1
|
Massé S, St-Pierre J, Delisle T, Vézina FA, Iorio-Morin C, Couillard S. Neuromodulation of dyspnea - A literature review. Respir Med 2025; 243:108129. [PMID: 40306331 DOI: 10.1016/j.rmed.2025.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Dyspnea is a complex sensation resulting from the interplay between neural, biochemical, and mechanical pathways. Because dyspnea is a perception created and interpreted by the central nervous system, it could theoretically be targeted by neuromodulation approaches. This technique is used in pain to modulate the function of neuronal circuits. However, a safe surgical and/or non-invasive modus operandi is not established for refractory dyspnea. Nevertheless, the following literature review will discuss different neuromodulation techniques that may treat refractory dyspnea, even though the understanding of its pathophysiology is limited. More precisely, the diaphragm and its phrenic control, the ventral respiratory complexes (such as Kolliker-Fuse complex and the pre-Bötzinger complex), the vagal nerve, the periaqueductal gray, the insula, the cingular cortex, and the thalamus appear to play an important role in the pathophysiology of breathlessness. Consequently, deep brain stimulation, trigeminal nerve, spinal and vagal nerve stimulations are potentially effective approaches to diminish dyspnea. The discovery of useful dyspnea-reducing neuromodulation techniques could replace or be added to actual treatments like pulmonary rehabilitation, facial ventilators, oxygen, and opioids could be replaced, consequently enhancing the quality of life of dyspneic individuals.
Collapse
Affiliation(s)
- Sandrine Massé
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Joël St-Pierre
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Tommy Delisle
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Félix-Antoine Vézina
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Christian Iorio-Morin
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Simon Couillard
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
2
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
3
|
Paracha M, Brezinski AN, Singh R, Sinson E, Satkunendrarajah K. Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury. Cells 2025; 14:288. [PMID: 39996760 PMCID: PMC11854602 DOI: 10.3390/cells14040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Spinal interneurons (SpINs) are pivotal to the function of neural circuits, orchestrating motor, sensory, and autonomic functions in the healthy, intact central nervous system. These interneurons (INs) are heterogeneous, with diverse types contributing to various neural systems, including those that control respiratory function. Research in the last few decades has highlighted the complex involvement of SpINs in modulating motor control. SpINs also partake in motor plasticity by aiding in adapting and rewiring neural circuits in response to injury or disease. This plasticity is crucial in the context of spinal cord injury (SCI), where damage often leads to severe and long-term breathing deficits. Such deficits are a leading cause of morbidity and mortality in individuals with SCI, emphasizing the need for effective interventions. This review will focus on SpIN circuits involved in the modulation of breathing and explore current and emerging approaches that leverage SpINs as therapeutic targets to promote respiratory recovery following SCI.
Collapse
Affiliation(s)
- Maha Paracha
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Allison N. Brezinski
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rhea Singh
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
| | - Elizabeth Sinson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
| | - Kajana Satkunendrarajah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Iigaya K, Onimaru H, Ikeda K, Iizuka M, Izumizaki M. Cellular mechanisms of synchronized rhythmic burst generation in the ventromedial hypothalamus. Pflugers Arch 2025; 477:131-145. [PMID: 39400580 DOI: 10.1007/s00424-024-03031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The ventromedial hypothalamus (VMH) plays an important role in feeding behavior and control of the sympathetic nervous system (SNS). The VMH includes a group of neurons that exhibit strong synchronized rhythmic burst firing (so-called VMH oscillation). This VMH oscillation is glucose inhibited, responsive to feeding-related peptides, and is functionally coupled to outputs of the SNS. However, the details of its rhythm generation and synchronization mechanisms are unknown. In the present study, we investigated cellular mechanisms of VMH oscillation by means of electrophysiological recordings and calcium imaging in juvenile rat slice preparations including the VMH. In the electrophysiological study, we performed membrane potential recording from neurons in the vicinity of pipettes for field potential recording. We found that the rhythmic bursts in the VMH were preserved in low Ca2+/high Mg2+ synaptic transmission blockade solution. During membrane hyperpolarization by current injection, the action potential was largely inhibited, but fluctuation of the membrane potential remained with a frequency similar to that at resting potential level. The electric VMH oscillation disappeared after application of either a gap junction blocker, carbenoxolone (100 µM), or a persistent sodium channel blocker, riluzole (20 µM). Membrane potentials and input resistances of rhythmic burst neurons in the VMH were not significantly changed during these manipulations. A calcium imaging study revealed that all VMH cells exhibiting synchronized rhythmic activity detected by intracellular calcium increases were silenced following the application of carbenoxolone. These results suggest that VMH oscillation arises from the activation of persistent sodium channels and coupling via gap junctions.
Collapse
Affiliation(s)
- Kamon Iigaya
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, 142-8555, Japan
| | - Makito Iizuka
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
5
|
A S A, G PK, Ramakrishnan AG. Brain-scale theta band functional connectome as signature of slow breathing and breath-hold phases. Comput Biol Med 2025; 184:109435. [PMID: 39616883 DOI: 10.1016/j.compbiomed.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
The study reported herein attempts to understand the neural mechanisms engaged in the conscious control of breathing and breath-hold. The variations in the electroencephalogram (EEG) based functional connectivity (FC) of the human brain have been investigated during attentive breathing at 2 cycles per minute (cpm). The study presents its novelty through three main aspects. First, it explores the complex breathing circuitry beyond the brain stem, specifically examining how higher brain regions interact with respiratory cycles. Second, unlike previous studies that treated respiratory phases as a singular phenomenon, this research analyses inhalation, exhalation, and breath-holds separately, providing a deeper understanding of their individual dynamics and FC in the brain. Finally, the breathing protocol is designed to include inhale-hold and exhale-hold sessions alongside symmetric breathing, allowing for testing on healthy subjects rather than specialized cohorts, which were used in earlier studies. An experimental protocol involving equal durations of inhale, inhale-hold, exhale, and exhale-hold conditions, synchronized to a visual metronome, was designed and administered to 20 healthy subjects (9 females and 11 males, age: 32.0 ± 9.5 years (mean ± SD)). EEG data were collected during these sessions using the 64-channel eego™ mylab system from ANT Neuro. Further, FC was estimated for all possible pairs of EEG time series data, for 7 EEG bands. Feature selection using a genetic algorithm (GA) was performed to identify a subset of functional connections that would best distinguish the inhale, inhale-hold, exhale, and exhale-hold phases using a random committee classifier. The best accuracy of 95.056% was obtained when 403 theta-band functional connections were fed as input to the classifier, highlighting the efficacy of the theta-band functional connectome in distinguishing these phases of the respiratory cycle. This functional network was further characterized using graph measures, and observations illustrated a statistically significant difference in the efficiency of information exchange through the network during different respiratory phases.
Collapse
Affiliation(s)
- Anusha A S
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Pradeep Kumar G
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - A G Ramakrishnan
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India; Heritage Science and Technology, Indian Institute of Technology Hyderabad, Hyderabad, India.
| |
Collapse
|
6
|
Hass RM, Benarroch EE. What Are the Central Mechanisms of Cough and Their Neurologic Implications? Neurology 2024; 103:e210064. [PMID: 39509665 DOI: 10.1212/wnl.0000000000210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
|
7
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024; 25:1438-1450. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Wang J, Liu F, Zhou M, Li D, Huang M, Guo S, Hou D, Luo J, Song Z, Wang Y. Effect of five different body positions on lung function in stroke patients with tracheotomy. Top Stroke Rehabil 2024:1-11. [PMID: 39460942 DOI: 10.1080/10749357.2024.2420545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND In stroke patients with tracheotomy, reduced lung function heightens pulmonary infection risk. Body position can affect lung function; however, its impact in stroke patients with tracheostomy remains unclear. OBJECTIVE To investigate the influence of five body positions on pulmonary function in stroke patients with tracheotomy. METHODS Pulmonary function was assessed in five body positions (supine, supine 30°, supine 60°, sitting, and prone) in 47 stroke patients who underwent tracheotomy. Diaphragmatic excursion during quiet breathing (DEQ), diaphragmatic thickening fraction during quiet breathing (DTFQ), and diaphragmatic excursion during coughing (DEC) were measured using ultrasound. Peak cough flow (PCF) was measured using an electronic peak flow meter. RESULTS Different positions had a significant impact on DEQ, DEC, and PCF in stroke patients with tracheotomy, although not on DTFQ. DEQ showed no significant differences between supine 60°, sitting, and prone positions. Both DEC and PCF reached their maximum values in the sitting position. In the sub-group analysis, DEQ in females did not show significant differences across different positions. Both males and females exhibited significantly higher PCF in the sitting compared to supine position. The lung function of obese patients was significantly better in the sitting than in the supine and supine 30° position. Regardless of the patient's level of consciousness and whether the brainstem was injured, lung function in the sitting position was significantly higher than in the supine position. CONCLUSIONS Body posture influences lung function in stroke patients with tracheotomy. Patients should adopt a sitting position to enhance pulmonary function.
Collapse
Affiliation(s)
- Juan Wang
- Children's Rehabilitation Department, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Fang Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Mingchao Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Dan Li
- Department of Rehabilitation Medicine, The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Meiling Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Shanshan Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Dianrui Hou
- Department of Rehabilitation Medicine, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Zhenhua Song
- Department of Rehabilitation Medicine, The Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou, China
| | - Yulong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Chen R, Lovas A, Bakos P, Molnár T, Hawchar F, Benyó B, Zhao Z, Chase JG, Rupitsch SJ, Moeller K. Detection of spontaneous breathing during an apnea test in a patient with suspected brain death using electrical impedance tomography: a case report. BMC Pulm Med 2024; 24:454. [PMID: 39285376 PMCID: PMC11406830 DOI: 10.1186/s12890-024-03283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION The apnea test (AT) is a crucial procedure in determining brain death (BD), with detection of spontaneous breathing efforts serving as a key criterion. Numerous national statutes mandate complete disconnection of the patient from the ventilator during the procedure to open the airway directly to the atmosphere. These regulations mandate visual observation as an exclusive option for detecting breathing efforts. However, reliance on visual observation alone can pose challenges in identifying subtle respiratory movements. CASE PRESENTATION This case report presents a 55-year-old morbidly obese male patient with suspected BD due to cerebral hemorrhage undergoing an AT. The AT was performed with continuous electrical impedance tomography (EIT) monitoring. Upon detection of spontaneous breathing movements by both visual observation and EIT, the AT was aborted, and the patient was reconnected to the ventilator. EIT indicated a shift in ventilation distribution from the ventral to the dorsal regions, indicating the presence of spontaneous breathing efforts. EIT results also suggested the patient experienced a slow but transient initial recovery phase, likely due to atelectasis induced by morbid obesity, before returning to a steady state of ventilatory support. CONCLUSION The findings suggest EIT could enhance the sensitivity and accuracy of detecting spontaneous breathing efforts, providing additional insights into the respiratory status of patients during the AT.
Collapse
Affiliation(s)
- Rongqing Chen
- Institute of Technical Medicine, Hochschule Furtwangen, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany.
- Department of Microsystems Engineering (IMTEK), Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, Freiburg, 79110, Germany.
| | - András Lovas
- Department of Anaesthesiology and Intensive Therapy, Kiskunhalas Semmelweis Hospital, Teaching Hospital of the University of Szeged, Dr. Monszpart László u. 1, Kiskunhalas, 6400, Hungary
| | - Péter Bakos
- Department of Anesthesiology and Intensive Therapy, Csolnoky Ferenc Hospital, Kórház u. 1, Veszprém, 8200, Hungary
- Department of Cardiology, State Hospital for Cardiology, Gyógy tér 2, Balatonfüred, 8230, Hungary
| | - Tamás Molnár
- Department of Anesthesiology and Intensive Therapy, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Fatime Hawchar
- Department of Anesthesiology and Intensive Therapy, Budapesti Dr. Manninger Jenő Traumatology Center, Fiumei út 17, Budapest, 1080, Hungary
| | - Balázs Benyó
- Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Information Technology, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest, 1111, Hungary
| | - Zhanqi Zhao
- Institute of Technical Medicine, Hochschule Furtwangen, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, 69 Creyke Road, Christchurch, 8041, New Zealand
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, Freiburg, 79110, Germany
| | - Knut Moeller
- Institute of Technical Medicine, Hochschule Furtwangen, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| |
Collapse
|
10
|
Ala-Nisula T, Halmetoja R, Leinonen H, Kurkela M, Lipponen HR, Sakko S, Karpale M, Salo AM, Sissala N, Röning T, Raza GS, Mäkelä KA, Thevenot J, Herzig KH, Serpi R, Myllyharju J, Tanila H, Koivunen P, Dimova EY. Metabolic characteristics of transmembrane prolyl 4-hydroxylase (P4H-TM) deficient mice. Pflugers Arch 2024; 476:1339-1351. [PMID: 38396259 PMCID: PMC11310233 DOI: 10.1007/s00424-024-02920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.
Collapse
Affiliation(s)
- Tuulia Ala-Nisula
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Margareta Kurkela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Henna-Riikka Lipponen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Samuli Sakko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Mikko Karpale
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Antti M Salo
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Niina Sissala
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Tapio Röning
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Ghulam S Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Kari A Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Jérôme Thevenot
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland.
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| |
Collapse
|
11
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, feeling and regulating: investigating the association of focal brain damage with voluntary respiratory and motor control. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230251. [PMID: 39005040 PMCID: PMC11528364 DOI: 10.1098/rstb.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 07/16/2024] Open
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire, and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia and left medial temporal lobe showed reduced performance relative to individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60 bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnoea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Henrik Bischoff
- Department of Psychology, University of Stockholm, 10691 Stockholm, Sweden
- Department of Psychology, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christopher Kovach
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukbhinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Joel Bruss
- Departments of Pediatrics, Neurology, and Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Tranel
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK 74119, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Lin CY, Vanoverbeke V, Trent D, Willey K, Lee YS. The Spatiotemporal Expression of SOCS3 in the Brainstem and Spinal Cord of Amyotrophic Lateral Sclerosis Mice. Brain Sci 2024; 14:564. [PMID: 38928564 PMCID: PMC11201580 DOI: 10.3390/brainsci14060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons from the brain and spinal cord. The excessive neuroinflammation is thought to be a common determinant of ALS. Suppressor of cytokine signaling-3 (SOCS3) is pathologically upregulated after injury/diseases to negatively regulate a broad range of cytokines/chemokines that mediate inflammation; however, the role that SOCS3 plays in ALS pathogenesis has not been explored. Here, we found that SOCS3 protein levels were significantly increased in the brainstem of the superoxide dismutase 1 (SOD1)-G93A ALS mice, which is negatively related to a progressive decline in motor function from the pre-symptomatic to the early symptomatic stage. Moreover, SOCS3 levels in both cervical and lumbar spinal cords of ALS mice were also significantly upregulated at the pre-symptomatic stage and became exacerbated at the early symptomatic stage. Concomitantly, astrocytes and microglia/macrophages were progressively increased and reactivated over time. In contrast, neurons were simultaneously lost in the brainstem and spinal cord examined over the course of disease progression. Collectively, SOCS3 was first found to be upregulated during ALS progression to directly relate to both increased astrogliosis and increased neuronal loss, indicating that SOCS3 could be explored to be as a potential therapeutic target of ALS.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, LRI, NB3-90, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
14
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, Feeling, and Regulating: Investigating the Association of Focal Brain Damage with Voluntary Respiratory and Motor Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562254. [PMID: 37905134 PMCID: PMC10614780 DOI: 10.1101/2023.10.16.562254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal, or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia, and left medial temporal lobe showed reduced performance than individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60-bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal, or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. Highlights Impaired human respiratory regulation is associated with cortical/subcortical brain lesionsFrontolimbic/temporal regions contribute to rhythmic breathing and hand motor controlFrontolimbic/temporal damage is associated with anxiety during tachypnea/irregular breathingThe human forebrain is vital for affective and interoceptive experiences during breathing.
Collapse
|
15
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
Yousaf I, Hannon WW, Donohue RC, Pfaller CK, Yadav K, Dikdan RJ, Tyagi S, Schroeder DC, Shieh WJ, Rota PA, Feder AF, Cattaneo R. Brain tropism acquisition: The spatial dynamics and evolution of a measles virus collective infectious unit that drove lethal subacute sclerosing panencephalitis. PLoS Pathog 2023; 19:e1011817. [PMID: 38127684 PMCID: PMC10735034 DOI: 10.1371/journal.ppat.1011817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.
Collapse
Affiliation(s)
- Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - William W. Hannon
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ryan C. Donohue
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan J. Dikdan
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alison F. Feder
- Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| |
Collapse
|
17
|
Nomura K, Narimatsu E, Oke Y, Oku Y. The lesion site of organophosphorus-induced central apnea and the effects of antidotes. Sci Rep 2023; 13:20419. [PMID: 37990100 PMCID: PMC10663552 DOI: 10.1038/s41598-023-47745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Organophosphorus poisoning kills individuals by causing central apnea; however, the underlying cause of death remains unclear. Following findings that the pre-Bötzinger complex impairment alone does not account for central apnea, we analyzed the effect of paraoxon on the brainstem-spinal cord preparation, spanning the lower medulla oblongata to phrenic nucleus. Respiratory bursts were recorded by connecting electrodes to the ventral 4th cervical nerve root of excised brainstem-spinal cord preparations obtained from 6-day-old Sprague-Dawley rats. We observed changes in respiratory bursts when paraoxon, neostigmine, atropine, and 2-pyridine aldoxime methiodide were administered via bath application. The percentage of burst extinction in the paraoxon-poisoning group was 50% compared with 0% and 18.2% in the atropine and 2-pyridine aldoxime methiodide treatment groups, respectively. Both treatments notably mitigated the paraoxon-induced reduction in respiratory bursts. In the neostigmine group, similar to paraoxon, bursts stopped in 66.7% of cases but were fully reversed by atropine. This indicates that the primary cause of central apnea is muscarinic receptor-mediated in response to acetylcholine excess. Paraoxon-induced central apnea is hypothesized to result from neural abnormalities within the inferior medulla oblongata to the phrenic nucleus, excluding pre-Bötzinger complex. These antidotes antagonize central apnea, suggesting that they may be beneficial therapeutic agents.
Collapse
Affiliation(s)
- Kazuhito Nomura
- Department of Physiology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo-Ken, 663-8501, Japan.
- Department of Emergency Medicine, Sapporo Medical University, Sapporo-Shi, 064-8543, Japan.
| | - Eichi Narimatsu
- Department of Emergency Medicine, Sapporo Medical University, Sapporo-Shi, 064-8543, Japan
| | - Yoshihiko Oke
- Department of Physiology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo-Ken, 663-8501, Japan
| | - Yoshitaka Oku
- Department of Physiology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo-Ken, 663-8501, Japan
| |
Collapse
|
18
|
Xie Y, Zhang L, Guo S, Peng R, Gong H, Yang M. Changes in respiratory structure and function after traumatic cervical spinal cord injury: observations from spinal cord and brain. Front Neurol 2023; 14:1251833. [PMID: 37869136 PMCID: PMC10587692 DOI: 10.3389/fneur.2023.1251833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Respiratory difficulties and mortality following severe cervical spinal cord injury (CSCI) result primarily from malfunctions of respiratory pathways and the paralyzed diaphragm. Nonetheless, individuals with CSCI can experience partial recovery of respiratory function through respiratory neuroplasticity. For decades, researchers have revealed the potential mechanism of respiratory nerve plasticity after CSCI, and have made progress in tissue healing and functional recovery. While most existing studies on respiratory plasticity after spinal cord injuries have focused on the cervical spinal cord, there is a paucity of research on respiratory-related brain structures following such injuries. Given the interconnectedness of the spinal cord and the brain, traumatic changes to the former can also impact the latter. Consequently, are there other potential therapeutic targets to consider? This review introduces the anatomy and physiology of typical respiratory centers, explores alterations in respiratory function following spinal cord injuries, and delves into the structural foundations of modified respiratory function in patients with CSCI. Additionally, we propose that magnetic resonance neuroimaging holds promise in the study of respiratory function post-CSCI. By studying respiratory plasticity in the brain and spinal cord after CSCI, we hope to guide future clinical work.
Collapse
Affiliation(s)
- Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
19
|
Onimaru H, Fukushi I, Ikeda K, Yazawa I, Takeda K, Okada Y, Izumizaki M. Cell Responses of the Ventrolateral Medulla to PAR1 Activation and Changes in Respiratory Rhythm in Newborn Rat En Bloc Brainstem-Spinal Cord Preparations. Neuroscience 2023; 528:89-101. [PMID: 37557948 DOI: 10.1016/j.neuroscience.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 μM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 μM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 μM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, Japan
| | - Itaru Yazawa
- Department of Food & Nutrition, Kyushu Nutrition Welfare University, Fukuoka, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Moris JM, Cardona A, Hinckley B, Mendez A, Blades A, Paidisetty VK, Chang CJ, Curtis R, Allen K, Koh Y. A framework of transient hypercapnia to achieve an increased cerebral blood flow induced by nasal breathing during aerobic exercise. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100183. [PMID: 37745894 PMCID: PMC10514094 DOI: 10.1016/j.cccb.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During exercise, cerebral blood flow (CBF) is expected to only increase to a maximal volume up to a moderate intensity aerobic effort, suggesting that CBF is expected to decline past 70 % of a maximal aerobic effort. Increasing CBF during exercise permits an increased cerebral metabolic activity that stimulates neuroplasticity and other key processes of cerebral adaptations that ultimately improve cognitive health. Recent work has focused on utilizing gas-induced exposure to intermittent hypoxia during aerobic exercise to maximize the improvements in cognitive function compared to those seen under normoxic conditions. However, it is postulated that exercising by isolating breathing only to the nasal route may provide a similar effect by stimulating a transient hypercapnic condition that is non-gas dependent. Because nasal breathing prevents hyperventilation during exercise, it promotes an increase in the partial arterial pressure of CO2. The rise in systemic CO2 stimulates hypercapnia and permits the upregulation of hypoxia-related genes. In addition, the rise in systemic CO2 stimulates cerebral vasodilation, promoting a greater increase in CBF than seen during normoxic conditions. While more research is warranted, nasal breathing might also promote benefits related to improved sleep, greater immunity, and body fat loss. Altogether, this narrative review presents a theoretical framework by which exercise-induced hypercapnia by utilizing nasal breathing during moderate-intensity aerobic exercise may promote greater health adaptations and cognitive improvements than utilizing oronasal breathing.
Collapse
Affiliation(s)
- Jose M. Moris
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Arturo Cardona
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Brendan Hinckley
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Armando Mendez
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Alexandra Blades
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Vineet K. Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Christian J. Chang
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Ryan Curtis
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Kylie Allen
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| |
Collapse
|
21
|
Ovechkin A, Moshonkina T, Shandybina N, Lyakhovetskii V, Gorodnichev R, Moiseev S, Siu R, Gerasimenko Y. Transcutaneous Spinal Cord Stimulation Facilitates Respiratory Functional Performance in Patients with Post-Acute COVID-19. Life (Basel) 2023; 13:1563. [PMID: 37511940 PMCID: PMC10381407 DOI: 10.3390/life13071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND A growing number of studies have reported Coronavirus disease (COVID-19) related to both respiratory and central nervous system dysfunctions. This study evaluates the neuromodulatory effects of spinal cord transcutaneous stimulation (scTS) on the respiratory functional state in healthy controls and patients with post-COVID-19 respiratory deficits as a step toward the development of a rehabilitation strategy for these patients. METHODS In this before-after, interventional, case-controlled clinical study, ten individuals with post-acute COVID-19 respiratory deficits and eight healthy controls received a single twenty-minute-long session of modulated monophasic scTS delivered over the T5 and T10 spinal cord segments. Forced vital capacity (FVC), peak forced inspiratory flow (PIF), peak expiratory flow (PEF), time-to-peak of inspiratory flow (tPIF), and time-to-peak of expiratory flow (tPEF), as indirect measures of spinal motor network activity, were assessed before and after the intervention. RESULTS In the COVID-19 group, the scTS intervention led to significantly increased PIF (p = 0.040) and PEF (p = 0.049) in association with significantly decreased tPIF (p = 0.035) and tPEF (p = 0.013). In the control group, the exposure to scTS also resulted in significantly increased PIF (p = 0.010) and significantly decreased tPIF (p = 0.031). Unlike the results in the COVID-19 group, the control group had significantly decreased PEF (p = 0.028) associated with significantly increased tPEF (p = 0.036). There were no changes for FVC after scTS in both groups (p = 0.67 and p = 0.503). CONCLUSIONS In post-COVID-19 patients, scTS facilitates excitation of both inspiratory and expiratory spinal neural networks leading to an immediate improvement of respiratory functional performance. This neuromodulation approach could be utilized in rehabilitation programs for patients with COVID-19 respiratory deficits.
Collapse
Affiliation(s)
- Alexander Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (R.S.); (Y.G.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Tatiana Moshonkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (T.M.); (N.S.); (V.L.)
| | - Natalia Shandybina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (T.M.); (N.S.); (V.L.)
| | - Vsevolod Lyakhovetskii
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (T.M.); (N.S.); (V.L.)
| | - Ruslan Gorodnichev
- Velikie Luki State Academy of Physical Education and Sports, 182100 Velikie Luki, Russia; (R.G.); (S.M.)
| | - Sergey Moiseev
- Velikie Luki State Academy of Physical Education and Sports, 182100 Velikie Luki, Russia; (R.G.); (S.M.)
| | - Ricardo Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (R.S.); (Y.G.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (R.S.); (Y.G.)
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (T.M.); (N.S.); (V.L.)
| |
Collapse
|
22
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Wittmann J, Gani M, Evans D, Reynolds SC. Phrenic nerve stimulation mitigates hippocampal and brainstem inflammation in an ARDS model. Front Physiol 2023; 14:1182505. [PMID: 37215178 PMCID: PMC10196250 DOI: 10.3389/fphys.2023.1182505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: In porcine healthy-lung and moderate acute respiratory distress syndrome (ARDS) models, groups that received phrenic nerve stimulation (PNS) with mechanical ventilation (MV) showed lower hippocampal apoptosis, and microglia and astrocyte percentages than MV alone. Objectives: Explore whether PNS in combination with MV for 12 h leads to differences in hippocampal and brainstem tissue concentrations of inflammatory and synaptic markers compared to MV-only animals. Methods: Compare tissue concentrations of inflammatory markers (IL-1α, IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNFα and GM-CSF), pre-synaptic markers (synapsin and synaptophysin) and post-synaptic markers (disc-large-homolog 4, N-methyl-D-aspartate receptors 2A and 2B) in the hippocampus and brainstem in three groups of mechanically ventilated pigs with injured lungs: MV only (MV), MV plus PNS every other breath (MV + PNS50%), and MV plus PNS every breath (MV + PNS100%). MV settings in volume control were tidal volume 8 ml/kg, and positive end-expiratory pressure 5 cmH2O. Moderate ARDS was achieved by infusing oleic acid into the pulmonary artery. Measurements and Main Results: Hippocampal concentrations of GM-CSF, N-methyl-D-aspartate receptor 2B, and synaptophysin were greater in the MV + PNS100% group compared to the MV group, p = 0.0199, p = 0.0175, and p = 0.0479, respectively. The MV + PNS100% group had lower brainstem concentrations of IL-1β, and IL-8 than the MV group, p = 0.0194, and p = 0.0319, respectively; and greater brainstem concentrations of IFN-γ and N-methyl-D-aspartate receptor 2A than the MV group, p = 0.0329, and p = 0.0125, respectively. Conclusion: In a moderate-ARDS porcine model, MV is associated with hippocampal and brainstem inflammation, and phrenic nerve stimulation on every breath mitigates that inflammation.
Collapse
Affiliation(s)
| | - Elizabeth C. Rohrs
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Karl C. Fernandez
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Marlena Ornowska
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Michelle Nicholas
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Wittmann
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Steven C. Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| |
Collapse
|
23
|
Majumder R, Ghosh S, Singh MK, Das A, Roy Chowdhury S, Saha A, Saha RP. Revisiting the COVID-19 Pandemic: An Insight into Long-Term Post-COVID Complications and Repurposing of Drugs. COVID 2023; 3:494-519. [DOI: 10.3390/covid3040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
SARS-CoV-2 is a highly contagious and dangerous coronavirus that has been spreading around the world since late December 2019. Severe COVID-19 has been observed to induce severe damage to the alveoli, and the slow loss of lung function led to the deaths of many patients. Scientists from all over the world are now saying that SARS-CoV-2 can spread through the air, which is a very frightening prospect for humans. Many scientists thought that this virus would evolve during the first wave of the pandemic and that the second wave of reinfection with the coronavirus would also be very dangerous. In late 2020 and early 2021, researchers found different genetic versions of the SARS-CoV-2 virus in many places around the world. Patients with different types of viruses had different symptoms. It is now evident from numerous case studies that many COVID-19 patients who are released from nursing homes or hospitals are more prone to developing multi-organ dysfunction than the general population. Understanding the pathophysiology of COVID-19 and its impact on various organ systems is crucial for developing effective treatment strategies and managing long-term health consequences. The case studies highlighted in this review provide valuable insights into the ongoing health concerns of individuals affected by COVID-19.
Collapse
Affiliation(s)
- Rajib Majumder
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Sanmitra Ghosh
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Swagata Roy Chowdhury
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| | - Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
| |
Collapse
|
24
|
Rivi V, Batabyal A, Benatti C, Tascedda F, Blom JMC, Lukowiak K. A Novel Behavioral Display in Lymnaea Induced by Quercetin and Hypoxia. THE BIOLOGICAL BULLETIN 2023; 244:115-127. [PMID: 37725701 DOI: 10.1086/725689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractThe pond snail Lymnaea stagnalis employs aerial respiration under hypoxia and can be operantly conditioned to reduce this behavior. When applied individually, a heat shock (30 °C for 1 h) and the flavonoid quercetin enhance long-term memory formation for the operant conditioning of aerial respiration. However, when snails are exposed to quercetin before the heat shock, long-term memory is no longer enhanced. This is because quercetin prevents the heat-induced upregulation of heat-shock proteins 70 and 40. When we tested the memory outcome of operant conditioning due to the simultaneous exposure to quercetin and 30 °C, we found that Lymnaea entered a quiescent survival state. The same behavioral response occurred when snails were simultaneously exposed to quercetin and pond water made hypoxic by bubbling nitrogen through it. Thus, in this study, we performed six experiments to propose a physiological explanation for that curious behavioral response. Our results suggest that bubbling nitrogen in pond water, heating pond water to 30 °C, and bubbling nitrogen in 30 °C pond water create a hypoxic environment, to which organisms may respond by upregulating the heat-shock protein system. On the other hand, when snails experience quercetin together with these hypoxic conditions, they can no longer express the physiological stress response evoked by heat or hypoxia. Thus, the quiescent survival state could be an emergency response to survive the hypoxic condition when the heat-shock proteins cannot be activated.
Collapse
|
25
|
Summ O, Mathys C, Grimm T, Gro M. Central Bradypnea and Ataxic Breathing in Myotonic Dystrophy Type 1 - A Clinical Case Report. J Neuromuscul Dis 2023; 10:465-471. [PMID: 36911946 DOI: 10.3233/jnd-221652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND The occurrence of obstructive and central sleep apnea syndromes, ventilator pump failure and reduced hypercapnic ventilatory drive in myotonic dystrophy type 1 (DM1) is well established, and there are indications for an impairment of the hypoxic ventilator drive, too. Yet, it is still unknown, to which extent the respiratory rhythm is affected by DM1, thus if a central bradypnea, cluster breathing or ataxic ("Biot's") breathing can occur. Additionally, the causes of the impairment of the central respiratory drive in DM1 are not known. CASE PRESENTATION We present the case of a tracheotomized female patient with DM 1 with central bradypnea and ataxic breathing. A 57-year-old woman with DM1 was admitted to our Neurointensive Care Unit (NICU) due to refractory tracheobronchial retention of secretions resulting from aspiration of saliva. Due to a combination of chronic hypercapnic respiratory failure, severe central bradypnea with a minimal breathing frequency of 3 per minute and ataxic breathing a pressure-controlled home ventilation was initiated. CONCLUSIONS In our patient central bradypnea and ataxic breathing possibly were respiratory sequale of DM1, that may have been caused by pontine white matter lesions affecting the pontine respiratory nuclei. From a clinical viewpoint, polygraphy is a suitable tool to objectify disorders of the respiratory rhythm in DM1 even in tracheotomized patients. Clinical studies combining respiratory diagnostics as polygraphy, transcutaneous capnometry and blood gas analysis with brain magnetic resonance imaging (MRI) are required to better understand disorders of respiratory regulation in DM1, and to identify their anatomical correlates.
Collapse
Affiliation(s)
- Oliver Summ
- Department of Neurological Intensive Care and Rehabilitation, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany.,Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christian Mathys
- Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Department of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Germany
| | - Teresa Grimm
- Department of Neurological Intensive Care and Rehabilitation, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany.,Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Martin Gro
- Department of Neurological Intensive Care and Rehabilitation, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany.,Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Network on Emergency and Intensive Care Medicine Oldenburg, Faculty of Medicine and Health Sciences, Carlvon Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
26
|
Koo DL, Cabeen RP, Yook SH, Cen SY, Joo EY, Kim H. More extensive white matter disruptions present in untreated obstructive sleep apnea than we thought: A large sample diffusion imaging study. Hum Brain Mapp 2023; 44:3045-3056. [PMID: 36896706 PMCID: PMC10171547 DOI: 10.1002/hbm.26261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Obstructive sleep apnea (OSA) may lead to white mater (WM) disruptions and cognitive deficits. However, no studies have investigated the full extent of the brain WM, and its associations with cognitive deficits in OSA remain unclear. We thus applied diffusion tensor imaging (DTI) tractography with multi-fiber models and used atlas-based bundle-specific approach to investigate the WM abnormalities for various tracts of the cerebral cortex, thalamus, brainstem, and cerebellum in patients with untreated OSA. We enrolled 100 OSA patients and 63 healthy controls. Fractional anisotropy (FA) and mean diffusivity (MD) values mapped on 33 regions of interest including WM tracts of cortex, thalamus, brainstem, and cerebellum were obtained from tractography-based reconstructions. We compared FA/MD values between groups and correlated FA/MD with clinical data in the OSA group after controlling for age and body mass index. OSA patients showed significantly lower FA values in multiple WM fibers including corpus callosum, inferior fronto-occipital fasciculus, middle/superior longitudinal fasciculi, thalamic radiations, and uncinate (FDR <0.05). Higher FA values were found in medial lemniscus of patients compared to controls (FDR <0.05). Lower FA values of rostrum of corpus callosum correlated with lower visual memory performance in OSA group (p < .005). Our quantitative DTI analysis demonstrated that untreated OSA could negatively impact the integrity of pathways more broadly, including brainstem structures such as medial lemniscus, in comparison to previous findings. Fiber tract abnormalities of the rostral corpus callosum were associated with impaired visual memory in untreated OSA may provide insights into the related pathomechanism.
Collapse
Affiliation(s)
- Dae Lim Koo
- Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryan P Cabeen
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Soon Hyun Yook
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Yong Cen
- Department of Radiology, USC Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
27
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
Affiliation(s)
- Cristina M Santana Maldonado
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Benton Purnell
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Rui Li
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jodi Smith
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Daniel R Thedens
- Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA.
| | - Phillip Gauger
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Galer EL, Huang R, Madhavan M, Wang E, Zhou Y, Leiter JC, Lu DC. Cervical Epidural Electrical Stimulation Increases Respiratory Activity through Somatostatin-Expressing Neurons in the Dorsal Cervical Spinal Cord in Rats. J Neurosci 2023; 43:419-432. [PMID: 36639888 PMCID: PMC9864577 DOI: 10.1523/jneurosci.1958-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
We tested the hypothesis that dorsal cervical epidural electrical stimulation (CEES) increases respiratory activity in male and female anesthetized rats. Respiratory frequency and minute ventilation were significantly increased when CEES was applied dorsally to the C2-C6 region of the cervical spinal cord. By injecting pseudorabies virus into the diaphragm and using c-Fos activity to identify neurons activated during CEES, we found neurons in the dorsal horn of the cervical spinal cord in which c-Fos and pseudorabies were co-localized, and these neurons expressed somatostatin (SST). Using dual viral infection to express the inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD), hM4D(Gi), selectively in SST-positive cells, we inhibited SST-expressing neurons by administering Clozapine N-oxide (CNO). During CNO-mediated inhibition of SST-expressing cervical spinal neurons, the respiratory excitation elicited by CEES was diminished. Thus, dorsal cervical epidural stimulation activated SST-expressing neurons in the cervical spinal cord, likely interneurons, that communicated with the respiratory pattern generating network to effect changes in ventilation.SIGNIFICANCE STATEMENT A network of pontomedullary neurons within the brainstem generates respiratory behaviors that are susceptible to modulation by a variety of inputs; spinal sensory and motor circuits modulate and adapt this output to meet the demands placed on the respiratory system. We explored dorsal cervical epidural electrical stimulation (CEES) excitation of spinal circuits to increase ventilation in rats. We identified dorsal somatostatin (SST)-expressing neurons in the cervical spinal cord that were activated (c-Fos-positive) by CEES. CEES no longer stimulated ventilation during inhibition of SST-expressing spinal neuronal activity, thereby demonstrating that spinal SST neurons participate in the activation of respiratory circuits affected by CEES. This work establishes a mechanistic foundation to repurpose a clinically accessible neuromodulatory therapy to activate respiratory circuits and stimulate ventilation.
Collapse
Affiliation(s)
- Erika L Galer
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Department of Molecular Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles 90095, California
| | - Ruyi Huang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Meghna Madhavan
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Emily Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Yan Zhou
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - James C Leiter
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Research Service, White River Junction VA Medical Center, White River Junction 05009, Vermont
| | - Daniel C Lu
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Department of Molecular Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles 90095, California
- Brain Research Institute, University of California Los Angeles, Los Angeles 90095, California
| |
Collapse
|
29
|
Pranic NM, Kornbrek C, Yang C, Cleland TA, Tschida KA. Rates of ultrasonic vocalizations are more strongly related than acoustic features to non-vocal behaviors in mouse pups. Front Behav Neurosci 2022; 16:1015484. [PMID: 36600992 PMCID: PMC9805956 DOI: 10.3389/fnbeh.2022.1015484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e., isolation USVs). Rates and acoustic features of isolation USVs change dramatically over the first two weeks of life, and there is also substantial variability in the rates and acoustic features of isolation USVs at a given postnatal age. The factors that contribute to within age variability in isolation USVs remain largely unknown. Here, we explore the extent to which non-vocal behaviors of mouse pups relate to the within age variability in rates and acoustic features of their USVs. We recorded non-vocal behaviors of isolated C57BL/6J mouse pups at four postnatal ages (postnatal days 5, 10, 15, and 20), measured rates of isolation USV production, and applied a combination of pre-defined acoustic feature measurements and an unsupervised machine learning-based vocal analysis method to examine USV acoustic features. When we considered different categories of non-vocal behavior, our analyses revealed that mice in all postnatal age groups produce higher rates of isolation USVs during active non-vocal behaviors than when lying still. Moreover, rates of isolation USVs are correlated with the intensity (i.e., magnitude) of non-vocal body and limb movements within a given trial. In contrast, USVs produced during different categories of non-vocal behaviors and during different intensities of non-vocal movement do not differ substantially in their acoustic features. Our findings suggest that levels of behavioral arousal contribute to within age variability in rates, but not acoustic features, of mouse isolation USVs.
Collapse
|
30
|
Biswas DD, El Haddad L, Sethi R, Huston ML, Lai E, Abdelbarr MM, Mhandire DZ, ElMallah MK. Neuro-respiratory pathology in spinocerebellar ataxia. J Neurol Sci 2022; 443:120493. [PMID: 36410186 PMCID: PMC9808489 DOI: 10.1016/j.jns.2022.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Meredith L Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mariam M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Pérez-Carbonell L, Muñoz-Lopetegi A, Sánchez-Valle R, Gelpi E, Farré R, Gaig C, Iranzo A, Santamaria J. Sleep architecture and sleep-disordered breathing in fatal insomnia. Sleep Med 2022; 100:311-346. [PMID: 36182725 DOI: 10.1016/j.sleep.2022.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 01/12/2023]
Abstract
STUDY OBJECTIVES Fatal insomnia (FI) is a rare prion disease severely affecting sleep architecture. Breathing during sleep has not been systematically assessed. Our aim was to characterize the sleep architecture, respiratory patterns, and neuropathologic findings in FI. METHODS Eleven consecutive FI patients (ten familial, one sporadic) were examined with video-polysomnography (vPSG) between 2002 and 2017. Wake/sleep stages and respiration were evaluated using a modified scoring system. Postmortem neuropathology was assessed in seven patients. RESULTS Median age at onset was 48 years and survival after vPSG was 1 year. All patients had different combinations of breathing disturbances including increased respiratory rate variability (RRV; n = 7), stridor (n = 9), central sleep apnea (CSA) (n = 5), hiccup (n = 6), catathrenia (n = 7), and other expiratory sounds (n = 10). RRV in NREM sleep correlated with ambiguous and solitary nuclei degeneration (r = 0.9, p = 0.008) and reduced survival (r = -0.7, p = 0.037). Two new stages, Subwake1 and Subwake2, present in all patients, were characterized. NREM sleep (conventional or undifferentiated) was identifiable in ten patients but reduced in duration in eight. REM sleep occurred in short segments in nine patients, and their reduced duration correlated with medullary raphe nuclei degeneration (r = -0.9, p = 0.005). Seven patients had REM without atonia. Three vPSG patterns were identified: agitated, with aperiodic, manipulative, and finalistic movements (n = 4); quiet-apneic, with CSA (n = 4); and quiet-non-apneic (n = 3). CONCLUSIONS FI patients show frequent breathing alterations, associated with respiratory nuclei damage, and, in addition to NREM sleep distortion, have severe impairment of REM sleep, related with raphe nuclei degeneration. Brainstem impairment is crucial in FI.
Collapse
Affiliation(s)
| | - Amaia Muñoz-Lopetegi
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain; Neurological Tissue Bank of the IDIBAPS, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the IDIBAPS, Barcelona, Spain; Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - Carles Gaig
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain.
| | - Joan Santamaria
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain.
| |
Collapse
|
32
|
Jørgensen AB, Rasmussen CM, Rekling JC. µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures. J Neurosci 2022; 42:8066-8077. [PMID: 36096669 PMCID: PMC9636991 DOI: 10.1523/jneurosci.1369-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The inspiratory rhythm generator, located in the brainstem preBötzinger complex (preBötC), is dependent on glutamatergic signaling and is affected profoundly by opioids. Here, we used organotypic slice cultures of the newborn mouse brainstem of either sex in combination with genetically encoded sensors for Ca2+, glutamate, and GABA to visualize Ca2+, glutamatergic and GABAergic signaling during spontaneous rhythm and in the presence of DAMGO. During spontaneous rhythm, the glutamate sensor SF-iGluSnFR.A184S revealed punctate synapse-like fluorescent signals along dendrites and somas in the preBötC with decay times that were prolonged by the glutamate uptake blocker (TFB-TBOA). The GABA sensor iGABASnFR showed a more diffuse fluorescent signal during spontaneous rhythm. Rhythmic Ca2+- and glutamate transients had an inverse relationship between the spontaneous burst frequency and the burst amplitude of the Ca2+ and glutamate signals. A similar inverse relationship was observed when bath applied DAMGO reduced spontaneous burst frequency and increased the burst amplitude of Ca2+, glutamate, and GABA transient signals. However, a hypoxic challenge reduced both burst frequency and Ca2+ transient amplitude. Using a cocktail that blocked glutamatergic, GABAergic, and glycinergic transmission to indirectly measure the release of glutamate/GABA in response to an electrical stimulus, we found that DAMGO reduces the release of glutamate in the preBötC but has no effect on GABA release. This suggest that the opioid mediated slowing of respiratory rhythm involves presynaptic reduction of glutamate release, which would impact the ability of the network to engage in recurrent excitation, and may result in the opioid-induced slowing of inspiratory rhythm.SIGNIFICANCE STATEMENT Opioids slow down breathing rhythm by affecting neurons in the preBötzinger complex (preBötC) and other brainstem regions. Here, we used cultured slices of the preBötC to better understand this effect by optically recording Ca2+, glutamate, and GABA transients during preBötC activity. Spontaneous rhythm showed an inverse relationship between burst frequency and burst amplitude in the Ca2+ and glutamate signals. Application of the opioid DAMGO slowed the rhythm, with a concomitant increase in Ca2+, glutamate, and GABA signals. When rhythm was blocked pharmacologically, DAMGO reduced the presynaptic release of glutamate, but not GABA. These data suggest the mechanism of action of opioids involves presynaptic reduction of glutamate release, which may play an important role in the opioid-induced slowing of inspiratory rhythm.
Collapse
Affiliation(s)
- Anders B Jørgensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
33
|
Vogt LM, Lorenzo M, B Prendergast D, Jobling R, Gill PJ. EEF1A2 pathogenic variant presenting in an infant with failure to thrive and frequent apneas requiring respiratory support. Am J Med Genet A 2022; 188:3106-3109. [PMID: 35938194 DOI: 10.1002/ajmg.a.62932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/31/2023]
Abstract
EEF1A2 is a gene whose protein product, eukaryotic translation elongation factor 1 alpha 2 (eEF1A2), plays an important role in neurodevelopment. Reports of individuals with pathogenic variants in EEF1A2 are rare, with less than 40 individuals reported world-wide, however a common feature is the association of the variant with developmental and epileptic encephalopathy. Thus far, there have been limited reports of other organ systems or body functions affected by variants in this gene. Here, we present a case of a child with EEF1A2-related disorder who presented at 3 months of age with hypotonia, microcephaly, failure to thrive, and respiratory insufficiency with central apneas requiring respiratory support. Our case highlights the notion that the respiratory system may be highly implicated in EEF1A2-related disorder, allowing for better phenotypic characterization of the disorder.
Collapse
Affiliation(s)
- Lindsey M Vogt
- Division of Paediatric Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Lorenzo
- Division of Emergency Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - D'Arcy B Prendergast
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter J Gill
- Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Kallet RH, Branson RD, Lipnick MS. Respiratory Drive, Dyspnea, and Silent Hypoxemia: A Physiological Review in the Context of COVID-19. Respir Care 2022; 67:1343-1360. [PMID: 35501129 PMCID: PMC9994317 DOI: 10.4187/respcare.10075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infection with SARS-CoV-2 in select individuals results in viral sepsis, pneumonia, and hypoxemic respiratory failure, collectively known as COVID-19. In the early months of the pandemic, the combination of novel disease presentation, enormous surges of critically ill patients, and severity of illness lent to early observations and pronouncements regarding COVID-19 that could not be scientifically validated owing to crisis circumstances. One of these was a phenomenon referred to as "happy hypoxia." Widely discussed in the lay press, it was thought to represent a novel and perplexing phenomenon: severe hypoxemia coupled with the absence of respiratory distress and dyspnea. Silent hypoxemia is the preferred term describing an apparent lack of distress in the presence of hypoxemia. However, the phenomenon is well known among respiratory physiologists as hypoxic ventilatory decline. Silent hypoxemia can be explained by physiologic mechanisms governing the control of breathing, breathing perception, and cardiovascular compensation. This narrative review examines silent hypoxemia during COVID-19 as well as hypotheses that viral infection of the central and peripheral nervous system may be implicated. Moreover, the credulous embrace of happy hypoxia and the novel hypotheses proposed to explain it has exposed significant misunderstandings among clinicians regarding the physiologic mechanisms governing both the control of breathing and the modulation of breathing sensations. Therefore, a substantial focus of this paper is to provide an in-depth review of these topics.
Collapse
Affiliation(s)
- Richard H Kallet
- Department of Anesthesia and Perioperative Care, University of California, San Francisco at San Francisco General Hospital, San Francisco, California.
| | - Richard D Branson
- Department of Surgery, Trauma and Critical Care Division, University of Cincinnati, Cincinnati, Ohio
| | - Michael S Lipnick
- Department of Anesthesia and Perioperative Care, University of California, San Francisco at San Francisco General Hospital, San Francisco, California
| |
Collapse
|
35
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Oku Y. Temporal variations in the pattern of breathing: techniques, sources, and applications to translational sciences. J Physiol Sci 2022; 72:22. [PMID: 36038825 PMCID: PMC10717433 DOI: 10.1186/s12576-022-00847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022]
Abstract
The breathing process possesses a complex variability caused in part by the respiratory central pattern generator in the brainstem; however, it also arises from chemical and mechanical feedback control loops, network reorganization and network sharing with nonrespiratory motor acts, as well as inputs from cortical and subcortical systems. The notion that respiratory fluctuations contain hidden information has prompted scientists to decipher respiratory signals to better understand the fundamental mechanisms of respiratory pattern generation, interactions with emotion, influences on the cortical neuronal networks associated with cognition, and changes in variability in healthy and disease-carrying individuals. Respiration can be used to express and control emotion. Furthermore, respiration appears to organize brain-wide network oscillations via cross-frequency coupling, optimizing cognitive performance. With the aid of information theory-based techniques and machine learning, the hidden information can be translated into a form usable in clinical practice for diagnosis, emotion recognition, and mental conditioning.
Collapse
Affiliation(s)
- Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
37
|
Owida HA, Al-Ayyad M, Al-Nabulsi JI. Emerging Development of Auto-Charging Sensors for Respiration Monitoring. Int J Biomater 2022; 2022:7098989. [PMID: 36071953 PMCID: PMC9444417 DOI: 10.1155/2022/7098989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the development of biomedical monitoring systems, including respiration monitoring systems, has been accelerated. Wearable and implantable medical devices are becoming increasingly important in the diagnosis and management of disease and illness. Respiration can be monitored using a variety of biosensors and systems. Auto-charged sensors have a number of advantages, including low cost, ease of preparation, design flexibility, and a wide range of applications. It is possible to use the auto-charged sensors to directly convert mechanical energy from the airflow into electricity. The ability to monitor and diagnose one's own health is a major goal of auto-charged sensors and systems. Respiratory disease model output signals have not been thoroughly investigated and clearly understood. As a result, figuring out their exact interrelationship is a difficult and important research question. This review summarized recent developments in auto-charged respiratory sensors and systems in terms of their device principle, output property, detecting index, and so on. Researchers with an interest in auto-charged sensors can use the information presented here to better understand the difficulties and opportunities that lie ahead.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
38
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
39
|
Li GG, Zhang ZQ, Mi YH. Mass brain tissue lost after decompressive craniectomy: A case report. World J Clin Cases 2022; 10:4314-4320. [PMID: 35665101 PMCID: PMC9131217 DOI: 10.12998/wjcc.v10.i13.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain is the most important organ to maintain life. However, the amount of brain tissue required for maintaining life in humans has not been previously reported. CASE SUMMARY A 33-year-old woman fell from the third floor three months before admission to our department. She received a decompressive craniectomy soon after injury. After the operation, operative incision disunion occurred due to the high pressure. Brain tissue flowed from the incision, and intracranial infection occurred. She fell into deep coma and was sent to our hospital. Her right temporal surgical incision was not healed and had a cranial defect of 10 cm × 10 cm. Her intracranial cavity was observed from the skull defect, and the brain tissue was largely lost. In addition, no brain tissue was observed by visual inspection. Cranial computed tomography showed that only a small amount of brain tissue density shadow was compressed in the cerebellum and brainstem. Four days after hospitalization in our hospital, her parents transferred her to a hospital near her hometown. The patient died six days after discharge from our hospital. CONCLUSION This rare case provides some proof of the importance of the brainstem in the maintenance of cardiac rhythm and vascular tension. Neurosurgeons should carefully protect brainstem neurons during operations. Clinicians can maintain the cardiac rhythm of patients who lose their major brain tissue with modern technology, but the family of the patients should be aware of death and end-life care.
Collapse
Affiliation(s)
- Guang-Gang Li
- Department of Critical Care Medicine, 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Zhi-Qiang Zhang
- Department of Radiology, 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Yan-Hong Mi
- Department of Critical Care Medicine, 7th Medical Center of PLA General Hospital, Beijing 100700, China
| |
Collapse
|
40
|
SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: Clinical implications. EBioMedicine 2022; 78:103981. [PMID: 35390636 PMCID: PMC8978584 DOI: 10.1016/j.ebiom.2022.103981] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections result in the temporary loss of smell and taste in about one third of confirmed cases. Methods We used immunohistochemistry to confirm the presence of ACE2, NRP1 and TMPRSS2 in two cranial nerves (IX and X) that mediate taste where they leave/join the medulla. Samples from three (two paraffin embedded and one frozen) postmortem samples were studied (facial (VII) nerve was not available). We also performed immunohistochemistry using the same antibodies in two human cell lines (oligodendrocytes and fibroblasts), and we isolated RNA from one nerve and performed PCR to confirm the presence of the mRNAs that encode the proteins visualized. Findings All three of the proteins (ACE-2, NRP1 and TMPRSS2) required for SARS-CoV-2 infections appear to be present in all cellular components (Schwann cells, axons, vascular endothelium, and connective tissue) of the human IXth and Xth nerves near the medulla. We also found their mRNAs in the nerve and in human oligodendrocytes and fibroblasts which were stained by antibodies directed at the three proteins examined. Interpretation Infection of the IXth and Xth nerves by the SARS-CoV-2 virus is likely to cause the loss of taste experienced by many Covid patients. Migration of the virus from the oral cavity through these nerves to brainstem respiratory centers might contribute to the problems that patients experience. Funding This study was supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research (NIDCR), NIH (intramural project no. ZDE000755-01), and the Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary from the Hungarian Brain Research Program (2017-1.2.1-NKP-2017-00002).
Collapse
|
41
|
Lavezzi AM, Pusiol T, Paradiso B. Harmful Effect of Intrauterine Smoke Exposure on Neuronal Control of "Fetal Breathing System" in Stillbirths. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074164. [PMID: 35409845 PMCID: PMC8999022 DOI: 10.3390/ijerph19074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
This article is aimed to contribute to the current knowledge on the role of toxic substances such as nicotine on sudden intrauterine unexplained deaths’ (SIUDS’) pathogenetic mechanisms. The in-depth histopathological examination of the autonomic nervous system in wide groups of victims of SIUDS (47 cases) and controls (20 cases), with both smoking and no-smoking mothers, highlighted the frequent presence of the hypodevelopment of brainstem structures checking the vital functions. In particular, the hypoplasia of the pontine parafacial nucleus together with hypoplastic lungs for gestational age were observed in SIUDS cases with mothers who smoked cigarettes, including electronic ones. The results allow us to assume that the products of cigarette smoke during pregnancy can easily cross the placental barrier, thus entering the fetal circulation and damaging the most sensitive organs, such as lungs and brain. In a non-negligible percentage of SIUDS, the mothers did not smoke. Furthermore, based on previous and ongoing studies conducted through analytical procedures and the use of scanning electron microscopy, the authors envisage the involvement of toxic nanoparticles (such as agricultural pesticides and nanomaterials increasingly used in biomedicine, bioscience and biotechnology) in the death pathogenesis, with similar mechanisms to those of nicotine.
Collapse
Affiliation(s)
- Anna M. Lavezzi
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- Correspondence:
| | - Teresa Pusiol
- Institute of Anatomic Pathology, APSS, 38122 Trento, Italy;
| | - Beatrice Paradiso
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- General Pathology Unit, Dolo Hospital, 30031 Dolo, Italy
| |
Collapse
|
42
|
Vafaee F, Shirzad S, Shamsi F, Boskabady MH. Neuroscience and treatment of asthma, new therapeutic strategies and future aspects. Life Sci 2022; 292:120175. [PMID: 34826435 DOI: 10.1016/j.lfs.2021.120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Asthma is an airway inflammatory disease that is affected by neurological and psychological factors. The aim of present review is to investigating the relationship between neural functions and neurobiological changes and asthma symptoms. MAIN METHODS The information in this article is provided from articles published in English and reputable database using appropriate keywords from 1970 to October 2020. KEY FINDINGS The symptoms of asthma such as cough, difficult breathing, and mucus secretion get worse when a person is suffering from stress, anxiety, and depression. The function of the insula, anterior cingulate cortex, and hypothalamic-pituitary-adrenal axis changes in response to stress and psychological disease; then the stress hormones are produced from neuroendocrine system, which leads to asthma exacerbation. The evidence represents that psychological therapies or neurological rehabilitation reduces the inflammation through modulating the activity of neurocircuitry and the function of brain centers involved in asthma. Moreover, the neurotrophins and neuropeptides are the key mediators in the neuro-immune interactions, which secrete from the airway nerves in response to brain signals, and they could be the target of many new therapies in asthma. SIGNIFICANCE This review provides an insight into the vital role of the central and peripheral nervous system in development and exacerbation of asthma and provide practical approaches and strategies on neural networks to improve the airway inflammation and asthma severity.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
COVID-19 and Postural Control—A Stabilographic Study Using Rambling-Trembling Decomposition Method. Medicina (B Aires) 2022; 58:medicina58020305. [PMID: 35208628 PMCID: PMC8877894 DOI: 10.3390/medicina58020305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
Background and Objectives: Some respiratory viruses demonstrate neurotropic capacities. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently taken over the globe, causing coronavirus disease 2019 (COVID-19). The aim of the study was to evaluate the impact of COVID-19 on postural control in subjects who have recently recovered from the infection. Materials and Methods: Thirty-three convalescents who underwent COVID-19 within the preceding 2–4 weeks, and 35 healthy controls were enrolled. The ground reaction forces were registered with the use of a force platform during quiet standing. The analysis of the resultant center of foot pressure (COP) decomposed into rambling (RAMB) and trembling (TREMB) and sample entropy was conducted. Results: Range of TREMB was significantly increased in subjects who experienced anosmia/hyposmia during COVID-19 when the measurement was performed with closed eyes (p = 0.03). In addition, subjects who reported dyspnea during COVID-19 demonstrated significant increase of length and velocity of COP (p < 0.001), RAMB (p < 0.001), and TREMB (p < 0.001), indicating substantial changes in postural control. Conclusions: Subjects who had experienced olfactory dysfunction or respiratory distress during COVID-19 demonstrate symptoms of balance deficits after COVID-19 recovery, and the analysis using rambling-trembling decomposition method might point at less efficient peripheral control. Monitoring for neurological sequelae of COVID-19 should be considered.
Collapse
|
44
|
Caravagna C, Casciato A, Coq JO, Liabeuf S, Brocard C, Peyronnet J, Bodineau L, Cayetanot F. Prenatal Hypoxia Induces Cl– Cotransporters KCC2 and NKCC1 Developmental Abnormality and Disturbs the Influence of GABAA and Glycine Receptors on Fictive Breathing in a Newborn Rat. Front Physiol 2022; 13:786714. [PMID: 35250609 PMCID: PMC8890663 DOI: 10.3389/fphys.2022.786714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Prenatal hypoxia is a recognised risk factor for neurodevelopmental disorders associated with both membrane proteins involved in neuron homeostasis, e.g., chloride (Cl–) cotransporters, and alterations in brain neurotransmitter systems, e.g., catecholamines, dopamine, and GABA. Our study aimed to determine whether prenatal hypoxia alters central respiratory drive by disrupting the development of Cl– cotransporters KCC2 and NKCC1. Cl– homeostasis seems critical for the strength and efficiency of inhibition mediated by GABAA and glycine receptors within the respiratory network, and we searched for alterations of GABAergic and glycinergic respiratory influences after prenatal hypoxia. We measured fictive breathing from brainstem in ex vivo preparations during pharmacological blockade of KCC2 and NKCC1 Cl– cotransporters, GABAA, and glycine receptors. We also evaluated the membrane expression of Cl– cotransporters in the brainstem by Western blot and the expression of Cl– cotransporter regulators brain-derived neurotrophic factor (BDNF) and calpain. First, pharmacological experiments showed that prenatal hypoxia altered the regulation of fictive breathing by NKCC1 and KCC2 Cl– cotransporters, GABA/GABAA, and glycin. NKCC1 inhibition decreased fictive breathing at birth in control mice while it decreased at 4 days after birth in pups exposed to prenatal hypoxia. On the other hand, inhibition of KCC2 decreased fictive breathing 4 days after birth in control mice without any change in prenatal hypoxia pups. The GABAergic system appeared to be more effective in prenatal hypoxic pups whereas the glycinergic system increased its effectiveness later. Second, we observed a decrease in the expression of the Cl– cotransporter KCC2, and a decrease with age in NKCC1, as well as an increase in the expression of BDNF and calpain after prenatal hypoxia exposure. Altogether, our data support the idea that prenatal hypoxia alters the functioning of GABAA and glycinergic systems in the respiratory network by disrupting maturation of Cl– homeostasis, thereby contributing to long-term effects by disrupting ventilation.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, United States
| | - Alexis Casciato
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
| | - Jacques-Olivier Coq
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Cécile Brocard
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Julie Peyronnet
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
- *Correspondence: Florence Cayetanot,
| |
Collapse
|
45
|
Disordered breathing in severe cerebral illness - towards a conceptual framework. Respir Physiol Neurobiol 2022; 300:103869. [PMID: 35181538 DOI: 10.1016/j.resp.2022.103869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Despite potentially life-threatening symptoms of disordered breathing in severe cerebral illness, there are no clear recommendations on diagnostic and therapeutic strategies for these patients. To identify types of breathing disorders observed in severely neurological comprised patients, to direct further research on classification, pathophysiology, diagnosis and treatment for disordered breathing in cerebral disease. Data including polygraphy, transcutaneous capnometry, blood gas analysis and radiological examinations of patients with severe cerebral illness and disordered breathing admitted to the neurological intensive care were analyzed. Patients (15) presented with acquired central hypoventilation syndrome (ACHS), central bradypnea, central tachypnea, obstructive, mixed and central apneas and hypopneas, Cheyne Stokes respiration, ataxic (Biot's) breathing, cluster breathing and respiration alternans. Severe cerebral illness may result in an ACHS and in a variety of disorders of the respiratory rhythm. Two of these, abrupt switches between breathing patterns and respiration alternans, suggest the existence of a rhythmogenic respiratory network. Polygraphy, transcutaneous capnometry, blood gas analysis and MRI are promising tools for diagnosis and research alike.
Collapse
|
46
|
Fabo C, Oszlanyi A, Lantos J, Rarosi F, Horvath T, Barta Z, Nemeth T, Szabo Z. Non-intubated Thoracoscopic Surgery-Tips and Tricks From Anesthesiological Aspects: A Mini Review. Front Surg 2022; 8:818456. [PMID: 35223971 PMCID: PMC8873170 DOI: 10.3389/fsurg.2021.818456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background In the last few decades, surgical techniques have been developed in thoracic surgery, and minimally invasive strategies such as multi-and uniportal video-assisted thoracic surgery (VATS) have become more favorable even for major pulmonary resections. With this surgical evolution, the aesthetic approach has also changed, and a paradigm shift has occurred. The traditional conception of general anesthesia, muscle relaxation, and intubation has been re-evaluated, and spontaneous breathing plays a central role in our practice by performing non-intubated thoracoscopic surgeries (NITS-VATS). Methods We performed a computerized search of the medical literature (PubMed, Google Scholar, Scopus) to identify relevant articles in non-intubated thoracoscopic surgery using the following terms [(non-intubated) OR (non-intubated) OR (awake) OR (tubeless) OR (regional anesthesia)] AND [(VATS) OR (NIVATS)], as well as their Medical Subject Headings (MeSH) terms. Results Based on the outcomes of the reviewed literature and our practice, it seems that pathophysiological concerns can be overcome by proper surgical and anesthetic management. All risks are compensated by the advantageous physiological changes that result in better patient outcomes. With the maintenance of spontaneous breathing, the incidence of potential adverse effects of mechanical ventilation, such as ventilator-induced lung injury and consequent postoperative pulmonary complications, can be reduced. The avoidance of muscle relaxants also results in the maintenance of contraction of the dependent hemidiaphragm and lower airway pressure levels, which may lead to better ventilation-perfusion matching. These techniques can be challenging for surgeons as well as for anesthetists; hence, a good knowledge of physiological and pathophysiological changes, clear inclusion and exclusion and intraoperative conversion criteria, and good communication between team members are essential. Conclusion NITS-VATS seems to be a feasible and safe method in selected patients with evolving importance as a part of the minimally invasive surgical and anesthetic conception and has a role in reducing perioperative complications, which is crucial in the thoracic surgical patient population.
Collapse
Affiliation(s)
- Csongor Fabo
- Department of Anesthesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | - Adam Oszlanyi
- Department of Cardiac Surgery, Zala County St. Raphael Hospital, Zalaegerszeg, Hungary
| | - Judit Lantos
- Department of Neurology, Bács- Kiskun County Hospital, Kecskemét, Hungary
| | - Ferenc Rarosi
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | | | - Zsanett Barta
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Tibor Nemeth
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Zsolt Szabo
- Ars Medica Laser Surgery Hospital, Budapest, Hungary
- *Correspondence: Zsolt Szabo
| |
Collapse
|
47
|
Gazi AH, Wittbrodt MT, Harrison AB, Sundararaj S, Gurel NZ, Nye JA, Shah AJ, Vaccarino V, Bremner JD, Inan OT. Robust Estimation of Respiratory Variability Uncovers Correlates of Limbic Brain Activity and Transcutaneous Cervical Vagus Nerve Stimulation in the Context of Traumatic Stress. IEEE Trans Biomed Eng 2022; 69:849-859. [PMID: 34449355 PMCID: PMC8853700 DOI: 10.1109/tbme.2021.3108135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Variations in respiration patterns are a characteristic response to distress due to underlying neurorespiratory couplings. Yet, no work to date has quantified respiration pattern variability (RPV) in the context of traumatic stress and studied its functional neural correlates - this analysis aims to address this gap. METHODS Fifty human subjects with prior traumatic experiences (24 with posttraumatic stress disorder (PTSD)) completed a ∼3-hr protocol involving personalized traumatic scripts and active/sham (double-blind) transcutaneous cervical vagus nerve stimulation (tcVNS). High-resolution positron emission tomography functional neuroimages, electrocardiogram (ECG), and respiratory effort (RSP) data were collected during the protocol. Supplementing the RSP signal with ECG-derived respiration for quality assessment and timing extraction, RPV metrics were quantified and analyzed. Specifically, correlation analyses were performed using neuroactivity in selected limbic regions, and responses to active and sham tcVNS were compared. RESULTS The single-lag unscaled autocorrelation of respiration rate correlated negatively with left amygdala activity and positively with right rostromedial prefrontal cortex (rmPFC) activity for non-PTSD; it also correlated negatively with left and right insulae activity and positively with right rmPFC activity for PTSD. The single-lag unscaled autocorrelation of expiration time was greater following active stimulation for non-PTSD. CONCLUSION Quantifying RPV is of demonstrable importance to assessing trauma-induced changes in neural function and tcVNS effects on respiratory physiology. SIGNIFICANCE This is the first demonstration of RPV's pertinence to traumatic stress- and tcVNS-induced neurorespiratory responses. The open-source processing pipeline elucidated herein uniquely includes both RSP and ECG-derived respiration signals for quality assessment, timing estimation, and RPV extraction.
Collapse
|
48
|
Vitale-Cross L, Szalayova I, Scoggins A, Palkovits M, Mezey E. SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: clinical implications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35018378 PMCID: PMC8750701 DOI: 10.1101/2021.12.30.474580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) infections result in the temporary loss of smell and taste (anosmia and dysgeusia) in about one third of confirmed cases. Several investigators have reported that the viral spike protein receptor is present in olfactory neurons. However, no study has been published to date showing the presence of viral entry sites angiotensin-converting enzyme 2 (ACE2), neuropilin1 (NRP1), and TMPRSS2, the serine protease necessary for priming the viral proteins, in human nerves that are responsible for taste sensation (cranial nerves: VII, IX and X). We used immunocytochemistry to examine three postmortem donor samples of the IXth (glossopharyngeal) and Xth (vagal) cranial nerves where they leave/join the medulla from three donors to confirm the presence of ACE2, NRP1 and TMPRSS2. Two samples were paraffin embedded; one was a frozen sample. In addition to staining sections from the latter, we isolated RNA from it, made cDNA, and performed PCR to confirm the presence of the mRNAs that encode the proteins visualized. All three of the proteins required for SARS-CoV-2 infections appear to be present in the human IXth and Xth nerves near the medulla. Direct infection of these nerves by the COVID-19 virus is likely to cause the loss of taste experienced by many patients. In addition, potential viral spread through these nerves into the adjacent brainstem respiratory centers might also aggravate the respiratory problems patients are experiencing.
Collapse
Affiliation(s)
- L Vitale-Cross
- Adult Stem Cell Section, NIDCR, NIH, 30 Convent Drive, Bethesda, Md 20892
| | - I Szalayova
- Adult Stem Cell Section, NIDCR, NIH, 30 Convent Drive, Bethesda, Md 20892
| | - A Scoggins
- Adult Stem Cell Section, NIDCR, NIH, 30 Convent Drive, Bethesda, Md 20892
| | | | - E Mezey
- Adult Stem Cell Section, NIDCR, NIH, 30 Convent Drive, Bethesda, Md 20892
| |
Collapse
|
49
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
50
|
Ghosh S. Breathing disorders in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:223-239. [PMID: 36031306 DOI: 10.1016/b978-0-323-91532-8.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative disorders are a diverse group of conditions caused by progressive degeneration of neurons resulting in cognitive, motor, sensory, and autonomic dysfunction, leading to severe disability and death. Pulmonary dysfunction is relatively common in these conditions, may be present early in the disease, and is less well recognized and treated than other symptoms. There are variable disorders of upper and lower airways, central control of ventilation, strength of respiratory muscles, and breathing during sleep which further impact daily activities and quality of life and have the potential to injure vulnerable neurons. Laryngopharyngeal dysfunction affects speech, swallowing, and clearance of secretions, increases the risk of aspiration pneumonia, and can cause stridor and sudden death. In Parkinson's disease, L-Dopa benefits some pulmonary symptoms but there are limited pharmacological treatment options for pulmonary dysfunction. Targeted treatments include strengthening of respiratory muscles, positive airway pressure in sleep and techniques to improve cough efficacy. Well-designed clinical trials are needed to evaluate the long-term benefits of these interventions. Challenges for the future include earlier identification of pulmonary dysfunction in the clinic, institution of the most effective treatments (based on clinical trials that measure long-term meaningful outcomes) and the development of neuroprotective treatment.
Collapse
Affiliation(s)
- Soumya Ghosh
- Perron Institute for Neurological and Translational Science, University of Western Australia and Department of Neurology, Sir Charles Gairdner and Perth Children's Hospitals, Nedlands, WA, Australia.
| |
Collapse
|