1
|
Morii A, Matsuo I, Suita K, Ohnuki Y, Ishikawa M, Ito A, Miyamoto G, Abe M, Mitsubayashi T, Mototani Y, Nariyama M, Matsubara R, Hayakawa Y, Amitani Y, Gomi K, Nagano T, Okumura S. Allopurinol attenuates development of Porphyromonas gingivalis LPS-induced cardiomyopathy in mice. PLoS One 2025; 20:e0318008. [PMID: 40179080 PMCID: PMC11967946 DOI: 10.1371/journal.pone.0318008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/08/2025] [Indexed: 04/05/2025] Open
Abstract
Oxidative stress is involved in the progression of periodontitis, independently of confounding factors such as smoking, and numerous studies suggest that periodontitis is associated with increased risk of cardiovascular disease. In this study, therefore, we examined the effects of the xanthine oxidase inhibitor allopurinol on cardiac dysfunction in mice treated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose (0.8 mg/kg/day) equivalent to the circulating level in patients with periodontal disease. Mice were divided into four groups: 1) control, 2) PG-LPS, 3) allopurinol, and 4) PG-LPS + allopurinol. After1 week, we evaluated cardiac function by echocardiography. The left ventricular ejection fraction was significantly decreased in PG-LPS-treated mice compared to the control (from 68 ± 1.3 to 60 ± 2.7%), while allopurinol ameliorated the dysfunction (67 ± 1.1%). The area of cardiac fibrosis was significantly increased (approximately 3.6-fold) and the number of apoptotic myocytes was significantly increased (approximately 7.7-fold) in the heart of the PG-LPS-treated group versus the control, and these changes were suppressed by allopurinol. The impairment of cardiac function in PG-LPS-treated mice was associated with increased production of reactive oxygen species by xanthine oxidase and NADPH oxidase 4, leading to calmodulin kinase II activation with increased ryanodine receptor 2 phosphorylation. These changes were also suppressed by allopurinol. Our results suggest that oxidative stress plays an important role in the PG-LPS-promoted development of cardiac diseases, and further indicate that allopurinol ameliorates Porphyromonas gingivalis LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery, Ibaraki Medical Center Tokyo Medical University, Ibaraki, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Go Miyamoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Mariko Abe
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takao Mitsubayashi
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ren Matsubara
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takatoshi Nagano
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Zhang Y, Zhao W, Chen Z, Wang Y, Zhang X, Chang X, Li Y, Yang J. The correlation between muscle loss and the severity of vascular stenosis in elderly patients with peripheral artery disease: a retrospective analysis utilizing computed tomography. Aging Clin Exp Res 2025; 37:78. [PMID: 40069460 PMCID: PMC11897099 DOI: 10.1007/s40520-025-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Peripheral artery disease (PAD) is a globally prevalent atherosclerotic disease associated with an increased risk of cardiovascular and cerebrovascular diseases and a poor prognosis. Skeletal muscle loss (sarcopenia) is particularly common in patients with PAD and is closely associated with poor prognosis. AIMS The aim of this study was to evaluate the area, density and fat infiltration of skeletal muscle in patients with PAD by CT, and to analyze their relationship with the degree of vascular stenosis. METHODS A total of 233 PAD patients who underwent lower extremity CTA in Beijing Hospital were included in this study. Image segmentation was performed using Slice-O-Matic® software, and parameters such as skeletal muscle area, density, and fat infiltration were measured at L3, L4, mid-thigh, and maximum soft tissue cross section of the lower leg. At the same time, the degree of lower extremity arterial stenosis was evaluated by CTA. The lower extremity arterial stenosis severity was graded as 0 (0-30%), 1 (31-50%), 2 (51-70%), 3 (71-99%), or 4 (occlusion).Then the CTA-score was calculated by summing the stenosis scores of the abdominal aorta and the lower limb arteries. RESULTS Patients were categorized into high (n = 113) and low (n = 120) CTA score groups. Among males, those in the low score group had higher muscle indices at L3, though not statistically significant. However, thigh and calf muscle areas were significantly larger in low score males (P < 0.001). High score patients had greater intermuscular fat indices. Regression analysis indicated that vascular stenosis accounted for 5% of the variance in muscle mass, with SFA, PoA, and PTA stenosis having the strongest correlations. DISCUSSION Our study reveals how vascular stenosis affects muscle mass and composition in PAD patients, with the SFA, PoA, and PTA having the greatest impact due to their key role in lower limb blood supply. Severe stenosis leads to muscle mass reduction and increased fat infiltration, possibly due to chronic inflammation and oxidative stress. These findings highlight the need to address muscle health in PAD management, as targeting muscle atrophy and fat infiltration could enhance patient outcomes. CONCLUSIONS PAD severity had a significant effect on the muscles of the lower limbs, especially the stenosis of the SFA, PoA, and PTA. CT evaluation provides a new perspective for understanding muscle loss in patients with PAD.
Collapse
Affiliation(s)
- Yanyang Zhang
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wenxin Zhao
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yixuan Wang
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xihao Zhang
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xue Chang
- Department of Imaging, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Jihong Yang
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Department of Geriatric, Beijing United Family Hospital, Beijing, 100015, China.
| |
Collapse
|
3
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. What Does Sarcopenia Have to Do with Nonalcoholic Fatty Liver Disease? Life (Basel) 2023; 14:37. [PMID: 38255652 PMCID: PMC10820621 DOI: 10.3390/life14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are global problems. The pathophysiological mechanisms that link the two entities of the disease are insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin, or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be bidirectional, so the main objective of the review was to determine the cause-and-effect relationship between the two diseases.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
4
|
Kaymaz K, Wiessner C, Bahat G, Erdogan T, Cruz-Jentoft AJ, Zapf A. Association of periodontitis with handgrip strength and skeletal muscle mass in middle-aged US adults from NHANES 2013-2014. Aging Clin Exp Res 2023; 35:1909-1916. [PMID: 37386343 PMCID: PMC10460310 DOI: 10.1007/s40520-023-02471-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES The relationship between periodontitis and sarcopenia parameters in middle-aged adults is largely unexplored. This study investigated the association between periodontitis and combined handgrip strength and skeletal muscle mass in middle-aged adults. MATERIALS AND METHODS A sub-cohort of 1912 individuals with complete periodontal and whole-body dual X-ray absorptiometry examinations from the 2013-2014 wave of the National Health and Nutrition Examination Survey (n = 10,175) were analyzed using fully adjusted multiple linear regression models for associations between periodontitis and skeletal muscle mass index (kg/m2) and combined handgrip strength (kg). RESULTS The mean age of the study cohort was 43 (± 8.4) years and 49.4% of the participants were male. In total, 612 participants (32%) were determined to have periodontitis, of which 513 (26.8%) had non-severe (mild or moderate) periodontitis, and 99 (5.2%) had severe periodontitis. In unadjusted regression models, both non-severe and severe periodontitis were associated with SMMI (βnon-severe = 1.01, 95% CI 0.50; 1.52 and βsevere = 1.42, 95% CI 0.59; 2.25) but not with cHGS. After adjusting for age, sex, education, body mass index, bone mineral density, diabetic status, education, total energy intake, total protein intake, and serum vitamin D2 + D3, periodontitis was associated with cHGS (βnon-severe = -2.81, 95% CI - 4.7; - 1.15 and βsevere = - 2.73, 95% CI - 6.31; 0.83). The association between periodontitis and SMMI remained for non-severe periodontitis (βnon-severe = 0.07, 95% CI - 0.26; 0.40 and βsevere = 0.22, 95% CI - 0.34; 0.78). CONCLUSION The present study highlights the need of further prospective research to investigate the nature and direction of the relationship between periodontitis and sarcopenia indicators. Future studies can support the screening, prevention and clinical management of sarcopenia and periodontitis, and emphasize the interdisciplinary and complementary approach between the disciplines of geriatric medicine and periodontology.
Collapse
Affiliation(s)
- Kübra Kaymaz
- The Center for Experimental Medicine, Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Christoph-Probst-Weg 1, 4th Floor, 20246, Hamburg, Germany.
| | - Christian Wiessner
- The Center for Experimental Medicine, Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Christoph-Probst-Weg 1, 4th Floor, 20246, Hamburg, Germany
| | - Gülistan Bahat
- Department of Internal Medicine, Istanbul Medical Faculty, Division of Geriatrics, Istanbul University, Istanbul, Turkey
| | - Tugba Erdogan
- Department of Internal Medicine, Istanbul Medical Faculty, Division of Geriatrics, Istanbul University, Istanbul, Turkey
| | | | - Antonia Zapf
- The Center for Experimental Medicine, Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Christoph-Probst-Weg 1, 4th Floor, 20246, Hamburg, Germany
| |
Collapse
|
5
|
Tsunoda M, Matsuo I, Ohnuki Y, Suita K, Ishikawa M, Mitsubayashi T, Ito A, Mototani Y, Kiyomoto K, Morii A, Nariyama M, Hayakawa Y, Gomi K, Okumura S. Vidarabine, an anti-herpes agent, improves Porphyromonas gingivalis lipopolysaccharide-induced cardiac dysfunction in mice. J Physiol Sci 2023; 73:18. [PMID: 37558983 PMCID: PMC10717078 DOI: 10.1186/s12576-023-00873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023]
Abstract
In this work, we examined the involvement of type 5 adenylyl cyclase (AC5) in cardiac dysfunction induced in mice given Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose equivalent to the circulating levels in periodontitis (PD) patients. Cardiac function was significantly decreased in mice given PG-LPS compared to the control, but treatment for 1 week with the AC5 inhibitor vidarabine ameliorated the dysfunction. Cardiac fibrosis and myocyte apoptosis were significantly increased in the PG-LPS group, but vidarabine blocked these changes. The PG-LPS-induced cardiac dysfunction was associated with activation of cyclic AMP/Ca2+-calmodulin-dependent protein kinase II signaling and increased phospholamban phosphorylation at threonine 17. These results suggest that pharmacological AC5 inhibition may be a promising approach to treat PD-associated cardiovascular disease.
Collapse
Affiliation(s)
- Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takao Mitsubayashi
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
6
|
Boopathi S, Priya PS, Haridevamuthu B, Nayak SPRR, Chandrasekar M, Arockiaraj J, Jia AQ. Expanding germ-organ theory: Understanding non-communicable diseases through enterobacterial translocation. Pharmacol Res 2023; 194:106856. [PMID: 37460001 DOI: 10.1016/j.phrs.2023.106856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China; Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
7
|
Rengo C, Valletta A, Liccardo D, Spagnuolo G, Corbi G, De Luca F, Lauria MR, Perrotta A, Rengo G, Ferrara N, Rengo S, Valletta R, Cannavo A. Healthy aging: when periodontal health matters. JOURNAL OF GERONTOLOGY AND GERIATRICS 2023. [DOI: 10.36150/2499-6564-n580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
9
|
Giri S, Uehara O, Takada A, Paudel D, Morikawa T, Arakawa T, Nagasawa T, Abiko Y, Furuichi Y. The effect of Porphyromonas gingivalis on the gut microbiome of mice in relation to aging. J Periodontal Res 2022; 57:1256-1266. [PMID: 36251393 DOI: 10.1111/jre.13062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE The translocation of oral bacteria, including Porphyromonas gingivalis, to the gut has been shown to alter gut microbiome. However, the effect of P. gingivalis on gut microbiome in relation to aging has not been demonstrated. We hypothesize that P. gingivalis has more detrimental effect on gut environment with increased age. The objective of this study is to investigate the effect of P. gingivalis on gut environment using aged mice. MATERIALS AND METHODS C57BL/6J mice aged 4 weeks (young) or 76 weeks (old) were divided into four groups: control-young, control-old, P. gingivalis-administered young, and P. gingivalis-administered old. P. gingivalis was orally administered thrice weekly for 5 weeks. At 30 days after the last P. gingivalis administration, 16S rRNA sequencing was performed to study the gut microbiome. The mRNA and protein expression of intestinal junctional barrier molecules and the levels of the inflammatory cytokines IL-1β and TNF-α in the serum were evaluated. RESULTS Significant differences in the gut microbiomes between the groups, in terms of taxonomic abundance, bacterial diversity, and predicted metagenome function, were observed. A significant reduction in the alpha diversity and in the abundance of beneficial bacteria, such as Akkermansia and Clostridiaceae, in the P. gingivalis-administered old mice was observed. The mRNA and protein levels of Claudin-1 and Claudin-2 in the intestine were significantly elevated, while E-cadherin was significantly downregulated in the P. gingivalis-administered old mice, as were the serum levels of IL-1β and TNF-α. CONCLUSION The effect of P. gingivalis on the gut environment is more pronounced in old mice than in young mice.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
10
|
Matsuo I, Kawamura N, Ohnuki Y, Suita K, Ishikawa M, Matsubara T, Mototani Y, Ito A, Hayakawa Y, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Gomi K, Okumura S. Role of TLR4 signaling on Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 2022; 17:e0258823. [PMID: 35648750 PMCID: PMC9159598 DOI: 10.1371/journal.pone.0258823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/14/2022] [Indexed: 12/02/2022] Open
Abstract
Oral infections, particularly periodontitis, are a well-established risk factor for cardiovascular diseases, although the molecular mechanisms involved remain elusive. The aims of the present study were to investigate the effects of lipopolysaccharide derived from Porphyromonas gingivalis (PG-LPS) on cardiac function in mice, and to elucidate the underlying mechanisms. Mice (C57BL/6) were injected with PG-LPS (0.8 mg/kg/day) with or without an inhibitor of Toll-like receptor 4 (TLR4) signaling (TAK-242, 0.8 mg/kg/day) for 4 weeks. Left ventricular ejection function was significantly decreased at 1 week (from 67 ± 0.5 to 58 ± 1.2%) and remained low at 4 weeks (57 ± 1.0%). The number of apoptotic myocytes was increased (approximately 7.4-fold), the area of fibrosis was increased (approximately 3.3-fold) and the number of 8-hydroxydeoxyguanosine-positive myocytes, a sensitive indicator of oxidative DNA damage, was increased (approximately 7.6-fold) at 4 weeks in the heart of PG-LPS treated mice. However, levels of various serum pro-inflammatory cytokines in PG-LPS-treated mice were similar to those in control mice. The impairment of cardiac function in PG-LPS-treated mice appears to involve activation of TLR4-NADPH oxidase (NOX) 4 signaling, leading to abundant production of reactive oxygen species and Ca2+ leakage from sarcoplastic reticulumn induced by calmodulin kinase II (CaMKII)-mediated phosphorylation of phospholamban (at Thr-17) and ryanodine receptor 2 (at Ser-2448). Pharmacological inhibition of TLR4 with TAK-242 attenuated the changes in cardiac function in PG-LPS-treated mice. Our results indicate that TLR4-NOX4 signaling may be a new therapeutic target for treatment of cardiovascular diseases in patients with periodontitis.
Collapse
Affiliation(s)
- Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takehiro Matsubara
- Division of BioBank, Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
11
|
Hayakawa Y, Suita K, Ohnuki Y, Mototani Y, Ishikawa M, Ito A, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Matsuo I, Kawahara H, Okumura S. Vidarabine, an anti-herpes agent, prevents occlusal-disharmony-induced cardiac dysfunction in mice. J Physiol Sci 2022; 72:2. [PMID: 35148678 PMCID: PMC10717220 DOI: 10.1186/s12576-022-00826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
We recently reported a positive relationship between occlusal disharmony and cardiovascular disease via activation of β-adrenergic signaling in mice. Furthermore, inhibition of type 5 adenylyl cyclase (AC5), a major cardiac subtype in adults, protects the heart against oxidative stress. Here, we examined the role of AC5 in the development of occlusal-disharmony-induced cardiovascular disease in bite-opening (BO) mice, prepared by cementing a suitable appliance onto the mandibular incisor. We first examined the effects of BO treatment on cardiac function in mice treated or not treated for 2 weeks with vidarabine, which we previously identified as an inhibitor of cardiac AC. Cardiac function was significantly decreased in the BO group compared to the control group, but vidarabine ameliorated the dysfunction. Cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage were significantly increased in the BO group, but vidarabine blocked these changes. The BO-induced cardiac dysfunction was associated with increased phospholamban phosphorylation at threonine-17 and serine-16, as well as increased activation of the Ca2+-calmodulin-dependent protein kinase II/receptor-interacting protein 3 signaling pathway. These data suggest that AC5 inhibition with vidarabine might be a new therapeutic approach for the treatment of cardiovascular disease associated with occlusal disharmony.
Collapse
Affiliation(s)
- Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
12
|
Matsuo I, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Ito A, Hayakawa Y, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Gomi K, Okumura S. Effects of chronic Porphylomonas gingivalis lipopolysaccharide infusion on cardiac dysfunction in mice. J Oral Biosci 2021; 63:394-400. [PMID: 34757204 DOI: 10.1016/j.job.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Periodontitis (PD) is a chronic inflammatory disease of tooth-supportive tissue. An association between PD and cardiovascular disease (CVD) has been established. Although PD is generally accepted as a risk factor for CVD, the existence of a relationship remains debatable. Possible mechanisms include the release of inflammatory mediators such as lipopolysaccharide (LPS), which may spread systemically and promote CVD. METHODS To compare the effects of lipopolysaccharide derived from Porphylomonas gingivalis (PG-LPS) on cardiac muscle in mice, mice were treated for 1 week with/without PG-LPS at a dose equivalent to the circulating level in PD patients (0.8 mg/kg/day). RESULTS Cardiac function in terms of left ventricular ejection function was significantly decreased at 1 week compared to that in the control (from 66 ± 0.5% to 57 ± 1.1%). Compared to the controls, the number of apoptotic myocytes and the area of fibrosis were significantly increased by approximately 2.7-fold and 14-fold, respectively. The impairment of cardiac function appeared to involve the activation of cAMP/PKA signaling and cAMP/calmodulin kinase II signaling (CaMKII), leading to cardiac fibrosis, myocyte apoptosis and heart failure. CONCLUSIONS Our results indicate that cAMP/PKA and cAMP/CaMKII signaling may be a new therapeutic target for the treatment of cardiovascular diseases in patients with periodontitis.
Collapse
Affiliation(s)
- Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan.
| |
Collapse
|
13
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Sarcopenic Obesity in Liver Cirrhosis: Possible Mechanism and Clinical Impact. Int J Mol Sci 2021; 22:1917. [PMID: 33671926 PMCID: PMC7919019 DOI: 10.3390/ijms22041917] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The picture of chronic liver diseases (CLDs) has changed considerably in recent years. One of them is the increase of non-alcoholic fatty liver disease. More and more CLD patients, even those with liver cirrhosis (LC), tend to be presenting with obesity these days. The annual rate of muscle loss increases with worsening liver reserve, and thus LC patients are more likely to complicate with sarcopenia. LC is also characterized by protein-energy malnutrition (PEM). Since the PEM in LC can be invariable, the patients probably present with sarcopenic obesity (Sa-O), which involves both sarcopenia and obesity. Currently, there is no mention of Sa-O in the guidelines; however, the rapidly increasing prevalence and poorer clinical consequences of Sa-O are recognized as an important public health problem, and the diagnostic value of Sa-O is expected to increase in the future. Sa-O involves a complex interplay of physiological mechanisms, including increased inflammatory cytokines, oxidative stress, insulin resistance, hormonal disorders, and decline of physical activity. The pathogenesis of Sa-O in LC is diverse, with a lot of perturbations in the muscle-liver-adipose tissue axis. Here, we overview the current knowledge of Sa-O, especially focusing on LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Osaka 531-0041, Japan;
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
| |
Collapse
|
15
|
Effects of occlusal disharmony on susceptibility to atrial fibrillation in mice. Sci Rep 2020; 10:13765. [PMID: 32792672 PMCID: PMC7426945 DOI: 10.1038/s41598-020-70791-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth loss or incorrect positioning causes occlusal disharmony. Furthermore, tooth loss and atrial fibrillation (AF) are both risk factors for ischemic stroke and coronary heart disease. Therefore, we hypothesized that occlusal disharmony-induced stress increases susceptibility to AF, and we designed the present study to test this idea in mice. Bite-opening (BO) was done by cementing a suitable appliance onto the mandibular incisor to cause occlusal disharmony by increasing the vertical height of occlusion by 0.7 mm for a period of 2 weeks. AF susceptibility, evaluated in terms of the duration of AF induced by transesophageal burst pacing, was significantly increased concomitantly with atrial remodeling, including fibrosis, myocyte apoptosis and oxidative DNA damage, in BO mice. The BO-induced atrial remodeling was associated with increased calmodulin kinase II-mediated ryanodine receptor 2 phosphorylation on serine 2814, as well as inhibition of Akt phosphorylation. However, co-treatment with propranolol, a non-selective β-blocker, ameliorated these changes in BO mice. These data suggest that improvement of occlusal disharmony by means of orthodontic treatment might be helpful in the treatment or prevention of AF.
Collapse
|
16
|
Yagisawa Y, Suita K, Ohnuki Y, Ishikawa M, Mototani Y, Ito A, Matsuo I, Hayakawa Y, Nariyama M, Umeki D, Saeki Y, Amitani Y, Nakamura Y, Tomonari H, Okumura S. Effects of occlusal disharmony on cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage in mice. PLoS One 2020; 15:e0236547. [PMID: 32716920 PMCID: PMC7384634 DOI: 10.1371/journal.pone.0236547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/08/2020] [Indexed: 12/05/2022] Open
Abstract
Occlusal disharmony leads to morphological changes in the hippocampus and osteopenia of the lumbar vertebra and long bones in mice, and causes stress. Various types of stress are associated with increased incidence of cardiovascular disease, but the relationship between occlusal disharmony and cardiovascular disease remain poorly understood. Therefore, in this work, we examined the effects of occlusal disharmony on cardiac homeostasis in bite-opening (BO) mice, in which a 0.7 mm space was introduced by cementing a suitable applicance onto the mandibular incisior. We first examined the effects of BO on the level of serum corticosterone, a key biomarker for stress, and on heart rate variability at 14 days after BO treatment, compared with baseline. BO treatment increased serum corticosterone levels by approximately 3.6-fold and the low frequency/high frequency ratio, an index of sympathetic nervous activity, was significantly increased by approximately 4-fold by the BO treatment. We then examined the effects of BO treatment on cardiac homeostasis in mice treated or not treated with the non-selective β-blocker propranolol for 2 weeks. Cardiac function was significantly decreased in the BO group compared to the control group, but propranolol ameliorated the dysfunction. Cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage were significantly increased in the BO group, but propranolol blocked these changes. The BO-induced cardiac dysfunction was associated with increased phospholamban phosphorylation at threonine-17 and serine-16, as well as inhibition of Akt/mTOR signaling and autophagic flux. These data suggest that occlusal disharmony might affect cardiac homeostasis via alteration of the autonomic nervous system.
Collapse
Affiliation(s)
- Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
17
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|