1
|
Narang A, Kaur K, Bedi N, Rajput N, Kaur G, Kaur S. Targeting Microbial Biofilms and Promoting Wound Healing in MRSA-Infected Diabetic Rats using Postbiotics of Lactiplantibacillus plantarum. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10565-8. [PMID: 40314908 DOI: 10.1007/s12602-025-10565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Recalcitrant wounds in diabetic patients are difficult to treat and often require debridement and surgical intervention. Methicillin-resistant Staphylococcus aureus (MRSA), a common pathogen isolated from the diabetic wounds, further delays healing. This study investigates the wound-healing properties of the postbiotics of Lactiplantibacillus plantarum 2034 in MRSA-infected diabetic rats. Ethyl acetate extract (EAE) of L. plantarum was prepared, and its antimicrobial and antibiofilm properties against various pathogens were determined. EAE exhibited broad spectrum antimicrobial activity against various Gram-positive and Gram-negative bacterial pathogens including MRSA. At sub-MIC concentration, EAE inhibited biofilm formation by various pathogens, resulting in maximum inhibition of 82.6% for Bacillus subtilis, 73% for MRSA, and 43% for Salmonella typhi. At MBC concentration, EAE successfully disrupted preformed biofilms of the pathogens, probably due to interference with quorum sensing as shown by its ability to inhibit violacein pigment production by a biosensor Chromobacterium violaceum CV026. Carbopol 934 gel of EAE was formulated and applied to MRSA-infected wounds in diabetic rats. EAE gel showed significant (P < 0.05) reduction in the counts of MRSA on day 4 and complete clearance by day 12. EAE-treated wounds showed significantly (P < 0.05) faster wound closure rate compared to the untreated and standard drug-treated wounds. Histological analysis showed restoration of normal architecture of skin in EAE-treated wounds compared to the untreated and standard drug-treated groups. Furthermore, EAE treatment normalised the mRNA expression of proinflammatory cytokine interleukin (IL)-6 and doubled the levels of anti-inflammatory cytokine IL-10 compared to the untreated control. In conclusion, the dual antimicrobial and anti-inflammatory properties of the EAE gel make it a strong candidate for treating chronic MRSA-infected diabetic wounds. Gas chromatography-mass spectrometry analysis of EAE revealed the presence of several antimicrobial and antioxidant compounds.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Gagandeep Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
2
|
Do AD, Quang HP, Phan QK. Probiotic cell-free supernatant as effective antimicrobials against Klebsiella pneumoniae and reduce antibiotic resistance development. Int Microbiol 2025; 28:623-632. [PMID: 39117894 DOI: 10.1007/s10123-024-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
This study evaluated the antimicrobial activity, resistance development, and synergistic potential of cell-free supernatant (CFSs) derived from Levilactobacillus brevis (Lb-CFS) and Lactiplantibacillus plantarum (Lp-CFS) against Klebsiella pneumoniae. Both CFSs exhibited potent growth inhibition, with minimum inhibitory concentrations (MICs) of 128 μg/mL and 64 μg/mL for Lb-CFS and Lp-CFS, respectively, and demonstrated dose-dependent bactericidal activity, achieving complete bacterial eradication at minimum bactericidal concentrations (MBC) within 6 h. The CFSs suppressed the expression of virulence genes (galF, wzi, and manC) and biofilm formation in a dose-dependent manner. Synergistic interactions were observed when combining CFSs with antibiotics, resulting in 2- to fourfold reductions in antibiotic MICs and MBCs. Notably, adaptive evolution experiments revealed significantly slower resistance development in K. pneumoniae against CFSs (twofold MIC/MBC increase) compared to antibiotics (16- to 128-fold increase) after 21 days. Furthermore, CFS-adapted strains exhibited increased antibiotic susceptibility, while antibiotic-adapted strains displayed cross-resistance to multiple antibiotics. No cross-resistance occurred between Lb-CFS and Lp-CFS, suggesting distinct adaptive mechanisms. These findings highlight the potential of probiotic-derived CFSs as effective antimicrobials with a lower propensity for inducing rapid resistance compared to conventional antibiotics, suggesting their promise in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Anh Duy Do
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| | - Hoa Pham Quang
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Quang Khai Phan
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
3
|
Sharma A, Rashid M, Chauhan P, Kaur S, Kaur A. In vitro antibacterial and anti-biofilm potential of an endophytic Schizophyllum commune. AMB Express 2024; 14:10. [PMID: 38245627 PMCID: PMC10799838 DOI: 10.1186/s13568-024-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
The emergence of antibiotic resistance in pathogens is one of the major health concerns facing mankind as different bacterial strains have developed resistance to antibiotics over the period of time due to overuse and misuse of antibiotics. Besides this, ability to form biofilms is another major factor contributing to antibiotic resistance, which has necessitated the need for exploration for novel and effective compounds with ability to inhibit biofilm formation. Endophytic fungi are reported to exhibit antibacterial and anti-biofilm potential and could serve as a potent source of novel antibacterial compounds. Majority of the bioactivities have been reported from fungi belonging to phylum Ascomycota. Endophytic basidiomycetes, inspite of their profound ability to serve as a source of bioactive compounds have not been exploited extensively. In present study, an attempt was made to assess the antibacterial, anti-biofilm and biofilm dispersion potential of an endophytic basidiomycetous fungus Schizophyllum commune procured from the culture collection of our lab. Ethyl acetate extract of S. commune showed good antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Vibrio cholerae. Minimum inhibitory concentration and minimum bactericidal concentration of the extract were in the range of 1.25-10 mg/ml against the tested bacterial pathogens. The mode of action was determined to be bactericidal which was further confirmed by time kill studies. Good anti-biofilm activity of S. commune extract was recorded against K. pneumoniae and S. enterica, which was further validated by fluorescence microscopy. The present study highlights the importance of endophytic basidiomycetes as source of therapeutic compounds.
Collapse
Affiliation(s)
- Avinash Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pooja Chauhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
4
|
Maslova E, Osman S, McCarthy RR. Using the Galleria mellonella burn wound and infection model to identify and characterize potential wound probiotics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001350. [PMID: 37350463 PMCID: PMC10333784 DOI: 10.1099/mic.0.001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Burn wound infection is the leading cause of mortality among burn wound patients. One of the most commonly isolated bacterial burn wound pathogens is Pseudomonas aeruginosa, a notorious nosocomial multidrug-resistant pathogen. As a consequence of its recalcitrance to frontline antibiotic therapy, there is an urgent need to develop alternative treatment avenues to tackle this pathogen. One potential alternative infection prevention measure is to seed the wound bed with probiotic bacteria. Several species of Lactobacillus, a common commensal bacterium, have been previously reported to display growth inhibition activity against wound pathogens. Various species of this genus have also been shown to augment the wound healing process, which makes it a promising potential therapeutic agent. Due to the complexity of the burn wound trauma and burn wound infection, an in vivo model is required for the development of novel therapeutics. There are multiple in vivo models that are currently available, the most common among them being the murine model. However, mammalian burn wound infection models are logistically challenging, do not lend themselves to screening approaches and come with significant concerns around ethics and animal welfare. Recently, an invertebrate burn wound and infection model using G. mellonella has been established. This model addresses several of the challenges of more advanced animal models, such as affordability, maintenance and reduced ethical concerns. This study validates the capacity of this model to screen for potential wound probiotics by demonstrating that a variety of Lactobacillus spp. can limit P. aeruginosa burn wound infection and improve survival.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Shanga Osman
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
5
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
6
|
Sharma P, Rashid M, Kaur S. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ß-lactams and ciprofloxacin against Salmonella enterica. Microb Cell Fact 2020; 19:98. [PMID: 32366243 PMCID: PMC7197179 DOI: 10.1186/s12934-020-01352-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background An increasing rate of antibiotic resistance among Gram-negative bacterial pathogens has created an urgent need to discover novel therapeutic agents to combat infectious diseases. Use of bacteriocins as therapeutic agents has immense potential due to their high potency and mode of action different from that of conventional antibiotics. Results In this study, a novel bacteriocin E20c of molecular weight 6.5 kDa was purified and characterized from the probiotic strain of Enterococcus hirae. E20c had bactericidal activities against several multidrug resistant (MDR) Gram-negative bacterial pathogens. Flow cytometry and scanning electron microscopy studies showed that it killed the Salmonella enterica cells by forming ion-permeable channels in the cell membrane leading to enhanced cell membrane permeability. Further, checkerboard titrations showed that E20c had synergistic interaction with antibiotics such as ampicillin, penicillin, ceftriaxone, and ciprofloxacin against a ciprofloxacin- and penicillin-resistant strain of S. enterica. Conclusion Thus, this study shows the broad spectrum antimicrobial activity of novel enterocin E20c against various MDR pathogens. Further, it highlights the importance of bacteriocins in lowering the minimum inhibitory concentrations of conventional antibiotics when used in combination.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
7
|
Kaur J, Sharma P, Kaur R, Kaur S, Kaur A. Assessment of alpha glucosidase inhibitors produced from endophytic fungus Alternaria destruens as antimicrobial and antibiofilm agents. Mol Biol Rep 2019; 47:423-432. [PMID: 31760557 DOI: 10.1007/s11033-019-05145-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023]
Abstract
Diabetes is considered as a major health concern worldwide and patients with diabetes are at high risk for infectious diseases. Therefore, α-glucosidase inhibitors possessing antibacterial activity along with the ability to inhibit biofilms would be better therapeutic agents for diabetic patients. In the present study, two fractions (AF1 and AF2) possessing α-glucosidase inhibitory activity were purified from an endophytic fungus Alternaria destruens (AKL-3) isolated from Calotropis gigantea. These were evaluated for their antimicrobial and antibiofilm potential against human pathogens. AF1 exhibited broad spectrum antimicrobial activity against all the tested pathogens. It also significantly inhibited biofilm formation and dispersed the preformed biofilm at sub-optimal concentrations. AF2 possessed lesser activity as compared to AF1. The active compounds were purified using semi preparative HPLC. Some of the active compounds were identified to be phenolic in nature. The active fractions were also determined to be non-mutagenic and non-cytotoxic in safety analysis. The study highlights the role of endophytic fungi as sources of α-glucosidase inhibitors with antimicrobial potential which can have application in management of diabetes.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Rishi L, Mittal G, Agarwal RK, Sharma T. Melioration in Anti-staphylococcal Activity of Conventional Antibiotic(s) by Organic Acids Present in the Cell Free Supernatant of Lactobacillus paraplantarum. Indian J Microbiol 2017; 57:359-364. [PMID: 28904422 DOI: 10.1007/s12088-017-0659-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
In view of emerging drug resistance in pathogens, there is a need to explore alternative strategies to combat infections. Use of probiotics is one such option. In this regard, efficacy of Lactobacillus plantarum has been reported against Staphylococcus aureus. Here, we propose that cell free supernatant (CFS) of Lactobacillus paraplantarum when used in combination with conventional antibiotics viz. ampicillin and oxacillin [to which the methicillin resistant Staphylococcus aureus (MRSA) strains were originally resistant] reduce the minimum inhibitory concentrations of these antibiotics, rendering the combination either synergistic or additive against the tested MRSA strain. The anti-staphylococcal activity was observed to be due to organic acids (acetic acid and lactic acid as confirmed by HPLC analysis) present in the CFS, as neutralization of the CFS with an alkali, sodium hydroxide (NaOH), caused the complete abrogation of its activity. The role of H2O2 and bacteriocin present in the CFS was also ruled out. The findings of this study suggest that cell free supernatant and ampicillin/oxacillin combination(s) might help in rejuvenating the use of conventional anti-staphylococcal antibiotics for the treatment of multi-drug resistant strains.
Collapse
Affiliation(s)
- Lavanya Rishi
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Rama Nagar, Dehradun, Uttarakhand 248140 India
| | - Garima Mittal
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Rama Nagar, Dehradun, Uttarakhand 248140 India
| | - Rajeev Kumar Agarwal
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Rama Nagar, Dehradun, Uttarakhand 248140 India
| | - Taruna Sharma
- Department of Pharmacology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Rama Nagar, Dehradun, Uttarakhand 248140 India
| |
Collapse
|
9
|
Shokri D, Rabbani Khorasgani M, Zaghian S, Fatemi SM, Mohkam M, Ghasemi Y, Taheri-Kafrani A. Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates. Jundishapur J Microbiol 2016; 9:e32795. [PMID: 27800131 PMCID: PMC5080677 DOI: 10.5812/jjm.32795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/25/2015] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Background The emergence of pan-drug resistant strains (PDR) of Pseudomonas aeruginosa has led to renewed efforts to identify alternative agents, such as bacteriocins and bacteriocin-like inhibitory substances (BLISs). Objectives The aims of this study were to determine the acquired resistance profiles of multidrug-resistant (MDR), extensively drug-resistant (XDR), and PDR P. aeruginosa isolates based on the revised definitions of the CDC and ECDC and to screen and characterize effective BLISs against these isolates. Patients and Materials In a cross-sectional study, 96 P. aeruginosa strains were isolated during a 12-month period. The resistance profiles of these isolates were determined as MDR, XDR, and PDR, and the data were analyzed using WHONET5.6 software. A BLIS against the P. aeruginosa strains was characterized based on its physicochemical properties, size, growth curves, and production profiles. Results Among the 96 isolates of P. aeruginosa, 2 (2.1%), 94 (97.9%), and 63 (65.6%) were non-MDR, MDR, and XDR, respectively, and 1 (1.1%) was PDR. The most effective antibiotics against these isolates were polymyxins and fosfomycin. A BLIS isolated from the P. aeruginosa DSH22 strain had potent activity against 92 (95.8%) of the 96 isolates. The BLIS was heat stable, (up to 100°C for 10 min), UV stable, and active within a pH range of 3 - 9. The activity of BLIS disappeared when treated with trypsin, proteinase K, and pepsin, indicating its proteinous nature. Based on its size (25 kDa), the BLIS may belong to the large colicin-like bacteriocin family. BLIS production started in the midexponential phase of growth, and the maximum level (2700 AU/mL) occurred in the late-stationary phase after 25 hours of incubation at 30°C. Conclusions This BLIS with broad-spectrum activity may be a potential agent for the treatment or control of drug-resistant strains of P. aeruginosa infection.
Collapse
Affiliation(s)
- Dariush Shokri
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
| | - Mohammad Rabbani Khorasgani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
- Corresponding author: Mohammad Rabbani Khorasgani, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran. Tel: +98-03137932480, Fax: +98-3137932456, E-mail:
| | - Saeideh Zaghian
- Nanobiotechnology Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Seyed Masih Fatemi
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
| | - Milad Mohkam
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, IR Iran
| |
Collapse
|