1
|
Malekiantaghi A, Ghanaati F, Shabani-Mirzaee H, Shariat M, Mojtahedi SY, Eftekhari K. Lactobacillus rhamnosus Helps to Reduce the Duration of Bleeding in Breastfed Infants with Allergic Proctocolitis. Breastfeed Med 2025; 20:59-64. [PMID: 39417285 DOI: 10.1089/bfm.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background: Cow's milk protein allergy (CMPA) is the most common food allergy in infants. The current standard of care (SOC) involves eliminating the allergen from both the infant's and mother's diet for 2-4 weeks. The purpose of this study is to assess the effectiveness of Lactobacillus rhamnosus (Ramnoflor) in reducing the duration of bleeding in these infants. Methods: This randomized clinical trial was conducted at Bahrami Children's Hospital on breastfed infants who were diagnosed with CMPA and had a positive occult blood (OB) test. Patients were randomly assigned to either the control or case groups. All patients received SOC therapy, with the case group receiving Ramnoflor and the control group receiving a placebo. Data were recorded on the checklist, and the children were followed and visited three times during the study, with an OB assessment at each visit. Results: The study enrolled 48 infants. Among the infants in the case group, the OB test was positive in four cases (8.3%) on the fifth day. However, there were no positive cases on the 14th and 30th days. The prevalence of this test was significantly lower in patients who received probiotics compared to the control group on the fifth day (p < 0.001). There were no positive OB tests on the 14th and 30th days in any of the groups, and no significant difference was observed between the groups. Conclusion: The addition of L. rhamnosus to SOC therapy led to a decrease in the duration of rectal bleeding in infants with CMPA compared to the control group.
Collapse
Affiliation(s)
- Armen Malekiantaghi
- Department of Pediatric, Bahrami Children's Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghanaati
- Department of Pediatric, Bahrami Children's Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Shabani-Mirzaee
- Department of Pediatric Endocrinology, Bahrami Children's Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mamak Shariat
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Yousef Mojtahedi
- Department of Pediatric Nephrology, Bahrami Children's Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Eftekhari
- Department of Pediatric, Pediatric Gastroenterology and Hepatology Research Center, Bahrami Children's Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tan-Lim CSC, Esteban-Ipac NAR. Systematic review and meta-analysis on probiotics as treatment for food allergies among pediatric patients: A 2024 update. Pediatr Allergy Immunol 2025; 36:e70028. [PMID: 39803979 DOI: 10.1111/pai.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 05/02/2025]
Abstract
This systematic review updated the available evidence on the effectiveness and safety of probiotics as treatment of food allergy among pediatric patients. We conducted a systematic search for all randomized controlled trials available until March 13, 2024 that evaluated the effectiveness and safety of probiotics for treating pediatric food allergy. Two authors independently conducted the search, screening, and data extraction. Data analysis and synthesis were done using Review Manager 5.4 software. We included 13 articles involving 1608 pediatric patients with food allergy. Probiotics probably has no effect on reducing eczema scores among infants with CMA (MD -1.29 points, 95% CI -4.14, 1.56; moderate certainty of evidence), based on two studies. Probiotics may reduce eczema scores for children with various types of allergy (MD -23.08 points, 95% CI -27.55, -18.61; low certainty of evidence), based on one study. It is uncertain whether probiotics may lead to tolerance acquisition among infants with CMA (RR 0.58, 95% CI 0.34, 1.00) due to very low certainty of evidence. Subgroup analysis based on time period showed significant benefit in inducing tolerance after at least 2 years (RR 0.44, 95% CI 0.29, 0.67; moderate certainty of evidence), suggesting a duration-dependent effect of probiotic usage. Subgroup analysis by probiotic preparation showed significant benefit for the LGG strain (RR 0.41, 95% CI 0.28, 0.62). Probiotics were generally well tolerated by the study participants. Further well-designed RCTs focusing on specific types of food allergy, as well as the use of standardized probiotic strains, outcome measurement, and longer follow-up periods are needed to draw clinically relevant conclusions on the role of probiotics in treating children with food allergy.
Collapse
Affiliation(s)
- Carol Stephanie C Tan-Lim
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
3
|
Chen X, Yang S, Guo Z, Li B, Wang Z, Jiang L. Human milk oligosaccharides and milk fat globule membrane reduce allergic reactions in mice through the modulation of gut microbiota and metabolic functions. Food Funct 2024; 15:11252-11265. [PMID: 39470601 DOI: 10.1039/d4fo03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Human milk oligosaccharides (HMOs) and the milk fat globule membrane (MFGM) represent novel treatments for cow's milk allergy (CMA). They exhibit the beneficial attribute of diminishing nutrient damage when compared to conventional enzymatic digestion of milk proteins. However, the effects and mechanisms underlying the synergistic interaction between HMOs and the MFGM in allergy treatment remain unclear. Consequently, this study was undertaken to assess the protective properties of HMOs and the MFGM against CMA and to elucidate their potential mechanisms in a mouse model of β-lactoglobulin (BLG)-induced allergy. The findings demonstrated that HMOs and the MFGM could significantly reduce the allergy score and splenic index, and they diminished the levels of inflammatory mediators (total immunoglobulin E (IgE), specific IgE, histamine, and mMCP-1), while concurrently bolstering tight junctions (ZO-1, claudin-1, and occludin), and reducing intestinal permeability. Notably, HMOs and the MFGM exhibited optimal synergy. In addition, HMOs and the MFGM synergistically mitigated the immune response to Th2 overactivity in allergy by the promotion of Th1 and Treg cell responses, thereby suppressing the levels of inflammatory cytokines IL-4 and IL-5. Analysis of the gut microbiota and its metabolic activities revealed that HMOs and the MFGM increased the abundance of Lactobacillus and Butyricicoccus, leading to higher production of butyrate. Furthermore, these beneficial bacteria and the resultant butyrate also contributed to the suppression of allergy-associated bacterial populations such as Desulfovibrio and Rikenellaceae. In summary, HMOs and the MFGM acted in synergy to modulate inflammatory responses and ameliorate barrier damage, contributing to the mitigation of CMA, a process potentially linked to gut microbiota dynamics and the resultant butyrate metabolism. This effect may be related to the gut microbiota and its metabolic production of butyrate.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengjun Yang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhengtao Guo
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhongjiang Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Di Costanzo M, Vella A, Infantino C, Morini R, Bruni S, Esposito S, Biasucci G. Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients 2024; 16:297. [PMID: 38257190 PMCID: PMC10819136 DOI: 10.3390/nu16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Food allergy represents a failure of oral tolerance mechanisms to dietary antigens. Over the past few years, food allergies have become a growing public health problem worldwide. Gut microbiota is believed to have a significant impact on oral tolerance to food antigens and in initiation and maintenance of food allergies. Therefore, probiotics have also been proposed in this field as a possible strategy for modulating both the gut microbiota and the immune system. In recent years, results from preclinical and clinical studies suggest a promising role for probiotics in food allergy prevention and treatment. However, future studies are needed to better understand the mechanisms of action of probiotics in food allergies and to design comparable study protocols using specific probiotic strains, defined doses and exposure times, and longer follow-up periods.
Collapse
Affiliation(s)
- Margherita Di Costanzo
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Adriana Vella
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Claudia Infantino
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Riccardo Morini
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Simone Bruni
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Carucci L, Coppola S, Carandente R, Canani RB. Targeting Food Allergy with Probiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:79-93. [PMID: 39060732 DOI: 10.1007/978-3-031-58572-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The globally dramatic increase in food allergy prevalence and severity is demanding effective preventive and therapeutic strategies. Food allergy derives from a defect of immune tolerance mechanisms. Immune tolerance is modulated by gut microbiome composition and function, and gut microbiome dysbiosis has been associated with the development of food allergy. Selected probiotic strains could regulate immune tolerance mechanisms. The mechanisms are multiple and are still not completely defined. Increasing evidence is providing useful information on the choice of optimal bacterial species/strains, dosage, and timing for intervention. The increased knowledge on the crucial role played by postbiotic gut microbiome-derived metabolites, such as butyrate, is also opening the way to a post- biotic approach in the stimulation of immune tolerance.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Rosilenia Carandente
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Strisciuglio C, Vitale A, Perna F, Garziano F, Dolce P, Vitale S, Micillo T, Oglio F, Del Giudice MM, Matarese G, Gianfrani C. Bifidobacteria modulate immune response in pediatric patients with cow's milk protein allergy. Pediatr Res 2023; 94:1111-1118. [PMID: 36959319 DOI: 10.1038/s41390-023-02534-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/15/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND In children with an allergy to cow's milk proteins (CMA), the altered composition of intestinal microbiota influences the immune tolerance to milk proteins (CMP). This study aims to investigate the effect of probiotics on the phenotype and activation status of peripheral basophils and lymphocytes in a pediatric CMA cohort. METHODS CMA children underwent 45 days of treatment with Bifidobacteria. The basophil degranulation and the immune phenotype of B cells, T helper cells, and regulatory T cells were analyzed in peripheral blood at diagnosis (T0), after a 45-day probiotic treatment (T1), and 45 days after the probiotic wash-out (T2). RESULTS We observed in probiotic-treated CMA patients a decrease in naive T lymphocytes. Among the CD3+ cell subsets, both naive and activated CD4+ cells resulted markedly reduced after taking probiotics, with the lowest percentages at T2. A decreased basophil degranulation was observed in response to all analyzed CMP at T1 compared to T0. CONCLUSIONS The probiotic treatment resulted in a decrease of circulating naive and activated CD4+ T cells, as well as degranulating basophils. These data suggest that the Bifidobacteria could have a beneficial effect in the modulation of oral tolerance to CMP. TRIAL REGISTRATION ISRCTN69069358. URL of registration: https://www.isrctn.com/ISRCTN69069358 . IMPACT Probiotic treatment with Bifidobacteria induces a reduction of both naive and activated circulating CD4+ T cells in pediatric patients with cow's milk allergy (CMA). The probiotic supplementation induces a decreased basophil degranulation. The immunological tolerance persists even after 45 days of the probiotic wash-out. Bifidobacteria in vivo supplementation down-modulates the activation of innate and adaptive immunity in pediatric patients with cow's milk allergy. Bifidobacteria contribute to the development of immune tolerance in CMA patients.
Collapse
Affiliation(s)
- Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Alessandra Vitale
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Perna
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Federica Garziano
- U.O.C Clinical Biochemistry, A.O.R.N. Ospedale dei Colli, Naples, Italy
| | - Pasquale Dolce
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, CNR, Naples, Italy
| | - Teresa Micillo
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Franca Oglio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Biotechnology Science, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
7
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Wu Y, Zhang G, Wang Y, Wei X, Liu H, Zhang L, Zhang L. A Review on Maternal and Infant Microbiota and Their Implications for the Prevention and Treatment of Allergic Diseases. Nutrients 2023; 15:nu15112483. [PMID: 37299446 DOI: 10.3390/nu15112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Allergic diseases, which are closely related to the composition and metabolism of maternal and infant flora, are prevalent in infants worldwide. The mother's breast milk, intestinal, and vaginal flora directly or indirectly influence the development of the infant's immune system from pregnancy to lactation, and the compositional and functional alterations of maternal flora are associated with allergic diseases in infants. Meanwhile, the infant's own flora, represented by the intestinal flora, indicates and regulates the occurrence of allergic diseases and is altered with the intervention of allergic diseases. By searching and selecting relevant literature in PubMed from 2010 to 2023, the mechanisms of allergy development in infants and the links between maternal and infant flora and infant allergic diseases are reviewed, including the effects of flora composition and its consequences on infant metabolism. The critical role of maternal and infant flora in allergic diseases has provided a window for probiotics as a microbial therapy. Therefore, the uses and mechanisms by which probiotics, such as lactic acid bacteria, can help to improve the homeostasis of both the mother and the infant, and thereby treat allergies, are also described.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yucong Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Wei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Niu Z, Zou M, Bei T, Zhang N, Li D, Wang M, Li C, Tian H. Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li H, Wang J, Fu Y, Zhu K, Dong Z, Shan J, Di L, Jiang S, Yuan T. The Bioavailability of Glycyrrhizinic Acid Was Enhanced by Probiotic Lactobacillus rhamnosus R0011 Supplementation in Liver Fibrosis Rats. Nutrients 2022; 14:nu14245278. [PMID: 36558437 PMCID: PMC9782010 DOI: 10.3390/nu14245278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glycyrrhizinic acid (GL) is clinically applied to treat liver injury, and the bioavailability of orally administered GL is closely related to the gut microbiota. Therefore, the dysbiosis of gut flora in liver injury could significantly influence GL bioavailability. Still, less is known about the impact of probiotic supplementation on the bio-absorption process of oral medication, especially under a pathological state. Herein, probiotic L. rhamnosus R0011 (R0011) with a high viability in the harsh gastrointestinal environment was selected, and the effect of R0011 on the GL bioavailability in rats was investigated. Four groups of rats (n = 6 per group) were included: the normal group (N group), the normal group supplemented with R0011 (NLGG group), CCl4-induced chronic liver injury model (M group), and the model group supplemented with R0011 (MLGG group). Our results showed that liver injury was successfully induced in the M and MLGG groups via an intraperitoneal injection of 50% (v/v) CCl4 solution. Healthy rats supplemented with R0011 could increase the bioavailability of GL by 1.4-fold compared with the normal group by plasma pharmacokinetic analysis. Moreover, the GL bioavailability of MLGG group was significantly increased by 4.5-fold compared with the model group. R0011 directly improved gut microbial glucuronidase and downregulated the host intestinal drug transporter gene expression of multidrug resistance protein 2 (MRP2). More critically, R0011 restored the gut microbiota composition and regulated the metabolic function, significantly enhancing the microbial tryptophan metabolic pathway compared with the pathological state, which may indirectly promote the bioavailability of GL. Overall, these data may provide possible strategies by which to address the low bioavailability of traditional medicine through probiotic intervention.
Collapse
Affiliation(s)
- Huifang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ke Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiling Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence:
| |
Collapse
|
11
|
Coppola S, Carucci L, De Michele R, Berni Canani R. The potential role of preventive and therapeutic immunonutrition strategies for pediatric food allergy: A mini-review. Front Nutr 2022; 9:1050554. [DOI: 10.3389/fnut.2022.1050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Food allergy (FA) represents one of the main chronic conditions of the pediatric population. The gut microbiome (GM)-immune system axis is a milestone in affecting FA susceptibility. The dynamic and bidirectional crosstalk between the GM and immune system starts early in life, and it is deeply modulated during the first 1,000 days of life. Nutritional factors during this crucial period mainly influence the proper GM-immune system development and function across the lifespan, with potential beneficial or detrimental effects on health status. Immunonutrition strategies, applied from conception, could represent an innovative target for prevention and treatment of pediatric FA. Here we described the potential role of preventive and therapeutic immunonutrition strategies for pediatric FA, highlighting putative future perspectives in this field.
Collapse
|
12
|
Bai J, Zhao X, Zhang M, Xia X, Yang A, Chen H. Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Crit Rev Food Sci Nutr 2022; 64:3623-3637. [PMID: 36218372 DOI: 10.1080/10408398.2022.2133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy has become a major public health problem all over the world. Evidence showed that allergic reactions induced by food proteins often lead to disturbances in the gut microbiota (symbiotic bacteria). Gut microbiota plays an important role in maintaining the balance between intestinal immune tolerance and allergic reactions. Dietary intervention has gradually become an important method for the prevention and treatment of allergic diseases, and changing the composition of gut microbiota through oral intake of prebiotics and probiotics may serve as a new effective adjuvant treatment measure for allergic diseases. In this paper, the main mechanism of food allergy based on intestinal immunity was described firstly. Then, the clinical and experimental evidence showed that different prebiotics and probiotics affect food allergy by changing the structure and composition of gut microbiota was summarized. Moreover, the molecular mechanism in which the gut microbiota and their metabolites may directly or indirectly regulate the immune system or intestinal epithelial barrier function to affect food immune tolerance of host were also reviewed to help in the development of food allergy prevention and treatment strategies based on prebiotics and probiotics.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaoli Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Maolin Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinlei Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Uwaezuoke SN, Ayuk AC, Eze JN, Odimegwu CL, Ndiokwelu CO, Eze IC. Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: A systematic review of randomized controlled trials. Front Pediatr 2022; 10:956141. [PMID: 36061384 PMCID: PMC9437454 DOI: 10.3389/fped.2022.956141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although several randomized controlled trials (RCTs) published over the past 5 years show that prenatal or postnatal probiotics may prevent or optimize the treatment of childhood asthma and atopic disorders, findings from the systematic reviews and meta-analyses of these studies appear inconsistent. More recent RCTs have focused on postnatal probiotics, and linked specific probiotic strains to better disease outcomes. OBJECTIVE This systematic review aimed to determine if postnatal probiotics are as effective as prenatal probiotics in preventing or treating childhood asthma and atopic disorders. METHODS We searched the PubMed, Medline, Google Scholar, and EMBASE databases for RCTs published within the past 5 years (from 2017 to 2022). We included only full-text RCTs on human subjects published in or translated into the English language. We retrieved relevant data items with a preconceived data-extraction form and assessed the methodological quality of the selected RCTs using the Cochrane Collaboration's tool for assessing the risk of bias in randomized trials. We qualitatively synthesized the retrieved data to determine any significant differences in study endpoints of the probiotic and placebo groups. RESULTS A total of 1,320 participants (688 and 632 in the probiotic and placebo groups) from six RCTs were investigated. One RCT showed that early Lactobacillus rhamnosus GG (LGG) led to a reduction in the cumulative incidence rate of asthma. Another study demonstrated that mixed strains of Lactobacillus paracasei and Lactobacillus fermentum could support clinical improvement in children with asthma while one trial reported a significant reduction in the frequency of asthma exacerbations using a mixture of Ligilactobacillus salivarius and Bifidobacterium breve. Three trials showed that a combination of LGG and Bifidobacterium animalis subsp lactis, Lactobacillus rhamnosus alone, and a probiotic mixture of Lactobacillus ŁOCK strains improved clinical outcomes in children with atopic dermatitis and cow-milk protein allergy. CONCLUSIONS Postnatal strain-specific probiotics (in single or mixed forms) are beneficial in preventing and treating atopic dermatitis and other allergies. Similarly, specific strains are more effective in preventing asthma or improving asthma outcomes. We recommend more interventional studies to establish the most useful probiotic strain in these allergic diseases.
Collapse
Affiliation(s)
- Samuel N. Uwaezuoke
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Adaeze C. Ayuk
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Joy N. Eze
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Chioma L. Odimegwu
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Chibuzo O. Ndiokwelu
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ikenna C. Eze
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Xavier-Santos D, Scharlack NK, Pena FDL, Antunes AEC. Effects of Lacticaseibacillus rhamnosus GG supplementation, via food and non-food matrices, on children's health promotion: A scoping review. Food Res Int 2022; 158:111518. [PMID: 35840226 DOI: 10.1016/j.foodres.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
The literature considers children both a risk group for administering probiotic strains and one of the populations that can most benefit from it. Due to the health benefits associated to probiotic supplementation, this scope review sought to formulate a critical evaluation of how Lacticaseibacillus rhamnosus GG, carried in food and non-food matrices, and experimental design may affect the health promotion of infants and children. In this study, a literature search was conducted in three scientific databases: PubMed, Web of Science, and SciELO to retrieve research, published in English or Spanish, which administered L. rhamnosus GG to infants and children with any disease or in eutrophic condition. Three reviewers with an expert supervision screened 540 articles, published between 2001 and 2022, which were retrieved from the databases. The data extracted was compiled and shown in this scoping review. In total, was included, after criteria observation, 44 articles in this review. Intestinal disorders were the most frequent outcome in these studies (36.4%) and capsules, the most common vehicle for administering the probiotic strain (40.9%). Probiotic strain dose ranged from 105 to 1012 cfu/dose of L. rhamnosus GG and intervention length extended from one to more than 6 months. Food matrix showed health effects in 57.1% of the clinical trials and non-food matrix 46.7%, which indicates that the health-promoting effect of the probiotic GG strain may be equivalent between the two forms of delivery. However, the highly heterogeneous experimental designs prevent further analysis and a systematic review and meta-analysis is recommended to address just the outcomes of studies and achieve data homogeneity in order to determine which vehicle is the most suitable for health promoting.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Nayara Kastem Scharlack
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Fabíola de Lima Pena
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | | |
Collapse
|
15
|
Zamanillo-Campos R, Coto Alonso L, Fuentes Martín MJ, Nevot Escusa P, Tejón Fernández M. Nutritional counseling for cow's milk protein allergy in infants from birth to 2 y of ages: Scoping review. Nutrition 2022; 98:111633. [PMID: 35447465 DOI: 10.1016/j.nut.2022.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Cow's milk protein allergy (CMPA) is a clinical condition that requires appropriate nutritional counseling during breastfeeding and the introduction of complementary feeding. Using evidence-based dietetic advice is critical for correct growth and development during childhood. The aim of this study was to review the most recent literature on nutritional counseling aimed at infants between 0 and 2 y of age diagnosed with CMPA. METHODS Six databases were searched and updated on August 22, 2020. Retrieved articles were screened in duplicate and independently by all the authors, and these were selected according to the following inclusion criteria: clinical trials, reviews, meta-analyses, and clinical practice guidelines published since 2013 on any dietetic intervention aimed at infant populations between 0 and 2 y of age with CMPA. Critical appraisal through the AGREE instrument and CASP tools enabled the risk of bias assessment. RESULTS We obtained 2874 results, of which 40 were included for reviewing. The retrieved information enabled us to answer all the research questions, including aspects of the nutritional counseling aimed at mothers who breastfeed infants with CMPA, as well as infants during breastfeeding and the introduction of complementary feeding. We also reviewed the specific nutritional requirements of infants with CMPA to assess nutritional supplementation and the evidence available on the use of probiotics, prebiotics, and symbiotics. CONCLUSIONS This scoping review collected, in a structured and comprehensive way, the most recent available information regarding nutritional counseling in CMPA for a successful dietetic intervention of the casuistry that may arise during early infancy.
Collapse
Affiliation(s)
- Rocío Zamanillo-Campos
- Specialization Group in Pediatric Nutrition of the Spanish Academy of Nutrition and Dietetics (AEND), Navarra, Spain; Health Research Institute of the Balearic Islands (IdISBa), Balearic Islands, Spain.
| | - Laura Coto Alonso
- Specialization Group in Pediatric Nutrition of the Spanish Academy of Nutrition and Dietetics (AEND), Navarra, Spain; Biomedal SL., Sevilla, Spain; Human Nutrition and Food Science Department, University of Granada, Granada, Spain.
| | - María Jesús Fuentes Martín
- Specialization Group in Pediatric Nutrition of the Spanish Academy of Nutrition and Dietetics (AEND), Navarra, Spain; Plexos Clinic, Teruel, Spain.
| | - Patricia Nevot Escusa
- Specialization Group in Pediatric Nutrition of the Spanish Academy of Nutrition and Dietetics (AEND), Navarra, Spain; Nutrition Center Júlia Farré, Barcelona, Spain.
| | - Marta Tejón Fernández
- Specialization Group in Pediatric Nutrition of the Spanish Academy of Nutrition and Dietetics (AEND), Navarra, Spain; Paediatric Gastroenterology and Nutrition Unit, Children's & Women's Hospital, Almería, Spain.
| |
Collapse
|
16
|
Yang J, Kuang H, Li N, Hamdy AM, Song J. The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. Crit Rev Food Sci Nutr 2022; 63:8768-8780. [PMID: 35400262 DOI: 10.1080/10408398.2022.2062294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic diseases, derived from the dysregulation of immune tolerance mechanisms, have been rising in the last two decades. Recently, increasing evidence has shown that probiotic-derived polysaccharide capsules exhibit a protective effect against allergic diseases, involving regulation of Th1/Th2 balance, induction of differentiation of T regulatory cells and activation of dendritic cells (DCs). DCs have a central role in controlling the immune response through their interaction with gut microbiota via their pattern recognition receptors, including Toll-like receptors and C-type-lectin receptors. This review discusses the effects and critical mechanism of probiotic-derived polysaccharide capsules in regulating the immune system to alleviate allergic diseases. We first describe the development of immune response in allergic diseases and recent relevant findings. Particular emphasis is placed on the effects of probiotic-derived polysaccharide capsules on allergic immune response. Then, we discuss the underlying mechanism of the impact of probiotic-derived polysaccharide capsules on DCs-mediated immune tolerance induction.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ahmed Mahmoud Hamdy
- Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Yang M, Zheng J, Zong X, Yang X, Zhang Y, Man C, Jiang Y. Preventive Effect and Molecular Mechanism of Lactobacillus rhamnosus JL1 on Food-Borne Obesity in Mice. Nutrients 2021; 13:3989. [PMID: 34836242 PMCID: PMC8621931 DOI: 10.3390/nu13113989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Probiotics can prevent obesity and related metabolic complications. In our study, the protective effect and molecular mechanism of Lactobacillus rhamnosus JL1 (separated from the feces of healthy infants) on high-fat diet mice were investigated. After 10 weeks of dietary intervention with L. rhamnosus JL1 intervention, the body weight of the JL1 group (23.78 g) was significantly lower than that of the HFD group (26.59 g, p < 0.05) and the liver index was reduced. Serum biochemical analysis showed that the TC, TG and LDL-C contents of JL1 group mice were significantly decreased (p < 0.05). Histological images of the mice livers showed that the degree of lipid action and damage of hepatic cells were improved. L. rhamnosus JL1 activated the AMPK pathway, and reduced the gene expression of PPAR-γ, LXR-α and SREBP-1C. In addition, the protein expression of PPAR-γ and LXR-α were reduced. After dietary intervention with L. rhamnosus JL1, the concentration of acetic acid, propionic acid, and butyric acid were increased significantly, especially the concentration of butyric acid, which was 63.16% higher than that of the HFD group (p < 0.05). In conclusion, this study provided a theoretical reference for the development and application of probiotics derived from healthy infant feces in health products and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (J.Z.); (X.Z.); (X.Y.); (Y.Z.); (C.M.)
| |
Collapse
|
18
|
Tan W, Zhou Z, Li W, Lu H, Qiu Z. Lactobacillus rhamnosus GG for Cow's Milk Allergy in Children: A Systematic Review and Meta-Analysis. Front Pediatr 2021; 9:727127. [PMID: 34746056 PMCID: PMC8569903 DOI: 10.3389/fped.2021.727127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Cow's milk allergy (CMA) is a common allergic disease. Probiotics have been suggested as a treatment for CMA, with Lactobacillus rhamnosus GG (LGG) being one of the important predominant choices. Despite reports on this topic, the effectiveness of application in CMA remains to be firmly established. Methods: To assess the effects of LGG on CMA in children, the PubMed/Medline, Embase, Cochrane Library, and Web of Science databases were searched for studies on LGG in treatment of CMA, which were published in the English language. Results: Ten studies were finally included. Significantly higher tolerability rates favoring LGG over controls were observed [risk ratio (RR), 2.22; 95% confidence interval (CI), 1.86-2.66; I 2 = 0.00; moderate-quality evidence]. There were no significant differences in SCORAD values favoring LGG over the placebo (mean difference, 1.41; 95% CI, -4.99-7.82; p = 0.67; very low-quality evidence), and LGG may have improved fecal occult blood (risk ratio, 0.36; 95% CI, 0.14-0.92; p = 0.03; low-quality evidence). Conclusion: We found that LGG may have moderate-quality evidence to promote oral tolerance in children with CMA and may facilitate recovery from intestinal symptoms. However, this finding must be treated with caution, and more gpowerful RCTs are needed to evaluate the most effective dose and treatment time for children with CMA. Registration number: CRD42021237221.
Collapse
Affiliation(s)
- Weifu Tan
- Department of Pediatrics, Dongguan Binhaiwan Central Hospital, Jinan University, Dongguan, China
| | - Zhicong Zhou
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wei Li
- Department of Pediatrics, Dongguan Binhaiwan Central Hospital, Jinan University, Dongguan, China
| | - Han Lu
- Department of Obstotrics and Gynocology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zemin Qiu
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Childs CE, Munblit D, Ulfman L, Gómez-Gallego C, Lehtoranta L, Recker T, Salminen S, Tiemessen M, Collado MC. Potential Biomarkers, Risk Factors and their Associations with IgE-mediated Food Allergy in Early Life: A Narrative Review. Adv Nutr 2021; 13:S2161-8313(22)00081-3. [PMID: 34596662 PMCID: PMC8970818 DOI: 10.1093/advances/nmab122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for food allergy include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers which predict the risk of developing food allergy in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy and synthesizes the currently available data indicating potential biomarkers. While there is a large body of research evidence available within each field of potential risk factors, there are very limited number of studies which span multiple methodological fields, for example including immunology, microbiome, genetic/epigenetic factors and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge confirmed food allergy in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high quality, reliable and reproducible research findings. STATEMENT OF SIGNIFICANCE Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. Identifying reliable biomarkers which predict the risk of developing food allergy would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. This review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy. This helps in identifying reliable biomarkers to predict the risk of developing food allergy, which could be valuable in both preventing morbidity and mortality and by making interventions available at the earliest opportunity.
Collapse
Affiliation(s)
- Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Daniel Munblit
- Imperial College London, London, United Kingdom,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
20
|
What influences complementary medicine use for children with eosinophilic esophagitis? Findings from a cross-sectional survey. Complement Ther Clin Pract 2021; 45:101448. [PMID: 34583253 DOI: 10.1016/j.ctcp.2021.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/16/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Utilization of complementary medicines (CMs) amongst children with eosinophilic esophagitis (EoE) in Australia is high. Carers' beliefs, perceptions and use of CM can influence the decision to use CM in children in their care. This study explores the factors influencing the use of CM for a child's EoE when the carer also uses CM. MATERIALS AND METHODS Carers of children aged 0-18 years with EoE participated in a national cross-sectional online survey, conducted in Australia between September 2018 and February 2019. Data analysis included bivariate analysis, Cramer's V, backwards stepwise logistic regression and binomial logistic regression. RESULTS Of the 181 total survey responses, 165 (91.2 %) respondents indicated they had utilized some form of CM for themselves. Children whose carer had used some form of CM for themselves were more likely to have used CM than children whose carer had not used CM (OR 4.6; p = 0.001). Of the CM self-using carers, 125 (75.8 %) had also chosen to utilize CM for their child's EoE. Use of CM in children was more likely amongst children who had used a pharmaceutical for their EoE (OR 7.51; p = 0.010), and those whose carer had consulted with "other health practitioners or health workers" for their child's EoE (OR 5.34; p < 0.001) or had consulted with a chiropractor for themselves (OR 2.70; p = 0.029). CONCLUSION High CM self-use amongst carers is associated with their decision to also use CM for their child's EoE, a concern given the absence of evidence for CM's safety and efficacy in this population. CM use in this population warrants further attention. Effective conventional medicines for EoE are limited and utilization of CM amongst children with EoE in Australia is high. The recommendation of CM for children with EoE warrants further attention given the substantial concomitant pharmaceutical care, and the absence of evidence for CM's safety and efficacy in this population. Further research into the role of CM practitioners, products, and therapies in an integrative model between CM and conventional healthcare must be undertaken.
Collapse
|
21
|
Carucci L, Coppola S, Luzzetti A, Voto L, Giglio V, Paparo L, Nocerino R, Berni Canani R. Immunonutrition for Pediatric Patients With Cow's Milk Allergy: How Early Interventions Could Impact Long-Term Outcomes. FRONTIERS IN ALLERGY 2021; 2:676200. [PMID: 35386962 PMCID: PMC8974760 DOI: 10.3389/falgy.2021.676200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cow's milk allergy (CMA) is one of the most common food allergies and one of the main causes of food-induced anaphylaxis in the pediatric age. Moreover, up to 45% of CMA children develop other atopic manifestations later in life, a phenomenon commonly named atopic march. Thus, CMA imposes a significant cost to health care systems as well as to families, and has emerged as one of the most expensive allergic diseases. The immunonutrition strategy builds its foundation on the ability of selected dietary factors to modulate immune system development and function. Recent studies highlighted the potential of immunonutrition in the management of CMA. This review is focused on the mechanisms and long-term clinical outcomes of the immunonutrition approach in children with CMA.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- *Correspondence: Laura Carucci
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Veronica Giglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Probiotics for the Management of Sepsis: Advances in Animal Models and Intensive Care Unit Environments. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sepsis frequently leads to multiple organ failure and is a major cause of morbidity and mortality in critically ill patients. Although intensive care protocols and antibiotic therapy have improved sepsis treatment, specific management is lacking with respect to efficient protection from tissue damage and long-term outcomes. Probiotics are live microbes that modulate the immune system and inflammation and colonize the gut. In this narrative review, we have traced the evolution of the administration of probiotics in an animal model of sepsis and treatment alternatives in the intensive care unit setting. First, probiotics are categorized by species before describing their modulation of the microbiota, repair of tissue-specific damage, immune response, and molecular pathways to prevent complications. The impact on therapy for infant and adult patients is also addressed. Finally, we have emphasized the challenges and gaps in current studies as well as future perspectives for further investigation. The present review can open up avenues for new strategies that employ promising probiotic strains for the treatment of sepsis and discusses their ability to prevent disease-associated long-term complications.
Collapse
|
23
|
Liu F, Kong A, Fu P, Cao QQ, Tao KS, Liu DY, Wang XB, Tong ZX, Rehman MU, Huang SC. Lactobacillus rhamnosus JYLR-005 Prevents Thiram-Induced Tibial Dyschondroplasia by Enhancing Bone-Related Growth Performance in Chickens. Probiotics Antimicrob Proteins 2021; 13:19-31. [PMID: 32504282 DOI: 10.1007/s12602-020-09670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tibial dyschondroplasia (TD) is a leg disorder caused by the abnormal development of the tibia in fast-growing poultry. Lactobacillus rhamnosus (L. rhamnosus) strains have been reported to have effects on increasing bone growth and improving osteoporosis in animals. However, whether L. rhamnosus JYLR-005 can improve bone growth in TD chickens remains unclear. In this study, we noted that L. rhamnosus JYLR-005 could not reduce the suppression of the production performance of TD broilers (p > 0.05) but had a slight protective effect on the broiler survival rate (χ2 = 5.571, p = 0.062). However, for thiram-induced TD broiler chickens, L. rhamnosus JYLR-005 could promote tibia growth by increasing tibia-related parameters, including the tibia weight (day 11, p = 0.040), tibia length (day 15, p = 0.013), and tibia mean diameter (day 15, p = 0.035). Moreover, L. rhamnosus JYLR-005 supplementation improved the normal growth and development of the tibial growth plate by maintaining the morphological structure of the chondrocytes and restored the balance of calcium and phosphorus. Taken together, these findings provide a proof of principle that L. rhamnosus JYLR-005 may represent a therapeutic strategy to treat leg disease in chickens.
Collapse
Affiliation(s)
- Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Anan Kong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Pengfei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Qin-Qin Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Kun-Sheng Tao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Di-Yi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xue-Bing Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zong-Xi Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shu-Cheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
24
|
Generation of Lactose- and Protease-Positive Probiotic Lacticaseibacillus rhamnosus GG by Conjugation with Lactococcus lactis NCDO 712. Appl Environ Microbiol 2021; 87:AEM.02957-20. [PMID: 33419737 DOI: 10.1128/aem.02957-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is the most studied probiotic bacterium in the world. It is used as a probiotic supplement in many foods, including various dairy products. However, LGG grows poorly in milk, as it neither metabolizes the main milk carbohydrate lactose nor degrades the major milk protein casein effectively. In this study, we made L. rhamnosus GG lactose and protease positive by conjugation with the dairy Lactococcus lactis strain NCDO 712 carrying the lactose-protease plasmid pLP712. A lactose-hydrolyzing transconjugant colony was obtained on agar containing lactose as the sole source of carbohydrates. By microscopic analysis and PCR with LGG- and pLP712-specific primers, the transconjugant was confirmed to have originated from LGG and to carry the plasmid pLP712. The transconjugant was named L. rhamnosus LAB49. The isolation of plasmids revealed that not only pLP712 but also other plasmids had been transferred from L. lactis into LGG during conjugation. With plasmid-specific PCR primers, four additional lactococcal plasmids were detected in LAB49. Proteolytic activity assay and SDS-PAGE analysis verified that L. rhamnosus LAB49 effectively degraded β-casein. In contrast to its parental strain, LGG, the ability of LAB49 to metabolize lactose and degrade casein enabled strong and fast growth in milk. As strains with new properties made by conjugation are not regarded as genetically modified organisms (GMOs), L. rhamnosus LAB49 could be beneficial in dairy fermentations as a probiotic starter culture.IMPORTANCE Probiotic strain Lacticaseibacillus rhamnosus GG (LGG) is widely sold on the market as a probiotic or added as a supplement in dairy foods because of its benefits in human health. However, due to the deficiency of lactose and casein utilization, LGG does not grow well in milk. On the other hand, lactose intolerance and cow's milk protein allergy are the two major problems related to milk consumption. One option to help with these two conditions is the use of probiotic or lactose- and casein-hydrolyzing bacteria in dairy products. The purpose of this study was to equip LGG with lactose/casein-hydrolyzing ability by bacterial conjugation. As a result, we generated a non-GMO LGG derivative with improved properties and better growth in milk.
Collapse
|
25
|
Chen X, Wu Y, Hu Y, Zhang Y, Wang S. Lactobacillus rhamnosus GG Reduces β-conglycinin-Allergy-Induced Apoptotic Cells by Regulating Bacteroides and Bile Secretion Pathway in Intestinal Contents of BALB/c Mice. Nutrients 2020; 13:nu13010055. [PMID: 33375432 PMCID: PMC7823992 DOI: 10.3390/nu13010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Allergy can cause intestinal damage, including through cell apoptosis. In this study, intestinal cell apoptosis was first observed in the β-conglycinin (β-CG) allergy model, and the effect of Lactobacillus rhamnosus GG (LGG) on reducing apoptosis of cells in the intestine and its underlying mechanisms were further investigated. Allergic mice received oral LGG daily, and intestinal tissue apoptotic cells, gut microbiota, and metabolites were evaluated six and nine days after intervention. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed that LGG intervention could reduce the incidence of cell apoptosis more effectively than natural recovery (NR). The results of 16S rRNA analysis indicated that LGG intervention led to an increase in the relative abundance of Bacteroides. Metabolite analysis of intestinal contents indicated that histamine, N-acetylhistamine, N(α)-γ-glutamylhistamine, phenylalanine, tryptophan, arachidonic acid malate, and xanthine were significantly decreased, and deoxycholic acid, lithocholic acid were significantly increased after the LGG intervention on β-CG allergy; the decreases in histamine and N(α)-γ-glutamylhistamine were significant compared with those of NR. In conclusion, LGG reduces apoptosis of cells induced by β-CG allergy, which may be related to regulation of Bacteroides and the bile secretion pathway.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
- Correspondence: ; Tel.: +86-22-85358445
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| |
Collapse
|