1
|
Zhao X, Ding L, Ye Q, Zhang H, Yin J, Li P, Gu Q, Han J. Highly Adhesive Lactiplantibacillus plantarum ZJ316: Structural Insights of Lipoteichoic Acid and Its Anti-Inflammatory Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7244-7255. [PMID: 40072263 DOI: 10.1021/acs.jafc.4c11788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Lactic acid bacteria are widely recognized for their probiotic properties, and their adhesion to the gastrointestinal tract is a prerequisite for their probiotic functions. This investigation aimed to screen a highly adherent Lactiplantibacillus plantarum (L. plantarum) strain and explore the impact of its surface lipoteichoic acid (LTA) on strain adhesion to intestinal epithelial cells and the immunomodulatory activity. Results demonstrated that L. plantarum ZJ316 exhibited remarkable surface properties and superior adhesion to enterocytes, and the fluorescent labeling revealed that L. plantarum ZJ316 predominantly adhered to the cecum in mice. After comparing four typical separation techniques, the most effective approaches for isolating L. plantarum ZJ316 LTA involved n-butanol extraction combined with ultrahigh pressure cell disruption. Additionally, the structure of purified LTA was characterized by multispectrometric analysis and confirmed as a typical type-I LTA. Furthermore, LTA from L. plantarum ZJ316 dose dependently impacted the adhesion to Caco-2 intestinal epithelial cells, as well as suppressed the expression of inflammatory factors in the LPS-induced RAW264.7 macrophage. Our findings validated that LTA derived from the highly adherent L. plantarum ZJ316 was one of the key adhesion factors and deserved further consideration as an important postbiotic for regulating various immunomodulatory actions.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Lina Ding
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qiuqiu Ye
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiaqi Yin
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
2
|
Zhong H, Yu Y, Abdullah, Zhang H, Du J, Sun J, Chen L, Feng F, Guan R. Lactiplantibacillus plantarum N1 derived lipoteichoic acid alleviates insulin resistance in association with modulation of the gut microbiota and amino acid metabolism. Food Funct 2025; 16:1371-1388. [PMID: 39877991 DOI: 10.1039/d4fo06100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study aimed to investigate the effects of heat-killed Lactiplantibacillus plantarum N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of Ruminococcus, Oscillospira and norank_f_Mogibacteriaceae. Three main active substances obtained from HK-N1 (membrane protein, peptidoglycan, and lipoteichoic acid) were also used to investigate their potential effects in hyperglycemic zebrafish. Only LTA reduced blood sugar and altered the gut microbiome, particularly reducing Aeromonas, which is positively related to hyperglycemia. Untargeted metabolomics revealed that LTA improved vitamin and amino acid metabolism, thereby alleviating metabolic disorders in zebrafish. Collectively, our findings indicate that HK-N1, primarily through LTA, modulated insulin sensitivity by regulating the gut microbiota and amino acid metabolism, offering a potential therapeutic strategy for insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haoxuan Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Juan Du
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Hangzhou Kangyuan Food Science & Technology Co., Ltd, Hangzhou 310012, China
| | - Jiangwei Sun
- Sanya Branch of Hainan Academy of Inspection and Testing, Shanghai 201700, China
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, San Ya, 572011, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Kango N, Nath S. Prebiotics, Probiotics and Postbiotics: The Changing Paradigm of Functional Foods. J Diet Suppl 2024; 21:709-735. [PMID: 38881201 DOI: 10.1080/19390211.2024.2363199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The rampant use of antibiotics has led to the emergence of multidrug resistance and is often coupled with gut dysbiosis. To circumvent the harmful impact of antibiotics, probiotics have emerged as an effective intervention. However, while the new probiotics are being added to the list, more recently, the nature and role of their counterparts, viz. prebiotics, postbiotics and parabiotics have also drawn considerable attention. As such, intricate relationships among these gut-biotics vis-à-vis their role in imparting health benefits is to be delineated in a holistic manner. Prebiotic dietary fibers are selectively fermented by probiotics and promote their colonization in the gut. The proliferation of probiotics leads to production of fermentation by-products (postbiotics) which affect the growth of enteropathogens by lowering the pH and producing inhibitory bacteriocins. After completing life-cycle, their dead remnants (parabiotics e.g. exopolysaccharides and cell wall glycoproteins) also inhibit adhesion and biofilm formation of pathogens on the gut epithelium. These beneficial effects are not just endemic to gut but a systemic response is witnessed at different gut-organ axes. Thus, to decipher the role of probiotics, it is imperative to unravel the interdependence between these components. This review elaborates on the recent advancements on various aspects of these gut-biotics and the mechanism of potential attributes like anti-oxidant, anti-inflammatory, anti-neoplastic, anti-lipidemic and anti-hyperglycemic benefits.
Collapse
Affiliation(s)
- Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
5
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
6
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
7
|
Kim D, Choi H, Oh H, Lee J, Hwang Y, Kang SS. Mutanolysin-Digested Peptidoglycan of Lactobacillus reuteri Promotes the Inhibition of Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses through the Regulation of Signaling Cascades via TLR4 Suppression. Int J Mol Sci 2023; 25:42. [PMID: 38203215 PMCID: PMC10779245 DOI: 10.3390/ijms25010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1β, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Donghan Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hanhee Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeonjun Oh
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jiyeon Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yongjin Hwang
- Novalacto Co., Ltd., Daejon 34016, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
8
|
Kwon Y, Yang J, Park OJ, Park C, Kim J, Lee D, Yun CH, Han SH. Lipoteichoic acid inhibits osteoclast differentiation and bone resorption via interruption of gelsolin-actin dissociation. J Cell Physiol 2023; 238:2425-2439. [PMID: 37642258 DOI: 10.1002/jcp.31099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone resorption can be caused by excessive differentiation and/or activation of bone-resorbing osteoclasts. While microbe-associated molecular patterns can influence the differentiation and activation of bone cells, little is known about the role of lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, in the regulation of bone metabolism. In this study, we investigated the effect of LTA on bone metabolism using wild-type Staphylococcus aureus and the LTA-deficient mutant strain. LTA-deficient S. aureus induced higher bone loss and osteoclast differentiation than wild-type S. aureus. LTA isolated from S. aureus (SaLTA) inhibited osteoclast differentiation from committed osteoclast precursors in the presence of various osteoclastogenic factors by downregulating the expression of NFATc1. Remarkably, SaLTA attenuated the osteoclast differentiation from committed osteoclast precursors of TLR2-/- or MyD88-/- mice and from the committed osteoclast precursors transfected with paired immunoglobulin-like receptor B-targeting siRNA. SaLTA directly interacted with gelsolin, interrupting the gelsolin-actin dissociation which is a critical process for osteoclastogenesis. Moreover, SaLTA suppressed the mRNA expression of dendritic cell-specific transmembrane protein, ATPase H+ transporting V0 subunit D2, and Integrin, which encode proteins involved in cell-cell fusion of osteoclasts. Notably, LTAs purified from probiotics, including Bacillus subtilis, Enterococcus faecalis, and Lactobacillus species, also suppressed Pam2CSK4- or RANKL-induced osteoclast differentiation. Taken together, these results suggest that LTAs have anti-resorptive activity through the inhibition of osteoclastogenesis by interfering with the gelsolin-actin dissociation and may be used as effective therapeutic agents for the prevention or treatment of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Radiation Fusion Technology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jihyun Yang
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gautier T, Olivieiro N, Ferron S, Le Pogam P, David-Le Gall S, Sauvager A, Leroyer P, Cannie I, Dion S, Sweidan A, Loréal O, Tomasi S, Bousarghin L. Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Front Microbiol 2022; 13:1023315. [DOI: 10.3389/fmicb.2022.1023315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
In the gut microbiota, resident bacteria prevent pathogens infection by producing specific metabolites. Among bacteria belonging to phylum Bacteroidota, we have previously shown that Bacteroides fragilis or its cell-free supernatant inhibited in vitro Salmonella Heidelberg translocation. In the present study, we have analyzed this supernatant to identify bioactive molecules after extraction and subsequent fractionation using a semi-preparative reversed-phase Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS). The results indicated that only two fractions (F3 and F4) strongly inhibited S. Heidelberg translocation in a model mimicking the intestinal epithelium. The efficiency of the bioactive fractions was evaluated in BALB/c mice, and the results showed a decrease of S. Heidelberg in Peyer’s patches and spleen, associated with a decrease in inflammatory cytokines and neutrophils infiltration. The reduction of the genus Alistipes in mice receiving the fractions could be related to the anti-inflammatory effects of bioactive fractions. Furthermore, these bioactive fractions did not alter the gut microbiota diversity in mice. To further characterize the compounds present in these bioactive fractions, Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) data were analyzed through molecular networking, highlighting cholic acid (CA) and deoxycholic acid. In vitro, CA had inhibitory activity against the translocation of S. Heidelberg by significantly decreasing the expression of Salmonella virulence genes such as sipA. The bioactive fractions also significantly downregulated the flagellar gene fliC, suggesting the involvement of other active molecules. This study showed the interest to characterize better the metabolites produced by B. fragilis to make them means of fighting pathogenic bacteria by targeting their virulence factor without modifying the gut microbiota.
Collapse
|
10
|
Buddhasiri S, Sukjoi C, Kaewsakhorn T, Nambunmee K, Nakphaichit M, Nitisinprasert S, Thiennimitr P. Anti-inflammatory Effect of Probiotic Limosilactobacillus reuteri KUB-AC5 Against Salmonella Infection in a Mouse Colitis Model. Front Microbiol 2021; 12:716761. [PMID: 34497597 PMCID: PMC8419263 DOI: 10.3389/fmicb.2021.716761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023] Open
Abstract
Acute non-typhoidal salmonellosis (NTS) caused by Salmonella enterica Typhimurium (STM) is among the most prevalent of foodborne diseases. A global rising of antibiotic resistance strains of STM raises an urgent need for alternative methods to control this important pathogen. Major human food animals which harbor STM in their gut are cattle, swine, and poultry. Previous studies showed that the probiotic Limosilactobacillus (Lactobacillus) reuteri KUB-AC5 (AC5) exhibited anti-Salmonella activities in chicken by modulating gut microbiota and the immune response. However, the immunobiotic effect of AC5 in a mammalian host is still not known. Here, we investigated the anti-Salmonella and anti-inflammatory effects of AC5 on STM infection using a mouse colitis model. Three groups of C57BL/6 mice (prophylactic, therapeutic, and combined) were fed with 109 colony-forming units (cfu) AC5 daily for 7, 4, and 11 days, respectively. Then, the mice were challenged with STM compared to the untreated group. By using a specific primer pair, we found that AC5 can transiently colonize mouse gut (colon, cecum, and ileum). Interestingly, AC5 reduced STM gut proliferation and invasion together with attenuated gut inflammation and systemic dissemination in mice. The decreased STM numbers in mouse gut lumen, gut tissues, and spleen possibly came from longer AC5 feeding duration and/or the combinatorial (direct and indirect inhibitory) effect of AC5 on STM. However, AC5 attenuated inflammation (both in the gut and in the spleen) with no difference between these three approaches. This study demonstrated that AC5 confers both direct and indirect inhibitory effects on STM in the inflamed gut.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kowit Nambunmee
- Major of Occupational Health and Safety, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand.,Urban Safety Innovation Research Group, Mae Fah Luang University, Chiang Rai, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Medicine, Center of Multidisciplinary Technology for Advanced Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|