1
|
Quan J, Zhang C, Chen X, Cai X, Luo X. Lipid droplet - organelle crosstalk and its implication in cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 197:11-20. [PMID: 40381741 DOI: 10.1016/j.pbiomolbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Lipid droplets (LDs) store lipids in cells, provide phospholipids for membrane synthesis, and maintain the intracellular balance of energy and lipid metabolism. Undoubtedly, the crosstalk between LDs and other organelles is the foundation for performing functions. Many studies indicate that LDs promote tumor progression. LD accumulation has been observed in a variety of cancers, and high LD content is associated with malignant phenotype and poor prognosis of cancers. In this paper, we summarized the intimate crosstalk between LDs and intracellular organelles, including endoplasmic reticulum (ER), mitochondria, lysosomes and peroxisomes, and addressed the effects of LD-organelle crosstalk on cancer initiation and progression. We also integrated the changes of LD-organelle interactions in cancers to provide an insightful knowledge for cancer therapeutics.
Collapse
Affiliation(s)
- Jing Quan
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Chunhong Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Xinfei Cai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
2
|
Liao J, Shao M, Zhou Z, Wang S, Lv Y, Lu Y, Yao F, Li W, Yang L. Correlation of organelle interactions in the development of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1567743. [PMID: 40308615 PMCID: PMC12040704 DOI: 10.3389/fimmu.2025.1567743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Organelles, despite having distinct functions, interact with each other. Interactions between organelles typically occur at membrane contact sites (MCSs) to maintain cellular homeostasis, allowing the exchange of metabolites and other pieces of information required for normal cellular physiology. Imbalances in organelle interactions may lead to various pathological processes. Increasing evidence suggests that abnormalorganelle interactions contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the key role of organelle interactions in NAFLD has not been fully evaluated and researched. In this review, we summarize the role of organelle interactions in NAFLD and emphasize their correlation with cellular calcium homeostasis, lipid transport, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Jiabao Liao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Mengqiu Shao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ze Zhou
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - You Lv
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanming Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fang Yao
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wenting Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ling Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Sa R, Zhang F, Zhang X, Gao W, Zhang Y, Gan J, Hou S, Gui L. Effects of different Lys/Met ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep on low-protein diets: a lipidomic analysis. Front Vet Sci 2025; 11:1528331. [PMID: 39949758 PMCID: PMC11824274 DOI: 10.3389/fvets.2024.1528331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This study employed lipidomics to investigate the effects of varying lysine (Lys)- to-methionine (Met) ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep fed a low-protein diet. Methods Ninety healthy male Tibetan sheep of similar body weight were randomly allocated into three groups. These sheep were fed a low-protein diet containing Lys/Met ratios of 1:1, 2:1, and 3:1. Ultra-High Performance Liquid Chromatography-tandem Mass Spectrometry (UHPLC-MS/MS) was employed to explore the changes in various lipid subclasses in subcutaneous adipose tissue. The expression of genes associated with adipogenesis, antioxidant capacity, and fatty acid metabolism was also examined. Results The results indicated that the 1:1 Lys/Met group exhibited significantly higher antioxidant capacity (glutathione peroxidase, GSH-Px), with more orderly adipocyte arrangement, uniform cell size, and a general increase in unsaturated fatty acid levels. Additionally, several lipid molecules associated with the phenotype (Antioxidant index and fatty acid content) were identified, namely, DG(38:3e) + Na, PE(17:1_22:2)-H, PI(17:0_20:3)-H, TG(33:0e) + NH4, Cer(d14:0_17:1) + H, and CL(81:13)-2H. Furthermore, the findings showed that the upregulation of PPARγ, FASN, FAD4, CPT1A, and GPX4 can enhance adipocyte differentiation and lipid accumulation, thereby improving metabolic function in subcutaneous adipose tissue via the regulation of lipid metabolism and oxidative defense mechanisms. Discussion In summary, this study provides a theoretical foundation for optimizing precision feeding strategies for Tibetan sheep, offering crucial data to support enhancements in production efficiency and meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
4
|
Tian M, Wang Z, Zhang Q, Wu X, Guo L, Zheng G. Intramolecular Charge Transfer Inhibition Strategy toward a Desired Solvatochromic Fluorescent Platform: Visualization of Duple Organelles and Detection of Carbon Dioxide. Anal Chem 2024; 96:17290-17299. [PMID: 39424295 DOI: 10.1021/acs.analchem.4c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Solvatochromic fluorescent probes are crucial molecular tools to investigate and aggregate proteins' fold, visualize fine structures in biomembranes, and label different organelles in dual emission colors. However, solvatochromic fluorogens often displayed a weak emission at high polarity, hindering their bioimaging applications. To resolve this problem, herein, we propose an intramolecular charge transfer (ICT) inhibition strategy. The probe was designed with a single electronic donor and two acceptors in order to split and inhibit the ICT procedure. As a result, the probe displayed an intense emission at both low and high polarities and showed a large emission shift (84 nm) upon polarity change. Using the probe, we successfully imaged lipid droplets and the endoplasmic reticulum in different fluorescence colors. Moreover, the different degrees of lipid accumulation by oleic acid, stearic acid, and cholesterol (oleic acid > stearic acid > cholesterol) have been revealed. The lipid accumulation induced by the three lipids could be rapidly consumed under lipid-less conditions, and the lipids with stearic acid were the most difficult to be consumed. The biological results could facilitate the understanding and treatment of lipid accumulation and obesity. Furthermore, utilizing the polarity increase of diethylamine after the reaction with CO2, the ratiometric detection of CO2 has been achieved for the first time with the probe.
Collapse
Affiliation(s)
- Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Qilong Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Xiaofen Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
5
|
Kim ES, Han JH, Olejar KJ, Park SH. Degeneration of oil bodies by rough endoplasmic reticulum -associated protein during seed germination in Cannabis sativa. AOB PLANTS 2023; 15:plad082. [PMID: 38094511 PMCID: PMC10718813 DOI: 10.1093/aobpla/plad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
Oil bodies serve as a vital energy source of embryos during germination and contribute to sustaining the initial growth of seedlings until photosynthesis initiation. Despite high stability in chemical properties, how oil bodies break down and go into the degradation process during germination is still unknown. This study provides a morphological understanding of the mobilization of stored compounds in the seed germination of Cannabis. The achenes of fibrous hemp cultivar (Cannabis sativa cv. 'Chungsam') were examined in this study using light microscopy, scanning electron microscopy and transmission electron microscopy. Oil bodies in Cannabis seeds appeared spherical and sporadically distributed in the cotyledonary cells. Protein bodies contained electron-dense globoid and heterogeneous protein matrices. During seed germination, rough endoplasmic reticulum (rER) and high electron-dense substances were present adjacent to the oil bodies. The border of the oil bodies became a dense cluster region and appeared as a sinuous outline. Later, irregular hyaline areas were distributed throughout oil bodies, showing the destabilized emulsification of oil bodies. Finally, the oil bodies lost their morphology and fused with each other. The storage proteins were concentrated in the centre of the protein body as a dense homogenous circular mass surrounded by a light heterogeneous area. Some storage proteins are considered emulsifying agents on the surface region of oil bodies, enabling them to remain stable and distinct within and outside cotyledon cells. At the early germination stage, rER appeared and dense substances aggregated adjacent to the oil bodies. Certain proteins were synthesized within the rER and then translocated into the oil bodies by crossing the half membrane of oil bodies. Our data suggest that rER-associated proteins function as enzymes to lyse the emulsifying proteins, thereby weakening the emulsifying agent on the surface of the oil bodies. This process plays a key role in the degeneration of oil bodies and induces coalescence during seed germination.
Collapse
Affiliation(s)
- Eun-Soo Kim
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Joon-Hee Han
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Kenneth J Olejar
- Department of Chemistry, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| |
Collapse
|
6
|
Lei N, Song H, Zeng L, Ji S, Meng X, Zhu X, Li X, Feng Q, Liu J, Mu J. Persistent Lipid Accumulation Leads to Persistent Exacerbation of Endoplasmic Reticulum Stress and Inflammation in Progressive NASH via the IRE1α/TRAF2 Complex. Molecules 2023; 28:3185. [PMID: 37049952 PMCID: PMC10095702 DOI: 10.3390/molecules28073185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a metabolic disorder that often leads to other severe liver diseases, yet treatment options are limited. Endoplasmic reticulum (ER) stress is an important pathogenetic mechanism of NASH and plays a key role in tandem steatosis as well as liver inflammation. This study aims to develop a progressive NASH model through sustained lipid accumulation and to elucidate its molecular mechanism through IRE1α/TRAF2 complex. Male SD rats were fed a high-fat diet (HFD) for 4, 8, and 12 weeks to induce progressive NASH. MRNA sequencing and PPI analysis were used to screen core genes. Transmission electron microscopy, immunofluorescence staining, ELISA, qRT-PCR, and Western blotting were used at each time point to compare differences between each index of progressive NASH at 4, 8, and 12 weeks. Sustained lipid accumulation led to structural disruption of the ER, a reduction in ER number, and an increase of lipid droplet aggregation in hepatocytes. Persistent lipid accumulation led to a persistent increase in mRNA and protein expression of the IRE1α/TRAF2 complex, IKK/IκB/NF-κB signaling pathway and ASK1/JNK1 signaling pathway, and TNF-α, IL-1β, and IL-6 also continued to increase. Persistent lipid accumulation led to a persistent exacerbation of ER stress and inflammation in progressive NASH via the IRE1α/TRAF2 complex.
Collapse
Affiliation(s)
- Na Lei
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Hongfei Song
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Ling Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China;
| | - Shaoxiu Ji
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiangbo Meng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiuying Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiuyan Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Jibin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Jie Mu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| |
Collapse
|
7
|
Smits A, Marei WFA, Moorkens K, Bols PEJ, De Neubourg D, Leroy JLMR. Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. Hum Reprod 2022; 37:2867-2884. [PMID: 36342870 DOI: 10.1093/humrep/deac226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Can diet normalization or a calorie-restricted diet for 2 or 4 weeks be used as a preconception care intervention (PCCI) in Western-type diet-induced obese Swiss mice to restore metabolic health and oocyte quality? SUMMARY ANSWER Metabolic health and oocyte developmental competence was already significantly improved in the calorie-restricted group after 2 weeks, while obese mice that underwent diet normalization showed improved metabolic health after 2 weeks and improved oocyte quality after 4 weeks. WHAT IS KNOWN ALREADY Maternal obesity is linked with reduced metabolic health and oocyte quality; therefore, infertile obese women are advised to lose weight before conception to increase pregnancy chances. However, as there are no univocal guidelines and the specific impact on oocyte quality is not known, strategically designed studies are needed to provide fundamental insights in the importance of the type and duration of the dietary weight loss strategy for preconception metabolic health and oocyte quality. STUDY DESIGN, SIZE, DURATION Outbred female Swiss mice were fed a control (CTRL) or high-fat/high-sugar (HF/HS) diet. After 7 weeks, some of the HF mice were put on two different PCCIs, resulting in four treatment groups: (i) only control diet for up to 11 weeks (CTRL_CTRL), (ii) only HF diet for up to 11 weeks (HF_HF), (iii) switch at 7 weeks from an HF to an ad libitum control diet (HF_CTRL) and (iv) switch at 7 weeks from an HF to a 30% calorie-restricted control diet (HF_CR) for 2 or 4 weeks. Metabolic health and oocyte quality were assessed at 2 and 4 weeks after the start of the intervention (n = 8 mice/treatment/time point). PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in body weight were recorded. To study the impact on metabolic health, serum insulin, glucose, triglycerides, total cholesterol and alanine aminotransferase concentrations were measured, and glucose tolerance and insulin sensitivity were analyzed at PCCI Weeks 2 and 4. The quality of in vivo matured oocytes was evaluated by assessing intracellular lipid droplet content, mitochondrial activity and localization of active mitochondria, mitochondrial ultrastructure, cumulus cell targeted gene expression and oocyte in vitro developmental competence. MAIN RESULTS AND THE ROLE OF CHANCE Significant negative effects of an HF/HS diet on metabolic health and oocyte quality were confirmed (P < 0.05). HF_CTRL mice already showed restored body weight, serum lipid profile and glucose tolerance, similar to the CTRL_CTRL group after only 2 weeks of PCCI (P < 0.05 compared with HF_HF) while insulin sensitivity was not improved. Oocyte lipid droplet volume was reduced at PCCI Week 2 (P < 0.05 compared with HF_HF), while mitochondrial localization and activity were still aberrant. At PCCI Week 4, oocytes from HF_CTRL mice displayed significantly fewer mitochondrial ultrastructural abnormalities and improved mitochondrial activity (P < 0.05), while lipid content was again elevated. The in vitro developmental capacity of the oocytes was improved but did not reach the levels of the CTRL_CTRL mice. HF_CR mice completely restored cholesterol concentrations and insulin sensitivity already after 2 weeks. Other metabolic health parameters were only restored after 4 weeks of intervention with clear signs of fasting hypoglycemia. Although all mitochondrial parameters in HF_CR oocytes stayed aberrant, oocyte developmental competence in vitro was completely restored already after 2 weeks of intervention. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we applied a relevant HF/HS Western-type diet to induce obesity in an outbred mouse model. Nevertheless, physiological differences should be considered when translating these results to the human setting. However, the in-depth study and follow-up of the metabolic health changes together with the strategic implementation of specific PCCI intervals (2 and 4 weeks) related to the duration of the mouse folliculogenesis (3 weeks), should aid in the extrapolation of our findings to the human setting. WIDER IMPLICATIONS OF THE FINDINGS Our study results with a specific focus on oocyte quality provide important fundamental insights to be considered when developing preconception care guidelines for obese metabolically compromised women wishing to become pregnant. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO-SB grant 1S25020N and FWO project G038619N). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- A Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - W F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - P E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - D De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Chen Y, Xu Y, Wang J, Prisinzano P, Yuan Y, Lu F, Zheng M, Mao W, Wan Y. Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Front Oncol 2022; 12:853063. [PMID: 35646709 PMCID: PMC9133486 DOI: 10.3389/fonc.2022.853063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in cancer cells have various biological functions, such as energy production, membrane synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the administration of antilipemic agents could improve anti-cancer treatment efficacy given hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then expelled to extracellular space. In this study, we investigated whether statins could promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential influences on generation and composition of cell-derived extracellular vesicles and particles (EVP). Our studies indicate that statins can significantly lower lipid biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can further lower lipid contents in parental cells. It is the first time that the influence of statins on EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and improve chemosensitivity.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yuhao Yuan
- Biophotonics and Translational Optical Imaging Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
9
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
10
|
α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
FGF21 Reduces Lipid Accumulation in Bovine Hepatocytes by Enhancing Lipid Oxidation and Reducing Lipogenesis via AMPK Signaling. Animals (Basel) 2022; 12:ani12070939. [PMID: 35405926 PMCID: PMC8996872 DOI: 10.3390/ani12070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
During the periparturient period, dairy cows suffer drastic metabolic stress because of plasma increased non-esterified fatty acids (NEFAs) that stem from a negative energy balance. Fibroblast growth factor 21 (FGF21) is a hepatokine that activates the AMP-activated protein kinase (AMPK) signaling pathway to maintain intracellular energy balance and tissue integrity via the promotion of catabolism and the inhibition of anabolic regulation. FGF21 treatment caused a 50% reduction in triglyceride (TG) content in liver in dairy cows. However, it is not clear whether FGF21 regulates lipid metabolism in bovine liver. The purpose of this study was to evaluate the influence of FGF21 on lipid metabolism via AMPK signaling in bovine hepatocytes. The hepatocytes isolated from calves were treated with different concentrations of FGF21 or co-treated with AMPK inhibitor (BML-275). Herein, the study showed that FGF21 significantly reduced TG content in a dose–response manner and promoted very-low-density lipoprotein (VLDL) secretion via an up-regulation of the proteins (ApoB 100, ApoE and MTTP) involved in VLDL secretion. Otherwise, the genes associated with lipid transport (LDLR and CD36) and lipid oxidation (PPARGC1A, ACOX1 and CPT1A), were up-regulated following FGF21 treatment. Moreover, FGF21 treatment inhibited lipogenesis via SREBF1, ACACA, FASN and ACLY inhibition. After being co-treated with the AMPK inhibitor, FGF21-induced changes were reversed in some genes. In conclusion, these results indicate that FGF21 adaptively regulates energy metabolism for a negative impact on lipogenesis, strengthens lipid oxidation, and inhibited lipid transportation via AMPK signaling in bovine hepatocytes. The present data suggest the possibility that FGF21 has potential value in alleviating perinatal metabolic diseases in dairy cows, and specific research in vivo should be studied in more detail.
Collapse
|
12
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
13
|
Smits A, Marei WFA, De Neubourg D, Leroy JLMR. Diet normalization or caloric restriction as a preconception care strategy to improve metabolic health and oocyte quality in obese outbred mice. Reprod Biol Endocrinol 2021; 19:166. [PMID: 34736458 PMCID: PMC8567997 DOI: 10.1186/s12958-021-00848-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Maternal metabolic disorders are linked to reduced metabolic health and oocyte quality. Obese women are advised to lose weight before conception to increase pregnancy chances. However, as human studies show no univocal guidelines, more research is necessary to provide fundamental insights in the consequences of dietary weight loss on oocyte quality. Therefore, we investigated the impact of diet normalization or calorie restricted diet for two, four or six weeks, as preconception care intervention (PCCI), in obese mice on metabolic health and oocyte quality. METHODS Outbred female mice were fed a control (CTRL) or high-fat (HF) diet for 7 weeks (7w). Afterwards, HF-mice were put on different PCCIs, resulting in four treatment groups: 1) control diet up to 13w, 2) HF diet up to 13w (HF_HF), switch from a HF (7w) to 3) an ad libitum control diet (HF_CTRL) or 4) 30% calorie restricted control diet (HF_CR) for two, four or six weeks. Body weight, metabolic health, oocyte quality and overall fertility results were assessed. RESULTS Negative effects of HF diet on metabolic health, oocyte quality and pregnancy rates were confirmed. HF_CTRL mice progressively improved insulin sensitivity, glucose tolerance, serum insulin and cholesterol from PCCI w2 to w4. No further improvements in metabolic health were present at PCCI w6. However, PCCI w6 showed best oocyte quality improvements. Mature oocytes still showed elevated lipid droplet volume and mitochondrial activity but a significant reduction in ROS levels and ROS: active mitochondria ratio compared with HF_HF mice. HF_CR mice restored overall insulin sensitivity and glucose tolerance by PCCI w4. However, serum insulin, cholesterol and ALT remained abnormal. At PCCI w6, glucose tolerance was again reduced. However, only at PCCI w6, oocytes displayed reduced ROS levels and restored mitochondrial activity compared with HF_HF mice. In addition, at PCCI w6, both PCCI groups showed decreased mitochondrial ultrastructural abnormalities compared with the HF_HF group and restored pregnancy rates. CONCLUSIONS Diet normalization for 4 weeks showed to be the shortest, most promising intervention to improve metabolic health. Most promising improvements in oocyte quality were seen after 6 weeks of intervention in both PCCI groups. This research provides fundamental insights to be considered in developing substantiated preconception guidelines for obese women planning for pregnancy.
Collapse
Affiliation(s)
- Anouk Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Diane De Neubourg
- Centre for Reproductive Medicine - Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
14
|
Characteristics of Paeonia ostii seed oil body and OLE17.5 determining oil body morphology. Food Chem 2020; 319:126548. [DOI: 10.1016/j.foodchem.2020.126548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022]
|
15
|
Filipović N, Bočina I, Restović I, Grobe M, Kretzschmar G, Kević N, Mašek T, Vitlov Uljević M, Jurić M, Vukojević K, Saraga-Babić M, Vuica A. Ultrastructural characterization of vitamin D receptors and metabolizing enzymes in the lipid droplets of the fatty liver in rat. Acta Histochem 2020; 122:151502. [PMID: 31932064 DOI: 10.1016/j.acthis.2020.151502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
Abstract
Vitamin D is a steroid hormone with numerous actions in the organism. There are strong evidences that relate vitamin D deficiency with liver lipid metabolism disturbances, but the mechanism of this action is still unknown. In our previous work we postulated the localization and accumulation of vitamin D receptor (VDR) in membrane of the lipid droplets (LDs) in hepatocytes. In this study, we applied the transmission electron microscopy (TEM) to confirm this hypothesis by using a long-term (6 months) high sucrose intake rat model that was previously found to be appropriate for research of the hepatic lipid accumulation. In addition to the VDR, we also found key vitamin D metabolizing enzymes, 1α-hydroxylase and CYP 24 associated with the membrane of the LDs. A light-microscopy data revealed significant increase in expression of VDR and CYP 24 in liver of high-sucrose treated rats, in comparison to controlones. According to the best of our knowledge, this is a first study confirming the presence of the VDR in the membrane of the LDs in general and also in particular in LDs of the hepatocytes that were accumulated as a consequence of the prolonged high sucrose intake. Moreover, we found association of main vitamin D metabolizing enzymes with LD membrane. These results provide a new insight in the possible relation of vitamin D signalling system with LD morphology and function and with the lipid metabolism in general.
Collapse
|
16
|
Raviv S, Hantisteanu S, Sharon SM, Atzmon Y, Michaeli M, Shalom-Paz E. Lipid droplets in granulosa cells are correlated with reduced pregnancy rates. J Ovarian Res 2020; 13:4. [PMID: 31907049 PMCID: PMC6945749 DOI: 10.1186/s13048-019-0606-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipids are an important source for energy production during oocyte maturation. The accumulation of intracellular lipids binds to proteins to form lipid droplets. This may lead to cellular lipotoxicity. The impact of lipotoxicity on cumulus and granulosa cells has been reported. This pilot study evaluated their correlation to oocyte and embryo quality. DESIGN Prospective case-control study. SETTING Referral IVF unit. PATIENTS Women younger than age 40, undergoing IVF with intracytoplasmic sperm injection. INTERVENTIONS 15 women with BMI > 30 (high BMI) and 26 women with BMI < 25 (low BMI) were enrolled. IVF outcomes were compared between groups based on BMI. Lipid content in cumulus and granulosa cells was evaluated using quantitative and descriptive methods. Lipid profile, hormonal profile and C-reactive protein were evaluated in blood and follicular fluid samples. Demographic and treatment data, as well as pregnancy rates were collected from electronic medical records. RESULTS Higher levels of LDL and CRP, slower cell division rate and lower embryo quality were found in the group with high BMI. There was no difference in pregnancy rates between groups. In light of these findings, treatment outcomes were reanalyzed according to patients who became pregnant and those who did not. We found that patients who conceived had significantly lower fat content in the granulosa cells, reflected by mean fluorescence intensity recorded by flow cytometry analysis (23,404 vs. 9370, P = 0.03). CONCLUSIONS BMI has no effect on lipid content in cumulus and granulosa cells, and does not affect likelihood of pregnancy. However, women who achieved pregnancy, regardless of their BMI, had lower lipid levels in their granulosa cells. This finding is important and further study is needed to evaluate lipid content in granulosa cells as a potential predictor of IVF treatment success.
Collapse
Affiliation(s)
- Shira Raviv
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Obstetrics, Fertility and Gynecology Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shilhav Meisel Sharon
- Obstetrics, Fertility and Gynecology Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yuval Atzmon
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mediea Michaeli
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Einat Shalom-Paz
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel.
| |
Collapse
|
17
|
Niu J, Liu Y, Wang W, Lin W. Novel two-photon fluorescent probe with high fluorescence quantum yields for tracking lipid droplets in biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:35-44. [PMID: 30877892 DOI: 10.1016/j.saa.2019.02.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Lipid droplets (LDs) played an important role in storing neutral lipids process. In this work, we developed a series of fluorescent dyes PIE1-PIE4 with high fluorescence quantum yields based on a single phenanthrenequinone imidazole fluorophore core. Among these compounds, we introduced diethyl aniline group on the phenanthrenequinone imidazole core to provide the compound PIE1. It is firstly found that PIE1 could real-color image and track lipid droplets (LDs) in living cells. However, we modified nitrile, imidazole and methyl group on the same fluorophore core to afford three dyes PIE2, PIE3 and PIE4, respectively. Although PIE2, PIE3 and PIE4 possessed high fluorescence quantum yields in various organic solvents, they could not real-color image and track LDs in living cells.
Collapse
Affiliation(s)
- Jie Niu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
18
|
Miao C, Xie Z, Chang J. Critical Roles of microRNAs in the Pathogenesis of Fatty Liver: New Advances, Challenges, and Potential Directions. Biochem Genet 2018; 56:423-449. [PMID: 29951838 DOI: 10.1007/s10528-018-9870-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
In this review, we summarize the current understanding of microRNA (miRNA)-mediated modulation of the gene expression in the fatty liver as well as related signaling pathways. Because of the breadth and diversity of miRNAs, miRNAs may have a very wide variety of biological functions, and much evidence has confirmed that miRNAs are involved in the pathogenesis of fatty liver. In the pathophysiological mechanism of fatty liver, miRNAs may be regulated by upstream regulators, and have their own regulatory targets. miRNAs display important roles in the pathological mechanisms of alcoholic liver disease and non-alcoholic fatty liver disease. At present, most of the miRNA studies are focused on cell and tissue levels, and in vivo studies will help us elucidate the regulation of miRNAs and help us evaluate the potential of miRNAs as diagnostic markers and therapeutic targets. Furthermore, there is evidence that miRNAs are involved in the mechanism of natural medicine treatment in fatty liver. Given the important roles of miRNAs in the pathogenesis of fatty liver, we predict that studies of miRNAs in the pathogenesis of fatty liver will contribute to the elucidation of fatty liver pathology and the treatment of fatty liver patients.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Biochemistry and Biotechnology, School of Science and Technology of Tea and Food, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
19
|
Prudovsky I, Anunciado-Koza RP, Jacobs CG, Kacer D, Siviski ME, Koza RA. Mesoderm-specific transcript localization in the ER and ER-lipid droplet interface supports a role in adipocyte hypertrophy. J Cell Biochem 2017; 119:2636-2645. [PMID: 29058774 DOI: 10.1002/jcb.26429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Highly variable expression of mesoderm-specific transcript (Mest) in adipose tissue among genetically homogeneous mice fed an obesogenic diet, and its positive association with fat mass expansion, suggests that Mest is an epigenetic determinant for the development of obesity. Although the mechanisms by which MEST augments fat accumulation in adipocytes have not been elucidated, it has sequence homology and catalytic peptide motifs which suggests that it functions as an epoxide hydrolase or as a glycerol- or acylglycerol-3-phosphate acyltransferase. To better understand MEST function, detailed studies were performed to precisely define the intracellular organelle localization of MEST using immunofluorescence confocal microscopy. Lentiviral-mediated expression of a C-terminus Myc-DDK-tagged MEST fusion protein expressed in 3T3-L1 preadipocytes/adipocytes, and ear-derived mesenchymal stem cells (EMSC) from mice was observed in the endoplasmic reticulum (ER) membranes and is consistent with previous studies showing endogenous MEST in the membrane fraction of adipose tissue. MEST was not associated with the Golgi apparatus or mitochondria; however, frequent contacts were observed between MEST-positive ER and mitochondria. MEST-positive domains were also shown on the plasma membrane (PM) of non-permeabilized cells but they did not co-localize with ER-PM bridges. Post-adipogenic differentiated 3T3-L1 adipocytes and EMSC showed significant co-localization of MEST with the lipid droplet surface marker perilipin at contact points between the ER and lipid droplet. Identification of MEST as an ER-specific protein that co-localizes with lipid droplets in cells undergoing adipogenic differentiation supports a function for MEST in the facilitation of lipid accumulation and storage in adipocytes.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Rea P Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Chester G Jacobs
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Matthew E Siviski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Robert A Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|