1
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
2
|
Marothia M, Behl A, Maurya P, Saini M, Shoaib R, Garg S, Kumari G, Biswas S, Munjal A, Anand S, Kahlon AK, Gupta P, Biswas S, Goswami B, Abdulhameed Almuqdadi HT, Bhowmick IP, Shevtsov M, Ramalingam S, Ranganathan A, Singh S. Targeting PfProhibitin 2-Hu-Hsp70A1A complex as a unique approach towards malaria vaccine development. iScience 2024; 27:109918. [PMID: 38812541 PMCID: PMC11134565 DOI: 10.1016/j.isci.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.
Collapse
Affiliation(s)
- Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Saurav Biswas
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Bidhan Goswami
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura (West), India
| | - Haider Thaer Abdulhameed Almuqdadi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Ipsita Pal Bhowmick
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Chakafana G, Middlemiss CJ, Zininga T, Shonhai A. Swapping the linkers of canonical Hsp70 and Hsp110 chaperones compromises both self-association and client selection. Heliyon 2024; 10:e29690. [PMID: 38707424 PMCID: PMC11066147 DOI: 10.1016/j.heliyon.2024.e29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1) and PfHsp70-z are essential cytosol localised chaperones of the malaria parasite. The two chaperones functionally interact to drive folding of several parasite proteins. While PfHsp70-1 is regarded as a canonical Hsp70 chaperone, PfHsp70-z belongs to the Hsp110 subcluster. One of the distinctive features of PfHsp70-z is its unique linker segment which delineates it from canonical Hsp70. In the current study, we elucidated the role of the linker in regulating Hsp70 self-association and client selection. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) and their respective linker switch mutants we investigated self-association of the chaperones using surface plasmon resonance (SPR) analysis. The effect of the changes on client selectivity was investigated on DnaK and its mutant through co-affinity chromatography coupled to LC-MS analysis. Our findings demonstrated that the linker is important for both Hsp70 self-association and client binding.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Chemistry and Biochemistry, Hampton University, 23668, Virginia, USA
| | - Caitlin J. Middlemiss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
4
|
Tripathi A, Del Galdo S, Chandramouli B, Kumar N. Distinct dynamical features of plasmodial and human HSP70-HSP110 highlight the divergence in their chaperone-assisted protein folding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140942. [PMID: 37516289 DOI: 10.1016/j.bbapap.2023.140942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
HSP70 and its evolutionarily diverged co-chaperone HSP110, forms an important node in protein folding cascade. How these proteins maintain the aggregation-prone proteome of malaria parasite in functional state remains underexplored, in contrast to its human orthologs. In this study, we have probed into conformational dynamics of plasmodial HSP70 and HSP110 through multiple μs MD-simulations (ATP-state) and compared with their respective human counterparts. Simulations covered sampling of 3.4 and 2.8 μs for HSP70 and HSP110, respectively, for parasite and human orthologs. We provide a comprehensive description of the dynamic behaviors that characterize the systems and also introduce a parameter for quantifying protein rigidity. For HSP70, the interspecies comparison reveals enhanced flexibility in IA and IB subdomain within the conserved NBD, lesser solvent accessibility of the interdomain linker and distinct dynamics of the SBDβ of Pf HSP70 in comparison to Hs HSP70. In the case of HSP110, notable contrast in the dynamics of NBD, SBDβ and SBDα was observed between parasite and human ortholog. Although HSP70 and HSP110 are members of the same superfamily, we identified specific differences in the subdomain contacts in NBD, linker properties and interdomain movements in their human and parasite orthologs. Our study suggests that differences in conformational dynamics may translate into species-specific differences in the chaperoning activities of HSP70-HSP110 in the parasite and human, respectively. Dynamical features of Pf HSP70-HSP110 may contribute to the maintenance of proteostasis in the parasite during its intracellular survival in the host.
Collapse
Affiliation(s)
- Aradhya Tripathi
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, Rome, Italy
| | | | - Niti Kumar
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Mrozek A, Antoshchenko T, Chen Y, Zepeda-Velázquez C, Smil D, Kumar N, Lu H, Park HW. A non-traditional crystal-based compound screening method targeting the ATP binding site of Plasmodium falciparum GRP78 for identification of novel nucleoside analogues. Front Mol Biosci 2022; 9:956095. [PMID: 36275624 PMCID: PMC9585173 DOI: 10.3389/fmolb.2022.956095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Drug resistance to front-line malarial treatments represents an ongoing threat to control malaria, a vector borne infectious disease. The malarial parasite, Plasmodium falciparum has developed genetic variants, conferring resistance to the current standard therapeutic artemisinin and its derivatives commonly referred to as artemisinin-combination therapies (ACTs). Emergence of multi-drug resistance parasite genotypes is a warning of potential treatment failure, reaffirming the urgent and critical need to find and validate alternate drug targets to prevent the spread of disease. An attractive and novel drug target includes glucose-regulated protein 78 kDa (GRP78, or BiP), an essential molecular chaperone protein involved in the unfolded protein response that is upregulated in ACT treated P. falciparum parasites. We have shown that both sequence and structure are closely related to human GRP78 (hGRP78), a chaperone belonging to the HSP70 class of ATPase proteins, which is often upregulated in cellular stress responses and cancer. By screening a library of nucleoside analogues, we identified eight ‘hit’ compounds binding at the active site of the ATP binding domain of P. falciparum GRP78 using a high-throughput ligand soaking screen using x-ray crystallography. These compounds were further evaluated using protein thermal shift assays to assess target binding activity. The nucleoside analogues identified from our screen provide a starting point for the development of more potent and selective antimalarial inhibitors. In addition, we have established a well-defined, high-throughput crystal-based screening approach that can be applied to many crystallizable P. falciparum proteins for generating anti-Plasmodium specific compounds.
Collapse
Affiliation(s)
- Alexander Mrozek
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tetyana Antoshchenko
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yun Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - David Smil
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Nirbhay Kumar
- Department of Global Health, George Washington University Milken Institute of Public Health, Washington, D.C., DC, United States
| | - Hua Lu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hee-Won Park
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Hee-Won Park,
| |
Collapse
|
6
|
Muthelo T, Mulaudzi V, Netshishivhe M, Dongola TH, Kok M, Makumire S, de Villiers M, Burger A, Zininga T, Shonhai A. Inhibition of Plasmodium falciparum Hsp70-Hop partnership by 2-phenylthynesulfonamide. Front Mol Biosci 2022; 9:947203. [PMID: 36177352 PMCID: PMC9513230 DOI: 10.3389/fmolb.2022.947203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Hsp70-1 (PfHsp70-1; PF3D7_0818900) and PfHsp90 (PF3D7_0708400) are essential cytosol localized chaperones of the malaria parasite. The two chaperones form a functional complex via the adaptor protein, Hsp90-Hsp70 organizing protein (PfHop [PF3D7_1434300]), which modulates the interaction of PfHsp70-1 and PfHsp90 through its tetracopeptide repeat (TPR) domains in a nucleotide-dependent fashion. On the other hand, PfHsp70-1 and PfHsp90 possess C-terminal EEVD and MEEVD motifs, respectively, which are crucial for their interaction with PfHop. By coordinating the cooperation of these two chaperones, PfHop plays an important role in the survival of the malaria parasite. 2-Phenylthynesulfonamide (PES) is a known anti-cancer agent whose mode of action is to inhibit Hsp70 function. In the current study, we explored the antiplasmodial activity of PES and investigated its capability to target the functions of PfHsp70-1 and its co-chaperone, PfHop. PES exhibited modest antiplasmodial activity (IC50 of 38.7 ± 0.7 µM). Furthermore, using surface plasmon resonance (SPR) analysis, we demonstrated that PES was capable of binding recombinant forms of both PfHsp70-1 and PfHop. Using limited proteolysis and intrinsic fluorescence-based analysis, we showed that PES induces conformational changes in PfHsp70-1 and PfHop. In addition, we demonstrated that PES inhibits the chaperone function of PfHsp70-1. Consequently, PES abrogated the association of the two proteins in vitro. Our study findings contribute to the growing efforts to expand the arsenal of potential antimalarial compounds in the wake of growing parasite resistance against currently used drugs.
Collapse
Affiliation(s)
- Tshifhiwa Muthelo
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Vhahangwele Mulaudzi
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Munei Netshishivhe
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | | | - Michelle Kok
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Stanley Makumire
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Adélle Burger
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Addmore Shonhai
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
7
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
9
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
10
|
Silva NSM, Rodrigues LFDC, Dores-Silva PR, Montanari CA, Ramos CHI, Barbosa LRS, Borges JC. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140719. [PMID: 34571256 DOI: 10.1016/j.bbapap.2021.140719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Human 71 kDa heat shock cognate protein (HSPA8, also known as Hsc70, Hsp70-8, Hsc71, Hsp71 or Hsp73) is a constitutively expressed chaperone that is critical for cell proteostasis. In the cytosol, HSPA8 plays a pivotal role in folding and refolding, facilitates protein trafficking across membranes and targets proteins for degradation, among other functions. Here, we report an in solution study of recombinant HSPA8 (rHSPA8) using a variety of biophysical and biochemical approaches. rHSPA8 shares several structural and functional similarities with others human Hsp70s. It has two domains with different stabilities and interacts with adenosine nucleotides with dissociation constants in the low micromolar range, which were higher in the presence of Mg2+. rHSPA8 showed lower ATPase activity than its homolog HSPA5/hGrp78/hBiP, but it was 4-fold greater than that of recombinant HSPA1A/hHsp70-1A, with which it is 86% identical. Small angle X-ray scattering indicated that rHSPA8 behaved as an elongated monomeric protein in solution with dimensions similar to those observed for HSPA1A. In addition, rHSPA8 showed structural flexibility between its compacted and extended conformations. The data also indicated that HSPA8 has capacity in preventing the aggregation of model client proteins. The present study expands the understanding of the structure and activity of this chaperone and aligns with the idea that human homologous Hsp70s have divergent functions.
Collapse
Affiliation(s)
| | | | - Paulo Roberto Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Leandro Ramos Souza Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Burger A, Macucule-Tinga P, Bentley SJ, Ludewig MH, Mhlongo NN, Shonhai A, Boshoff A. Characterization of an Atypical Trypanosoma brucei Hsp70 Demonstrates Its Cytosolic-Nuclear Localization and Modulation by Quercetin and Methylene Blue. Int J Mol Sci 2021; 22:ijms22136776. [PMID: 34202520 PMCID: PMC8269394 DOI: 10.3390/ijms22136776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosoma brucei (Tb) harbours twelve Hsp70 chaperones. Of these, four are predicted to reside in the parasite cytosol. TbHsp70.c is predicted to be cytosolic and upregulated upon heat stress and is an ATPase that exhibits holdase chaperone function. Cytosol-localized Tbj2 stimulates the ATPase activity of TbHsp70.c. In the current study, immunofluorescence confirmed that TbHsp70.c is both a cytosolic and a nuclear protein. Furthermore, in silico analysis was used to elucidate an atypical linker and hydrophobic pocket. Tellingly, TbHsp70.c lacks the EEVD and GGMP motifs, both of which are implicated in substrate selectivity and co-chaperone binding in canonical Hsp70s. Far western analysis revealed that TbSTi1 interacts directly with TbHsp70 and TbHsp70.4, but does not bind TbHsp70.c. We further investigated the effect of quercetin and methylene blue on the Tbj2-driven ATPase activity of TbHsp70.c. We established that quercetin inhibited, whilst methylene blue enhanced, the Tbj2-stimulated ATPase activity of TbHsp70.c. Furthermore, these inhibitors were lethal to parasites. Lastly, we used molecular docking to show that quercetin and methylene blue may bind the nucleotide binding pocket of TbHsp70.c. Our findings suggest that small molecule inhibitors that target TbHsp70.c could be developed to serve as possible drug candidates against T. brucei.
Collapse
Affiliation(s)
- Adélle Burger
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa;
- Correspondence: (A.B.); (A.B.); Tel.: +27-(0)-15-962-8620 (A.B.); +27-(0)-46-603-8630 (A.B.)
| | - Paula Macucule-Tinga
- Biotechnology Innovation Centre, Faculty of Science, Rhodes University, PO Box 94, Makhanda/Grahamstown 6140, South Africa; (P.M.-T.); (S.J.B.); (M.H.L.)
| | - Stephen John Bentley
- Biotechnology Innovation Centre, Faculty of Science, Rhodes University, PO Box 94, Makhanda/Grahamstown 6140, South Africa; (P.M.-T.); (S.J.B.); (M.H.L.)
| | - Michael Hans Ludewig
- Biotechnology Innovation Centre, Faculty of Science, Rhodes University, PO Box 94, Makhanda/Grahamstown 6140, South Africa; (P.M.-T.); (S.J.B.); (M.H.L.)
| | - Ndumiso Nhlakanipho Mhlongo
- Department of Medical Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Faculty of Science, Rhodes University, PO Box 94, Makhanda/Grahamstown 6140, South Africa; (P.M.-T.); (S.J.B.); (M.H.L.)
- Correspondence: (A.B.); (A.B.); Tel.: +27-(0)-15-962-8620 (A.B.); +27-(0)-46-603-8630 (A.B.)
| |
Collapse
|
12
|
Abstract
It gives me great pleasure to have the opportunity to introduce myself to the readers of Biophysical Reviews as part of the 'meet the editors' series. What follows is a mini-autobiography of my life as it relates to my scientific career and research.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950 South Africa
| |
Collapse
|
13
|
Makumire S, Dongola TH, Chakafana G, Tshikonwane L, Chauke CT, Maharaj T, Zininga T, Shonhai A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int J Mol Sci 2021; 22:ijms22042226. [PMID: 33672387 PMCID: PMC7926355 DOI: 10.3390/ijms22042226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Medicine, University of Cape Town, Faculty of Health Sciences, Observatory, Cape Town 7925, South Africa
| | - Lufuno Tshikonwane
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Cecilia Tshikani Chauke
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Tarushai Maharaj
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Correspondence: ; Tel.: +27-15962-8723
| |
Collapse
|
14
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
15
|
Role of Heat Shock Proteins in Immune Modulation in Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:169-186. [PMID: 34569025 DOI: 10.1007/978-3-030-78397-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.
Collapse
|
16
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
17
|
Rajapandi T. Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum. J Parasit Dis 2020; 44:687-693. [PMID: 33184535 DOI: 10.1007/s12639-020-01251-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plasmodium falciparum has the most adenine (A)- and thymine (T)-rich genome known to date, and 24-30% of the P. falciparum proteome contains asparagine (N) and glutamine (Q) residues. In general, asparagine repeats in proteins increase the propensity for aggregation, especially at elevated temperatures, which occur routinely in P. falciparum parasites during exoerythrocytic and erythrocytic developmental stages in a vertebrate host. The P. falciparum exported chaperone machinery is comprised of an exported PfHsp70-x protein and its co-chaperone PfHsp40-x1 in the host erythrocyte compartment, and PfHsp70-z and its co-chaperones in the parasite cytoplasm have been identified. In vitro assays reveal that these chaperone partners function in refolding of asparagine-rich polypeptides. The identification and chaperoning of exported poly-asparagine-containing proteins, and the biological roles and the protection mechanisms of P. falciparum during febrile conditions by the exported chaperone machinery are discussed.
Collapse
Affiliation(s)
- Thavamani Rajapandi
- Department of Natural Sciences, Science and Technology Center, Coppin State University, 2500 West North Avenue, Baltimore, MD 21216-3698 USA
| |
Collapse
|
18
|
Lebepe CM, Matambanadzo PR, Makhoba XH, Achilonu I, Zininga T, Shonhai A. Comparative Characterization of Plasmodium falciparum Hsp70-1 Relative to E. coli DnaK Reveals the Functional Specificity of the Parasite Chaperone. Biomolecules 2020; 10:biom10060856. [PMID: 32512819 PMCID: PMC7356358 DOI: 10.3390/biom10060856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Hsp70 is a conserved molecular chaperone. How Hsp70 exhibits specialized functions across species remains to be understood. Plasmodium falciparum Hsp70-1 (PfHsp70-1) and Escherichia coli DnaK are cytosol localized molecular chaperones that are important for the survival of these two organisms. In the current study, we investigated comparative structure-function features of PfHsp70-1 relative to DnaK and a chimeric protein, KPf, constituted by the ATPase domain of DnaK and the substrate binding domain (SBD) of PfHsp70-1. Recombinant forms of the three Hsp70s exhibited similar secondary and tertiary structural folds. However, compared to DnaK, both KPf and PfHsp70-1 were more stable to heat stress and exhibited higher basal ATPase activity. In addition, PfHsp70-1 preferentially bound to asparagine rich peptide substrates, as opposed to DnaK. Recombinant P. falciparum adenosylmethionine decarboxylase (PfAdoMetDC) co-expressed in E. coli with either KPf or PfHsp70-1 was produced as a fully folded product. Co-expression of PfAdoMetDC with heterologous DnaK in E. coli did not promote folding of the former. However, a combination of supplementary GroEL plus DnaK improved folding of PfAdoMetDC. These findings demonstrated that the SBD of PfHsp70-1 regulates several functional features of the protein and that this molecular chaperone is tailored to facilitate folding of plasmodial proteins.
Collapse
Affiliation(s)
- Charity Mekgwa Lebepe
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Pearl Rutendo Matambanadzo
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Xolani Henry Makhoba
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Correspondence:
| |
Collapse
|
19
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
20
|
2019-A year in Biophysical Reviews. Biophys Rev 2019; 11:833-839. [PMID: 31741173 DOI: 10.1007/s12551-019-00607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
|
21
|
The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019; 9:biom9100543. [PMID: 31569820 PMCID: PMC6843406 DOI: 10.3390/biom9100543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022] Open
Abstract
The heat shock 70 (Hsp70) family of molecular chaperones plays a central role in maintaining cellular proteostasis. Structurally, Hsp70s are composed of an N-terminal nucleotide binding domain (NBD) which exhibits ATPase activity, and a C-terminal substrate binding domain (SBD). The binding of ATP at the NBD and its subsequent hydrolysis influences the substrate binding affinity of the SBD through allostery. Similarly, peptide binding at the C-terminal SBD stimulates ATP hydrolysis by the N-terminal NBD. Interdomain communication between the NBD and SBD is facilitated by a conserved linker segment. Hsp70s form two main subgroups. Canonical Hsp70 members generally suppress protein aggregation and are also capable of refolding misfolded proteins. Hsp110 members are characterized by an extended lid segment and their function tends to be largely restricted to suppression of protein aggregation. In addition, the latter serve as nucleotide exchange factors (NEFs) of canonical Hsp70s. The linker of the Hsp110 family is less conserved compared to that of the canonical Hsp70 group. In addition, the linker plays a crucial role in defining the functional features of these two groups of Hsp70. Generally, the linker of Hsp70 is quite small and varies in size from seven to thirteen residues. Due to its small size, any sequence variation that Hsp70 exhibits in this motif has a major and unique influence on the function of the protein. Based on sequence data, we observed that canonical Hsp70s possess a linker that is distinct from similar segments present in Hsp110 proteins. In addition, Hsp110 linker motifs from various genera are distinct suggesting that their unique features regulate the flexibility with which the NBD and SBD of these proteins communicate via allostery. The Hsp70 linker modulates various structure-function features of Hsp70 such as its global conformation, affinity for peptide substrate and interaction with co-chaperones. The current review discusses how the unique features of the Hsp70 linker accounts for the functional specialization of this group of molecular chaperones.
Collapse
|
22
|
Silva NSM, Bertolino-Reis DE, Dores-Silva PR, Anneta FB, Seraphim TV, Barbosa LRS, Borges JC. Structural studies of the Hsp70/Hsp90 organizing protein of Plasmodium falciparum and its modulation of Hsp70 and Hsp90 ATPase activities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140282. [PMID: 31525467 DOI: 10.1016/j.bbapap.2019.140282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70-1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Fátima B Anneta
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Thiago V Seraphim
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
23
|
Biophysical Reviews: promoting the African synchrotron facility, partnering with national biophysical societies, highlighting advances in structural biology. Biophys Rev 2019; 11:495-497. [PMID: 31338694 DOI: 10.1007/s12551-019-00577-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
|