1
|
Gad B, Kłosiewicz P, Oleksiak K, Krzysztoszek A, Toczyłowski K, Sulik A, Wieczorek T, Wieczorek M. Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses 2024; 16:1011. [PMID: 39066174 PMCID: PMC11281687 DOI: 10.3390/v16071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
After the first phase of the COVID-19 pandemic in Europe, a new highly pathogenic variant of echovirus 11 (E11) was detected. The aim of this study was to analyze the genetic diversity of Polish E11 environmental and clinical strains circulating between 2017 and 2023 as well as compare them with E11 strains isolated from severe neonatal sepsis cases reported in Europe between 2022 and 2023. Additionally, the study explores the effectiveness of environmental monitoring in tracking the spread of new variants. For this purpose, the complete sequences of the VP1 capsid protein gene were determined for 266 E11 strains isolated in Poland from 2017 to 2023, and phylogenetic analysis was performed. In the years 2017-2023, a significant increase in the detection of E11 strains was observed in both environmental and clinical samples in Poland. The Polish E11 strains represented three different genotypes, C3, D5 and E, and were characterized by a high diversity. In Poland, the intensive circulation of the new variant E11, responsible for severe neonatal infections with a high mortality in Europe, was detected in the years 2022-2023. This investigation demonstrates the important role of environmental surveillance in the tracking of enteroviruses circulation, especially in settings with limited clinical surveillance.
Collapse
Affiliation(s)
- Beata Gad
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Paulina Kłosiewicz
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Kinga Oleksiak
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (K.T.); (A.S.)
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (K.T.); (A.S.)
| | - Tobiasz Wieczorek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| |
Collapse
|
2
|
Hashemi SY, Shahmahmoodi S, Hadi M, Nodehi RN, Alimohammadi M, Nejati A, Mesdaghinia A. Quantitative microbial risk assessment of enteroviruses in raw-eatable vegetables irrigated by wastewater: examining different scenarios of washing. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:629-640. [PMID: 36406612 PMCID: PMC9672215 DOI: 10.1007/s40201-022-00789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/01/2022] [Indexed: 06/16/2023]
Abstract
Due to the increasing water crisis, the reuse of wastewater deserves attention as a method to reduce the pressure of the water crisis, especially in developing countries. The application of health risk assessment models is a way to estimate disease burdens associated with crop irrigation by wastewater effluents. In this study, a quantitative microbial risk assessment (QMRA) with probabilistic Monte-Carlo simulation was used to estimate the annual risk of enteroviruses (EVs) infection and disease burden for consumers of effluent-irrigated raw vegetables in Tehran, the capital of Iran. Wastewater effluent samples were collected over two seasons: summer and winter. EVs were analyzed in three stages, concentration and separation, cell culture, and real-time PCR (RT-PCR). A questionnaire was used to determine the dominant patterns of vegetable washing by consumers. There were 4 vegetable washing steps: wiping away mud (A), rinsing (B), using detergents (C), using disinfectants (D). 5 patterns of washing were examined in the laboratory and the concentration of enteroviruses was measured in every pattern. pattern 1: just wiping away mud (A), pattern 2: wiping away mud and rinsing (AB), pattern 3: wiping away mud by using detergents and rinsing (ABCB), pattern 4: wiping away mud by using disinfectants and rinsing (ABDB), and pattern 5: wiping away mud by using detergents and disinfectants and rinsing (ABCBDB). For washing pattern 1, pattern 2, and pattern 3, the estimated annual infection risk of EVs was estimated to be 5.6 × 10-1, 3.6 × 10-1, 1.7 × 10-1 (risk/per.day), and burden of disease was calculated as 3 × 10-2, 2 × 10-2, and 9 × 10-3 (burden/year), respectively. The results showed that if vegetables are washed according to method 5, the microbial risk will be minimized and the excess prevalence of viral infections will be eliminated.
Collapse
Affiliation(s)
- Seyed Yaser Hashemi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
4
|
Rueca M, Lanini S, Giombini E, Messina F, Castilletti C, Ippolito G, Capobianchi MR, Valli MB. Detection of recombinant breakpoint in the genome of human enterovirus E11 strain associated with a fatal nosocomial outbreak. Virol J 2022; 19:97. [PMID: 35659257 PMCID: PMC9166486 DOI: 10.1186/s12985-022-01821-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the genome of a recombinant Enterovirus associated with severe and fatal nosocomial infection; it was typed as Echovirus 11 (E-11) according to the VP1 gene. Enterovirus infection is generally asymptomatic and self-limited, but occasionally it may progress to a more severe clinical manifestation, as in the case described here. Recombination plays a crucial role in the evolution of Enteroviruses (EVs) and has been recognized as the main driving force behind the emergence of epidemic strains associated with severe infection. Therefore, it is of utmost importance to monitor the circulation of recombinant strains for surveillance purposes. METHODS Enterovirus-RNA was detected in the serum and liver biopsy of patients involved in the nosocomial cluster by commercial One-Step qRT-PCR method and the Enterovirus strains were isolated in vitro. The EVs typing was determined by analyzing the partial-length of the 5'UTR and VP1 sequences with the web-based open-access Enterovirus Genotyping Tool Version 0.1. The amplicons targeting 5'UTR, VP1 and overlapping fragments of the entire genome were sequenced with the Sanger method. Phylogenetic analysis was performed comparing the VP1 and the full-genome sequences of our strains against an appropriate reference set of Enterovirus prototypes of the Picornaviridae genera and species retrieved from the Enterovirus Genotyping Tool. Recombination analysis was performed using RDP4 software. RESULTS The Neighbor-Joining tree of the VP1 gene revealed that the 4 patients were infected with an identical molecular variant of Echovirus 11 (E-11). While the phylogenetic and the RDP4 analysis of the full-genome sequences provided evidence that it was a chimeric strain between an E-11 and a Coxsackievirus B (CV-B). CONCLUSIONS The chimeric structure of the E-11 genome might have contributed to the severe infection and epidemic feature of the strain, but further biological characterizations are needed. The evidence reported in this study, highlights the limit of typing techniques based on the VP1 gene, as they fail to identify the emergence of recombinant strains with potentially more pathogenic or epidemic properties, thus providing only partial information on the epidemiology and pathogenesis of Enteroviruses.
Collapse
Affiliation(s)
- Martina Rueca
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Simone Lanini
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.
| | - Francesco Messina
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | | | | |
Collapse
|
5
|
Cheng W, Ji T, Zhou S, Shi Y, Jiang L, Zhang Y, Yan D, Yang Q, Song Y, Cai R, Xu W. Molecular epidemiological characteristics of echovirus 6 in mainland China: extensive circulation of genotype F from 2007 to 2018. Arch Virol 2021; 166:1305-1312. [PMID: 33638089 PMCID: PMC8036204 DOI: 10.1007/s00705-020-04934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Echovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.
Collapse
Affiliation(s)
- Wenjun Cheng
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuaifeng Zhou
- Hunan Provincial Centers for Disease Control and Prevention, Changsha, People's Republic of China
| | - Yong Shi
- Jiangxi Provincial Centers for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Lili Jiang
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, People's Republic of China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ru Cai
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
| | - Wenbo Xu
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Tsang JOL, Zhou J, Zhao X, Li C, Zou Z, Yin F, Yuan S, Yeung ML, Chu H, Chan JFW. Development of Three-Dimensional Human Intestinal Organoids as a Physiologically Relevant Model for Characterizing the Viral Replication Kinetics and Antiviral Susceptibility of Enteroviruses. Biomedicines 2021; 9:88. [PMID: 33477611 PMCID: PMC7831294 DOI: 10.3390/biomedicines9010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses are important causes of hand, foot, and mouth disease, respiratory infections, and neurological infections in human. A major hurdle for the development of anti-enterovirus agents is the lack of physiologically relevant evaluation platforms that closely correlate with the in vivo state. We established the human small intestinal organoids as a novel platform for characterizing the viral replication kinetics and evaluating candidate antivirals for enteroviruses. The organoids supported productive replication of enterovirus (EV)-A71, coxsackievirus B2, and poliovirus type 3, as evidenced by increasing viral loads, infectious virus titers, and the presence of cytopathic effects. In contrast, EV-D68, which mainly causes respiratory tract infection in humans, did not replicate significantly in the organoids. The differential expression profiles of the receptors for these enteroviruses correlated with their replication kinetics. Using itraconazole as control, we showed that the results of various antiviral assays, including viral load reduction, plaque reduction, and cytopathic effect inhibition assays, were highly reproducible in the organoids. Moreover, itraconazole attenuated virus-induced inflammatory response in the organoids, which helped to explain its antiviral effects and mechanism. Collectively, these data showed that the human small intestinal organoids may serve as a robust platform for investigating the pathogenesis and evaluating antivirals for enteroviruses.
Collapse
Affiliation(s)
- Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Cun Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Feifei Yin
- Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.O.-L.T.); (J.Z.); (X.Z.); (C.L.); (Z.Z.); (S.Y.); (M.-L.Y.); (H.C.)
- Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
7
|
Environmental Surveillance through Next-Generation Sequencing to Unveil the Diversity of Human Enteroviruses beyond the Reported Clinical Cases. Viruses 2021; 13:v13010120. [PMID: 33477302 PMCID: PMC7829892 DOI: 10.3390/v13010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The knowledge about circulation of Human Enteroviruses (EVs) obtained through medical diagnosis in Argentina is scarce. Wastewater samples monthly collected in Córdoba, Argentina during 2011-2012, and then in 2017-2018 were retrospectively studied to assess the diversity of EVs in the community. Partial VP1 gene was amplified by PCR from wastewater concentrates, and amplicons were subject of next-generation sequencing and genetic analyses. There were 41 EVs detected, from which ~50% had not been previously reported in Argentina. Most of the characterized EVs (60%) were detected at both sampling periods, with similar values of intratype nucleotide diversity. Exceptions were enterovirus A71, coxsackievirus B4, echovirus 14, and echovirus 30, which diversified in 2017-2018. There was a predominance of types from EV-C in 2017-2018, evidencing a common circulation of these types throughout the year in the community. Interestingly, high genetic similarity was evidenced among environmental strains of echovirus 30 circulating in 2011-2012 and co-temporal isolates obtained from patients suffering aseptic meningitis in different locations of Argentina. This study provides an updated insight about EVs circulating in an important region of South America, and suggests a valuable role of wastewater-based epidemiology in predicting outbreaks before the onset of cases in the community.
Collapse
|
8
|
Enteroviruses from Humans and Great Apes in the Republic of Congo: Recombination within Enterovirus C Serotypes. Microorganisms 2020; 8:microorganisms8111779. [PMID: 33202777 PMCID: PMC7709013 DOI: 10.3390/microorganisms8111779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Enteroviruses (EVs) are viruses of the family Picornaviridae that cause mild to severe infections in humans and in several animal species, including non-human primates (NHPs). We conducted a survey and characterization of enteroviruses circulating between humans and great apes in the Congo. Fecal samples (N = 24) of gorillas and chimpanzees living close to or distant from humans in three Congolese parks were collected, as well as from healthy humans (N = 38) living around and within these parks. Enteroviruses were detected in 29.4% of gorilla and 13.15% of human feces, including wild and human-habituated gorillas, local humans and eco-guards. Two identical strains were isolated from two humans coming from two remote regions. Their genomes were similar and all genes showed their close similarity to coxsackieviruses, except for the 3C, 3D and 5′-UTR regions, where they were most similar to poliovirus 1 and 2, suggesting recombination. Recombination events were found between these strains, poliovirus 1 and 2 and EV-C99. It is possible that the same EV-C species circulated in both humans and apes in different regions in the Congo, which must be confirmed in other investigations. In addition, other studies are needed to further investigate the circulation and genetic diversity of enteroviruses in the great ape population, to draw a definitive conclusion on the different species and types of enteroviruses circulating in the Republic of Congo.
Collapse
|
9
|
Kuryk L, Bertinato L, Staniszewska M, Pancer K, Wieczorek M, Salmaso S, Caliceti P, Garofalo M. From Conventional Therapies to Immunotherapy: Melanoma Treatment in Review. Cancers (Basel) 2020; 12:cancers12103057. [PMID: 33092131 PMCID: PMC7589099 DOI: 10.3390/cancers12103057] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Here, we review the current state of knowledge in the field of cancer immunotherapy, focusing on the scientific rationale for the use of oncolytic viruses, checkpoint inhibitors and their combination to combat melanomas. Attention is also given to the immunological aspects of cancer therapy and the shift from conventional therapy towards immunotherapy. This review brings together information on how immunotherapy can be applied to support other cancer therapies in order to maximize the efficacy of melanoma treatment and improve clinical outcomes. Abstract In this review, we discuss the use of oncolytic viruses and checkpoint inhibitors in cancer immunotherapy in melanoma, with a particular focus on combinatory therapies. Oncolytic viruses are promising and novel anti-cancer agents, currently under investigation in many clinical trials both as monotherapy and in combination with other therapeutics. They have shown the ability to exhibit synergistic anticancer activity with checkpoint inhibitors, chemotherapy, radiotherapy. A coupling between oncolytic viruses and checkpoint inhibitors is a well-accepted strategy for future cancer therapies. However, eradicating advanced cancers and tailoring the immune response for complete tumor clearance is an ongoing problem. Despite current advances in cancer research, monotherapy has shown limited efficacy against solid tumors. Therefore, current improvements in virus targeting, genetic modification, enhanced immunogenicity, improved oncolytic properties and combination strategies have a potential to widen the applications of immuno-oncology (IO) in cancer treatment. Here, we summarize the strategy of combinatory therapy with an oncolytic vector to combat melanoma and highlight the need to optimize current practices and improve clinical outcomes.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (K.P.); (M.W.)
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland
- Correspondence: (L.K.); (M.G.)
| | - Laura Bertinato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (L.B.); (S.S.); (P.C.)
| | - Monika Staniszewska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (K.P.); (M.W.)
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (K.P.); (M.W.)
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (L.B.); (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (L.B.); (S.S.); (P.C.)
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (L.B.); (S.S.); (P.C.)
- Correspondence: (L.K.); (M.G.)
| |
Collapse
|
10
|
Monge S, Benschop K, Soetens L, Pijnacker R, Hahné S, Wallinga J, Duizer E. Echovirus type 6 transmission clusters and the role of environmental surveillance in early warning, the Netherlands, 2007 to 2016. ACTA ACUST UNITED AC 2019; 23. [PMID: 30424830 PMCID: PMC6234528 DOI: 10.2807/1560-7917.es.2018.23.45.1800288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background In the Netherlands, echovirus type 6 (E6) is identified through clinical and environmental enterovirus surveillance (CEVS and EEVS). Aim We aimed to identify E6 transmission clusters and to assess the role of EEVS in surveillance and early warning of E6. Methods We included all E6 strains from CEVS and EEVS from 2007 through 2016. CEVS samples were from patients with enterovirus illness. EEVS samples came from sewage water at pre-specified sampling points. E6 strains were defined by partial VP1 sequence, month and 4-digit postcode. Phylogenetic E6 clusters were detected using pairwise genetic distances. We identified transmission clusters using a combined pairwise distance in time, place and phylogeny dimensions. Results E6 was identified in 157 of 3,506 CEVS clinical episodes and 92 of 1,067 EEVS samples. Increased E6 circulation was observed in 2009 and from 2014 onwards. Eight phylogenetic clusters were identified; five included both CEVS and EEVS strains. Among these, identification in EEVS did not consistently precede CEVS. One phylogenetic cluster was dominant until 2014, but genetic diversity increased thereafter. Of 14 identified transmission clusters, six included both EEVS and CEVS; in two of them, EEVS identification preceded CEVS identification. Transmission clusters were consistent with phylogenetic clusters, and with previous outbreak reports. Conclusion Algorithms using combined time–place–phylogeny data allowed identification of clusters not detected by any of these variables alone. EEVS identified strains circulating in the population, but EEVS samples did not systematically precede clinical case surveillance, limiting EEVS usefulness for early warning in a context where E6 is endemic.
Collapse
Affiliation(s)
- Susana Monge
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kimberley Benschop
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Loes Soetens
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Susan Hahné
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jacco Wallinga
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erwin Duizer
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
11
|
Environmental Surveillance for Poliovirus and Other Enteroviruses: Long-Term Experience in Moscow, Russian Federation, 2004⁻2017. Viruses 2019; 11:v11050424. [PMID: 31072058 PMCID: PMC6563241 DOI: 10.3390/v11050424] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Polio and enterovirus surveillance may include a number of approaches, including incidence-based observation, a sentinel physician system, environmental monitoring and acute flaccid paralysis (AFP) surveillance. The relative value of these methods is widely debated. Here we summarized the results of 14 years of environmental surveillance at four sewage treatment plants of various capacities in Moscow, Russia. A total of 5450 samples were screened, yielding 1089 (20.0%) positive samples. There were 1168 viruses isolated including types 1–3 polioviruses (43%) and 29 different types of non-polio enteroviruses (51%). Despite using the same methodology, a significant variation in detection rates was observed between the treatment plants and within the same facility over time. The number of poliovirus isolates obtained from sewage was roughly 60 times higher than from AFP surveillance over the same time frame. All except one poliovirus isolate were Sabin-like polioviruses. The one isolate was vaccine-derived poliovirus type 2 with 17.6% difference from the corresponding Sabin strain, suggesting long-term circulation outside the scope of the surveillance. For some non-polio enterovirus types (e.g., Echovirus 6) there was a good correlation between detection in sewage and incidence of clinical cases in a given year, while other types (e.g., Echovirus 30) could cause large outbreaks and be almost absent in sewage samples. Therefore, sewage monitoring can be an important part of enterovirus surveillance, but cannot substitute other approaches.
Collapse
|
12
|
Lizasoain A, Burlandy FM, Victoria M, Tort LFL, da Silva EE, Colina R. An Environmental Surveillance in Uruguay Reveals the Presence of Highly Divergent Types of Human Enterovirus Species C and a High Frequency of Species A and B Types. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:343-352. [PMID: 29907902 DOI: 10.1007/s12560-018-9351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Information about Human Enterovirus circulation in Uruguay is scarce. The aim of this study was to generate the first description about their circulation in the country through the study of sewage samples collected before and after the switch from Oral Poliovirus Vaccine to Inactivated Poliovirus Vaccine. Viruses were concentrated by an adsorption-elution to a negatively charged membrane, and real-time quantitative PCR and qualitative PCR methods were used to detect, quantify, and characterize enteroviruses. Positive samples were inoculated in RD cells and two passages were performed. Additionally, RD+ samples were subsequently passed onto L20B cells. Human Enteroviruses were detected in 67.6% of the samples, with concentrations between 4.9 and 6.6 Log10 genomic copies per liter. 10% of positive samples replicated in RD cells, of which none in L20B cells. Molecular characterization of Human Enterovirus strains directly detected from sewage sample concentrates allowed the identification of highly divergent members of species C such as Enterovirus C99 and Coxsackievirus A13, as well as the frequent detection of species A and B members (particularly Coxsackievirus A16 and Echovirus 6, respectively). Other detected types were Coxsackievirus A2, A22, B1, B5, Echovirus 5, and 9. The characterization of viruses isolated in cell culture revealed the presence of Echovirus 6 and Coxsackievirus B3. Despite the absence of poliovirus, a wide circulation of different enterovirus types was evidenced in Uruguayan sewage samples, highlighting that the local populations are exposed to different kinds of diseases originated by several human enterovirus.
Collapse
Affiliation(s)
- Andrés Lizasoain
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Fernanda M Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Luis F López Tort
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Edson E da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
13
|
Pennino F, Nardone A, Montuori P, Aurino S, Torre I, Battistone A, Delogu R, Buttinelli G, Fiore S, Amato C, Triassi M. Large-Scale Survey of Human Enteroviruses in Wastewater Treatment Plants of a Metropolitan Area of Southern Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:187-192. [PMID: 29248990 DOI: 10.1007/s12560-017-9331-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Human enteroviruses (HEVs) occur in high concentrations in wastewater and can contaminate receiving environmental waters, constituting a major cause of acute waterborne disease worldwide. In this study, we investigated the relative abundance, occurrence, and seasonal distribution of polio and other enteroviruses at three wastewater treatment plants (WWTPs) in Naples, Southern Italy, from January 2010 to December 2014. Influent and effluent samples from the three WWTPs were collected monthly. One hundred and sixty-one of the 731 wastewater samples collected (22.0%) before and after water treatment were CPE positive on RD cells; while no samples were positive on L20B cells from any WWTPs. Among the 140 non-polio enterovirus isolated from inlet sewage, 69.3% were Coxsackieviruses type B and 30.7% were Echoviruses. Among these, CVB3 and CVB5 were most prevalent, followed by CVB4 and Echo6. The twenty-one samples tested after treatment contained 6 CVB4, 5 CVB3, 3 Echo11, and 2 Echo6; while other serotypes were isolated less frequently. Data on viral detection in treated effluents of WWTPs confirmed the potential environmental contamination by HEVs and could be useful to establish standards for policies on wastewater management.
Collapse
Affiliation(s)
- Francesca Pennino
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Ida Torre
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Andrea Battistone
- National Center for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Delogu
- National Center for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Concetta Amato
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| |
Collapse
|
14
|
Duintjer Tebbens RJ, Zimmermann M, Pallansch M, Thompson KM. Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:361-382. [PMID: 28687986 PMCID: PMC7879701 DOI: 10.1007/s12560-017-9314-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.
Collapse
Affiliation(s)
| | - Marita Zimmermann
- Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832
- Correspondence to: Radboud J. Duintjer Tebbens, Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832, USA,
| | - Mark Pallansch
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30333
| | | |
Collapse
|
15
|
Kaundal N, Sarkate P, Prakash C, Rishi N. Environmental surveillance of polioviruses with special reference to L20B cell line. Virusdisease 2017; 28:383-389. [PMID: 29291229 DOI: 10.1007/s13337-017-0409-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022] Open
Abstract
With the eradication of poliovirus, the focus has now shifted to environmental surveillance of poliovirus to determine the circulating polioviruses in an area. L20B and RD cell lines are used for isolation of polioviruses. It is imperative to study the efficacy of these cell line in isolating polioviruses from environmental samples. The present study was carried out to determine the sensitivity and specificity of L20B cell line for isolation of polioviruses from environmental samples. L20B and RD cell lines are used for isolation of polioviruses. Molecular characterization was done by using real time RT-PCR. A total of 432 sewage samples from Delhi and Punjab were processed for the isolation of polioviruses during Jan-Dec 2015. 96.76% of the samples were positive in either of the cell lines. Non-polio enteroviruses were obtained in 50 samples on primary isolation. On RT-PCR, 347 (94.29%) samples yielded polioviruses and the rest (21) non-polio enteroviruses or non-enteroviruses. A total of 703 isolates were obtained. 635 isolates were found polioviruses by PCR (90.33%), 20 isolates were found to be NPEV (2.84%) and 48 (6.83%) were found to be NEV. Out of the 20 NPEV isolates, 14 were from RLR (RD-L20B-RD) route and six isolates were from LR (L20B-RD) route. All 48 NEV isolates were from LR route. Thus L20B cell line is more sensitive as compared to RD cell line for isolation of polioviruses however it is not absolutely specific for polioviruses.
Collapse
Affiliation(s)
- Nirmal Kaundal
- Virology-1 Laboratory, Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Civil Lines, Delhi 110054 India
| | - Purva Sarkate
- Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Civil Lines, Delhi 110054 India
| | - Charu Prakash
- Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Civil Lines, Delhi 110054 India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Distt. Gautam Budha Nagar, Noida, 201313 India
| |
Collapse
|
16
|
Moazeni M, Nikaeen M, Hadi M, Moghim S, Mouhebat L, Hatamzadeh M, Hassanzadeh A. Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. WATER RESEARCH 2017; 125:104-113. [PMID: 28841422 DOI: 10.1016/j.watres.2017.08.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/08/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Agricultural reuse of wastewater is a common practice worldwide, especially in arid and semiarid area due to the freshwater scarcity. Wastewater irrigation in the Middle East, one of the most water-stressed regions in the world, could be a key factor for socio-economic development, but the microbial contamination of untreated or partially treated wastewater is a serious public health concern. Potential transmission of enteric viral infections through wastewater reuse in agricultural activities represents a true health risk for exposed individuals. Accordingly, it is important to assess the health risks associated with wastewater reuse. A quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation was used to estimate the annual risk of enterovirus (EV) infection and disease burden for farmers and consumers of wastewater-irrigated lettuce in Iran, a semiarid country in the Middle East region. Risk analysis was performed based on the measured concentrations of EV in effluent of two activated sludge wastewater treatment plants (WWTP). Wastewater effluent sampling was carried out over a nine-month period, and the presence of total and fecal coliforms and EV was determined. Fecal coliform bacteria were found at a high level exceeded the guideline limit for wastewater reuse in agriculture. EVs were detected in 40% of samples with the highest frequency in summer with a mean of 12 and 16 pfu/ml for WWTP-A and B, respectively. Statistical analysis showed no correlation between the concentration of fecal coliforms and EV. The estimated infection risk for EVs was 8.8 × 10-1 and 8.2 × 10-1 per person per year (pppy) for farmers of WWTP-A and -B, respectively which was about 2 log higher than the tolerable infection risk of 2 × 10-3 pppy. The estimated risk for lettuce consumers exhibited a lower level of infection and disease burden but higher than the guideline limits. The median disease burden for consumption of lettuce irrigated with activated sludge effluents was about 10-3 Disability Adjusted Life Years (DALY) pppy which exceeded the WHO guideline threshold of 10-4 DALY pppy. The results of study indicated that the activated sludge effluents require an additional reduction of EVs to achieve the acceptable level of risk for agricultural reuse of wastewater.
Collapse
Affiliation(s)
- Malihe Moazeni
- Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leili Mouhebat
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hassanzadeh
- Department of Statistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Pellegrinelli L, Bubba L, Primache V, Pariani E, Battistone A, Delogu R, Fiore S, Binda S. Surveillance of poliomyelitis in Northern Italy: Results of acute flaccid paralysis surveillance and environmental surveillance, 2012-2015. Hum Vaccin Immunother 2017; 13:332-338. [PMID: 27929744 PMCID: PMC5328214 DOI: 10.1080/21645515.2017.1264726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although in the last years poliovirus (PV) transmission has been reported at the lowest levels ever recorded, the spread of virus from endemic countries endures; the high levels of immigration flows across the Mediterranean Sea jeopardize Italy for PV reintroduction. The World Health Organization (WHO) strategic plan for global poliomyelitis (polio) eradication indicates the nationwide surveillance of Acute Flaccid Paralysis (AFP) as the gold standard for detecting cases of polio. In addition, the Environmental Surveillance (ES), seeking the presence of PV and Non-Polio Enterovirus (NPEV) in sewage, is recognized as a powerful tool to confirm PV circulation in absence of AFP cases, especially in polio-free countries. Here we report the results of AFP surveillance (AFPS) and ES in Lombardy (Northern Italy) from 2012 to 2015. Forty-eight AFP cases were identified during the study period. No AFP case was caused by PV infection. NPEVs were identified in 6.3% (3/48) of AFP cases. The annual AFP incidence rate was 0.87/100'000 children <15 y in 2012, 1.42/100'000 in 2013, 1.02/100'000 in 2014, and 0.47/100'000 in 2015; according to WHO indicators, the sensitivity of AFPS was adequate in 2013 and 2014. Completeness of case investigation raised progressively during the study period to achieve the WHO standards in 2014 (92.3%) and 2015 (100%). Completeness of follow-up increased from 72.7% in 2012 to 100% in 2014. In the framework of the ES conducted in Milan, 268 wastewater samples were collected from 2012 to 2015 and no PVs were isolated. In contrast, NPEVs were detected in 65.3% (175/268) of samples. All NPEVs characterized belonged to enterovirus species B: echovirus type 11, 6 and 3 were the most frequently detected viruses, representing 29.1% (41/141), 20.6% (29/141) and 9.2% (13/141) of genotyped NPEVs, respectively. Keeping strong and encouraging both AFPS and ES is crucial to ensure that PV will not return unnoticed in Italy - as well as in other polio-free countries - and, as a final point, to achieve the global polio eradication goal.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Bubba
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valeria Primache
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Battistone
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Figas A, Wieczorek M, Litwińska B, Gut W. Detection of Polioviruses in Sewage Using Cell Culture and Molecular Methods. Pol J Microbiol 2017; 65:479-483. [PMID: 28735334 DOI: 10.5604/17331331.1227676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The work presented here demonstrates the utility of a two-step algorithm for environmental poliovirus surveillance based on: preselection of sewage samples tested for the presence of enteroviral genetic material-RT-PCR assay and detection of infectious viruses by cell culture technique (L20B for polioviruses and RD for polio and other non-polio enteroviruses). RD and L20B cell lines were tested to determine their sensitivity for isolation of viruses from environmental samples (sewage). Finally, we wanted to determine if sewage concentration affects the results obtained for RT-PCR and cell cultures.
Collapse
Affiliation(s)
- Agnieszka Figas
- National Institute of Public Health - National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Magdalena Wieczorek
- National Institute of Public Health - National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Bogumiła Litwińska
- National Institute of Public Health - National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Włodzimierz Gut
- National Institute of Public Health - National Institute of Hygiene, Department of Virology, Warsaw, Poland
| |
Collapse
|
19
|
Wieczorek M, Krzysztoszek A. Molecular Characterization of Enteroviruses Isolated from Acute Flaccid Paralysis Cases in Poland, 1999–2014. Pol J Microbiol 2016; 65:443-450. [DOI: 10.5604/17331331.1227670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enteroviruses (EVs) are among viral pathogens that can cause acute flaccid paralysis (AFP). This study represents an overview of EVs isolated through AFP surveillance in Poland between 1999 and 2014. The presence of enteroviruses was studied in stool samples that were collected from 747 AFP cases and their asymptomatic contacts. Fifty five (6.12%) cases of AFP were associated with enterovirus isolation. Out of the 55 positive cases, 40 were associated with detection of enterovirus in patient, and 15 with detection of EV in healthy contact, without positive detection in paralytic patient. Polioviruses were isolated from 35 AFP cases. The results of this study showed that about 43.6% of positive AFP cases were found in association with the isolation of non-polio enteroviruses (NPEV). A total of 12 different types of the species B were detected (CVA9, CVB1, CVB3, CVB4, CVB5, E3, E4, E9, E11, E13, E30), and one additional isolate represented the species enterovirus A (EV71). Among the 12 serotypes of species B, CVB3 and CVB5 were more frequently detected than others, representing 40% of the characterized isolates, followed by CVB4 (16%), E4 (8%), and E11(8%). Phylogenetic analysis revealed that strains from Poland had the closest genetic relationship with isolates previously identified in Europe (France, Finland, Denmark, Moldova) but also in other parts of the world (Tunisia, China, USA), suggesting wide distribution of these lineages. The paper provides information about NPEV circulation in Poland in the past 16 years, about its association with the AFP and it indicates the need for monitoring NPEV circulation even after the eradication of poliomyelitis.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- National Institute of Public Health – National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Arleta Krzysztoszek
- National Institute of Public Health – National Institute of Hygiene, Department of Virology, Warsaw, Poland
| |
Collapse
|
20
|
Wieczorek M, Krzysztoszek A, Ciąćka A, Figas A. Molecular characterization of environmental and clinical echovirus 6 isolates from Poland, 2006-2014. J Med Virol 2016; 89:936-940. [PMID: 27736044 DOI: 10.1002/jmv.24709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate the genetic variability of echovirus 6 (E6) isolates from environmental samples and clinical cases of aseptic meningitis from 2006 to 2014. The analysis of the VP1 region showed the extensive diversity (up to 18.8%) and revealed that E6 circulating in Poland belong to four groups. Environmental strains clustered in three groups excepting the 2012 outbreak group, which shows the sudden introduction of new epidemic variant with Asiatic origin. Data from the study established relationships of E6 from Poland with previously characterized strains and confirmed the importance of both clinical and environmental surveillance. J. Med. Virol. 89:936-940, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Ciąćka
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Figas
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|