of F. graminearum and showed great potentials in the bioprotection of crops from FHB disease. In our recent work with Pseudomonas chlororaphis strain G05, however, we found that although the phz operon (phenazine biosynthetic gene cluster) was knocked out, the phenazine-deficient mutant G05Δphz still exhibited effective inhibition of the mycelial growth of some fungal phytopathogens in pathogen inhibition assay, especially including F. graminearum, Colletotrichum gloeosporioides, Botrytis cinerea. With our further investigations, including deletion and complementation of the prn operon (pyrrolnitrin biosynthetic gene cluster), purification and identification of fungal compounds, we first verified that not phenazines but pyrrolnitrin biosynthesized in P. chlororaphis G05 plays an essential role in growth suppression of F. graminearum and the bioprotection of cereal crops against FHB disease.
Collapse
Affiliation(s)
- Run Huang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
23
|
Bissonnette KM, Kolb FL, Ames KA, Bradley CA. Effect of Fusarium Head Blight Management Practices on Mycotoxin Contamination of Wheat Straw. PLANT DISEASE 2018; 102:1141-1147. [PMID: 30673442 DOI: 10.1094/pdis-09-17-1385-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Management of Fusarium graminearum-associated mycotoxins in wheat grain has been extensively evaluated, but little is known about management of mycotoxins in straw. Two research trials were conducted at four locations from 2011 to 2014. The objective of the first trial was to determine the efficacy of fungicides, and the objective of the second trial was to evaluate the use of integrated disease management strategies, for the control of Fusarium head blight (FHB) and reducing the concentration of the Fusarium mycotoxins deoxynivalenol, 3-acetyl-deoxynivalenol, and 15-acetyl-deoxynivalenol in straw. In the first trial, it was determined that demethylation inhibitor (DMI) fungicides did not offer significant (P ≤ 0.05) reductions of mycotoxin concentrations in the straw compared with a no-fungicide control treatment, but significant (P ≤ 0.05) reductions in mycotoxin concentration were observed in the control when compared with treatments with the application of quinone outside inhibitor (QoI)-containing fungicides. In the second trial, mycotoxin concentrations in the straw were significantly (P ≤ 0.05) reduced in the moderately resistant cultivar compared with the susceptible cultivar, but were not affected by the use of a fungicide. The practices typically used to manage Fusarium mycotoxins in wheat grain, especially the selection of resistant cultivars and not using a QoI fungicide, may be an effective means to reduce mycotoxin concentrations in the straw.
Collapse
Affiliation(s)
| | - Frederic L Kolb
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Keith A Ames
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Princeton 42445
| |
Collapse
|
24
|
Kintz P, Ameline A, Raul JS. Discrimination between zeranol and zearalenone exposure using hair analysis. Application to an adverse analytical finding case. Drug Test Anal 2018; 10:906-909. [DOI: 10.1002/dta.2372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Pascal Kintz
- X-Pertise Consulting; Oberhausbergen France
- Institut de medicine légale; Strasbourg France
| | | | | |
Collapse
|
25
|
Long M, Yang S, Dong S, Chen X, Zhang Y, He J. Characterization of semen quality, testicular marker enzyme activities and gene expression changes in the blood testis barrier of Kunming mice following acute exposure to zearalenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27235-27243. [PMID: 28965173 DOI: 10.1007/s11356-017-0299-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
A total of 95 8-week-old male Kunming mice were randomly assigned into five groups and exposed to zearalenone (ZEA) at doses of 25, 50, and 75 mg/kg delivered by intra-peritoneal (i.p.) injection for 5 days. The testis and epididymis indices involving sperm quality and morphology, testis enzyme activities, serum concentrations of testosterone and estrogen, and the expression levels of the three gene and protein of N-cadherin, vimentin, and claudin 11 related to the blood testis barrier (BTB) were analyzed. Results showed that ZEA significantly decreased body weight and semen quality compared to the control group along with increased activity of alkaline phosphatase (ALP), acid phosphatase (ACP), lactate dehydrogenase (LDH), and reduced serum concentrations of testosterone and estrogen. At the mRNA and protein levels, expression of N-cadherin, vimentin, and claudin 11 significantly increased; however, the mRNA and protein of N-cad expression decreased. These data suggest acute exposure to ZEA reduces sperm quality and significantly decreases the concentration of serum testosterone and estradiol. In addition, the activities of the testis marker enzymes and associated mRNA and protein expressions of the BTB were also significantly affected. Our results demonstrated that ZEA has a significant impact on the reproductive parameters of male mice which showed compensatory response to strengthen the barrier function of the BTB following ZEA exposure.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
26
|
Podolska G, Bryła M, Sułek A, Waśkiewicz A, Szymczyk K, Jędrzejczak R. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2017. [DOI: 10.3920/qas2016.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- G. Podolska
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - M. Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - A. Sułek
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - A. Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - K. Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - R. Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| |
Collapse
|
27
|
Berthiller F, Brera C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2015-2016. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2138] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2015 and mid-2016. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed liquid chromatography mass spectrometry based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety – GMO and Mycotoxins Unit, Viale Regina Elena 299, 00161 Rome, Italy
| | - M.H. Iha
- Adolfo Lutz Institute of Ribeirão Preto, Nucleous of Chemistry and Bromatology Science, Rua Minas 866, Ribeirão Preto, SP 14085-410, Brazil
| | - R. Krska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA-ARS-NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
28
|
Wang Q, Jiang C, Wang C, Chen C, Xu JR, Liu H. Characterization of the Two-Speed Subgenomes of Fusarium graminearum Reveals the Fast-Speed Subgenome Specialized for Adaption and Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:140. [PMID: 28261228 PMCID: PMC5306128 DOI: 10.3389/fpls.2017.00140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 05/05/2023]
Abstract
Fusarium head blight, caused by Fusarium graminearum, is one of the most severe diseases on wheat and barley worldwide. Although the genomic data of several strains were published, the intragenomic variation of F. graminearum was not well characterized. Here, we sequenced three Chinese strains and conducted genome-wide comparisons. Our data revealed that all the sequenced strains were distinct from each other and over 350 genes were functionally lost in each of them. Variants of each strain were unevenly distributed in a highly conserved pattern along the chromosomes, resulting in a conserved two-speed genome. The fast subgenome has a lower GC content, shorter gene length, and higher variation of exon numbers than the slow subgenome. Genes related to interaction and pathogenicity, under positive selection, and up-regulated in planta were all significantly enriched in the fast subgenome. Furthermore, we found that the fast subgenome coincided with facultative heterochromatin regions that were repressed in vegetative stage but activated during infection as measured by RNA-seq and ChIP-seq data, suggesting that the fast subgenome is epigenetically regulated. Taken together, our data demonstrated that F. graminearum has a highly conserved two-speed genome and the fast subgenome responsible for adaption and infection is under the control of heterochromatin.
Collapse
Affiliation(s)
- Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- Department of Botany and Plant Pathology, Purdue University, West LafayetteIN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Huiquan Liu,
| |
Collapse
|
29
|
Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res 2016; 32:69-75. [PMID: 26888520 DOI: 10.1007/s12550-016-0241-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Four diets contaminated with 1.1 to 5.0 mg/kg deoxynivalenol (DON) and 0.4 to 2.4 mg/kg zearalenone (ZEA) were fed to four groups of six growing Large White pigs. Urine samples were collected after 3 to 4 days and again after 6 to 7 days on the diets. On each sampling day, half of the animals were sampled in the morning, after an 8-h fast, and the other half were sampled in the afternoon, after 7 h of ad libitum access to feed. The urinary concentrations of DON, DON-glucuronide, DON-3-sulphate, de-epoxy-DON, as well as of ZEA, ZEA-14-glucuronide, α-zearalenol and α-zearalenol-14-glucuronide, analysed using LC-MS/MS, were used to calculate urinary DON and ZEA equivalent concentrations (DONe and ZEAe). The urinary concentration of DONe (P < 0.001), but not of ZEAe (P = 0.31), was lower in the fasted than that in the fed animals. The urinary DONe/creatinine and ZEAe/creatinine ratios were highly correlated with DON and ZEA intake per kg body weight the day preceding sampling (r = 0.76 and 0.77; P < 0.001). The correlations between DON intake during the 7 h preceding urine sampling in the afternoon and urinary DONe/creatinine ratio (r = 0.88) as well as between mean ZEA intake during 3 days preceding urine sampling and urinary ZEAe/creatinine ratio (r = 0.84) were even higher, reflecting the plasma elimination half-time of several hours for DON and of more than 3 days for ZEA. ZEAe analysed in enzymatically hydrolysed urine using an ELISA kit was highly correlated with the LC-MS/MS data (r = 0.94). The urinary DONe and ZEAe to creatinine ratios, analysed in pooled urine samples of several pigs fed the same diet, can be used to estimate their exposure to DON and ZEA.
Collapse
|