1
|
Hinojosa-Avila CR, Chedraui-Urrea JJT, Estarrón-Espinosa M, Gradilla-Hernández MS, García-Cayuela T. Chemical profiling and probiotic viability assessment in Gueuze-style beer: Fermentation dynamics, metabolite and sensory characterization, and in vitro digestion resistance. Food Chem 2025; 462:140916. [PMID: 39216372 DOI: 10.1016/j.foodchem.2024.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Mirna Estarrón-Espinosa
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, el Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | | | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Aguiar-Cervera J, Visinoni F, Zhang P, Hollywood K, Vrhovsek U, Severn O, Delneri D. Effect of Hanseniaspora vineae and Saccharomyces cerevisiae co-fermentations on aroma compound production in beer. Food Microbiol 2024; 123:104585. [PMID: 39038891 DOI: 10.1016/j.fm.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024]
Abstract
In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.
Collapse
Affiliation(s)
- Jose Aguiar-Cervera
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom; Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Federico Visinoni
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Penghan Zhang
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Urska Vrhovsek
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Oliver Severn
- Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
3
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
4
|
González-Salitre L, Basilio-Cortés U, Rodríguez-Serrano G, Contreras-López E, Cardelle-Cobas A, González-Olivares L. Physicochemical and microbiological parameters during the manufacturing of a beer-type fermented beverage using selenized Saccharomycesboulardii. Heliyon 2023; 9:e21190. [PMID: 37928392 PMCID: PMC10622692 DOI: 10.1016/j.heliyon.2023.e21190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Selenium is an essential trace element in human health. However, it has been considered a widespread selenium deficiency worldwide, although the recommended daily intake is very low (55 μg per day). Strategies have been implemented to comply with the recommended doses, for example, through bioavailable selenium such as selenoamino acids. Thus, this research aimed to elaborate on a beer-type fermented beverage produced with previously selenized Saccharomyces boulardii. For this, the yeast was selenized by adding a minimum inhibitory concentration of Na2SeO3 (74 ppm) to YPD media. Subsequently, barley must fermentations were carried out for 120 h. Kinetic parameters of the fermentation and physicochemical parameters and selenium content of the beverage were measured. The yeast accumulated up to 25.12 mg/g of dry cell. Furthermore, selenization affected the fermentation rate, but the beverage's physicochemical parameters were not different from those of the control. Due to the final concentration of selenium in the beverage (0.378 mg/kg), it is considered a process that confers advantages for the safe intake of selenium with bioavailable potential. In conclusion, fermented beverages enriched with organic selenium could be produced through cell selenization to produce functional beverages and food.
Collapse
Affiliation(s)
- L. González-Salitre
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - U.A. Basilio-Cortés
- Área Académica de Biotecnología Agropecuaria, Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexico
| | - G.M. Rodríguez-Serrano
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - E. Contreras-López
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - A. Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Lugo, Spain
| | - L.G. González-Olivares
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
5
|
Oliveira SRM, Campos LL, Amaral MNS, Galotti B, Ricci MF, Vital KD, Souza RO, Uetanabaro APT, Junqueira MS, Silva AM, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Evaluation of a Functional Craft Wheat Beer Fermented with Saccharomyces cerevisiae UFMG A-905 to treat Salmonella Typhimurium infection in mice. Probiotics Antimicrob Proteins 2023; 15:1180-1192. [PMID: 35907169 DOI: 10.1007/s12602-022-09973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Functional foods containing probiotics are generally administered as dairy products. Non-dairy beverages are another possibility, but probiotic functionality must be confirmed in such vehicles. In the present study, a craft wheat beer brewed with the probiotic yeast Saccharomyces cerevisiae UFMG A-905 (905) was evaluated in a murine model of Salmonella Typhimurium infection. Unfiltered or filtered beer brewed with 905, a commercial wheat beer used as a negative control, or saline were administered orally to mice before and during oral S. Typhimurium challenge. High fecal levels of yeast were only counted in mice treated with the unfiltered 905 beer, which also had reduced mortality and body weight loss due to S. Typhimurium infection. Increased levels of intestinal IgA, translocation to liver and spleen, liver and intestinal lesions, pro-inflammatory cytokines in liver and ileum, and hepatic and intestinal myeloperoxidase and eosinophilic peroxidase activities were observed in animals infected with S. Typhimurium. All these parameters were reduced by the treatment with unfiltered 905 beer. In conclusion, the results show that a craft wheat beer brewed with S. cerevisiae UFMG A-905 maintained the probiotic properties of this yeast when administered orally to mice challenged with S. Typhimurium.
Collapse
Affiliation(s)
- Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Bruno Galotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Mayra F Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ramon O Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Mateus S Junqueira
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil
| | - Andreia M Silva
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil.
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| |
Collapse
|
6
|
Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci 2023; 6:100477. [PMID: 36935850 PMCID: PMC10020662 DOI: 10.1016/j.crfs.2023.100477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
Currently, there is greater production and consumption of craft beer due to its appreciated sensory characteristics. Unlike conventional beer, craft beers provide better health benefits due to their varied and high content of phenolic compounds (PCs) and also due to their alcohol content, but the latter is controversial. The purpose of this paper was to report on the alcoholic fraction and PCs present in craft beers and their influence on health. Despite the craft beer boom, there are few studies on the topic; there is a lot of field to explore. The countries with the most research are the United States > Italy > Brazil > United Kingdom > Spain. The type and amount of PCs in craft beers depends on the ingredients and strains used, as well as the brewing process. It was determined that it is healthier to be a moderate consumer of alcohol than to be a teetotaler or heavy drinker. Thus, studies in vitro, with animal models and clinical trials on cardiovascular and neurodegenerative diseases, cancer, diabetes and obesity, osteoporosis and even the immune system suggest the consumption of craft beer. However, more studies with more robust designs are required to obtain more generalizable and conclusive results. Finally, some challenges in the production of craft beer were detailed and some alternative solutions were mentioned.
Collapse
|
7
|
Praia AB, Herkenhoff ME, Broedel O, Frohme M, Saad SMI. Sour Beer with Lacticaseibacillus paracasei subsp. paracasei F19: Feasibility and Influence of Supplementation with Spondias mombin L. Juice and/or By-Product. Foods 2022; 11:foods11244068. [PMID: 36553809 PMCID: PMC9778371 DOI: 10.3390/foods11244068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the probiotic strain Lacticaseibacillus (L.) paracasei subsp. paracasei F19 (F19) with the yeast Saccharomyces cerevisiae US-05 (US-05), using Spondias mombin L. ('taperebá' or 'cajá') juice and by-product, in four sour-type beer formulations: control, with bagasse, juice, and juice and bagasse. The viability of F19 was evaluated by pour-plating and PMA-qPCR. Fermentability, in addition to physicochemical and sensory parameters, and aroma and flavor, were evaluated during brewery by using Headspace Solid-Phase Microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). F19 was successful in fermenting bagasse in a MRS medium (9.28 log CFU/mL in 24 h) but had a low viability in hopped wort, growing better in formulations without bagasse or juice. No difference between formulations was observed regarding sensory acceptability, and the HS-SPME/GC-MS revealed different flavors and aroma compounds. In conclusion, the production of a potential probiotic sour beer with F19 and US-05 is feasible regarding probiotic viability. However, S. mombin, as juice or bagasse, threatened probiotic survival. Different flavors and aroma compounds were detected, whereas no difference between formulations was found regarding sensory acceptability. The moderate alcohol content achieved is important for bacterial survival and for the development of a probiotic beer with health claims.
Collapse
Affiliation(s)
- Ana Beatriz Praia
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Correspondence:
| |
Collapse
|
8
|
Roldán-López D, Muñiz-Calvo S, Daroqui N, Knez M, Guillamón JM, Pérez-Torrado R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 2022; 64:3059-3074. [PMID: 36222026 DOI: 10.1080/10408398.2022.2129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food consumption of healthier products has become an essential trend in the food sector. This is also the case in beer, a biochemical process of transformation performed by yeast cells. More and more studies proclaim the need to reduce ethanol content in alcoholic drinks, certainly the most important health issue of beer consumption. In this review we gather key health issues related to beer consumption and the last advances regarding the use of yeast to attenuate those health problems. Furthermore, we have included the latest findings about the general positive impact of yeast in health as a consequence of its ability to biotransform polyphenolic compounds present in the wort, producing healthy compounds as hydroxytyrosol or melatonin, and its ability to perform as a probiotic driver. Besides, a group of population with chronic diseases as diabetes or celiac disease could take advantage of low carbohydrate or gluten-free beers, respectively. The role of yeast in beer production has been traditionally associated to its fermentative power. But here we have found a change in this dogma in the last years toward yeasts being a main driver to enhance healthy aspects of beer. The key findings are discussed and possible future directions are proposed.
Collapse
Affiliation(s)
- David Roldán-López
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Sara Muñiz-Calvo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Noemi Daroqui
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Masa Knez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Jose Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
9
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
The Novel Strain of Gluconobacter oxydans H32 Isolated from Kombucha as a Proposition of a Starter Culture for Sour Ale Craft Beer Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acetic acid bacteria (AAB) has found applications in food technology, including beverages and vinegar. Generally, AAB shows several beneficial properties and has technological usefulness. Properly selected and tested strains of this group of bacteria may constitute a new and interesting solution among starter cultures for functional food. Therefore, the study aimed to develop a sour beer technology, based on the novel strain Gluconobacter oxydans H32. The microbiological, physical-chemical (HPLC method), and sensory (QDP method) quality were determined during 6 months of storage of dark and light beer samples. The AAB count at the beginning of storage was approximately 8 log CFU mL−1, and 6 log CFU mL−1 after 6 months of storage. As a result of the metabolic activity, acetic acid, gluconic acid, and ascorbic acid were detected in the samples. The light beer had a significantly better sensory quality, especially sample BPGL with the addition of G. oxydans H32 starter culture. It was found that it is possible to develop a functional beer with the novel strain Gluconobacter oxydans H32. These Sour Ale craft beers were not only a good source of H32 strain but also its pro-health metabolites.
Collapse
|
11
|
A Natural Technology for Vacuum-Packaged Cooked Sausage Preservation with Potentially Postbiotic-Containing Preservative. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, a potentially postbiotic-containing preservative (PPCP) was produced in an axenic fermentation system with Lacticaseibacillus paracasei DTA 83 as a natural technology alternative for vacuum-packaged cooked sausage preservation. Cooked sausage-related microorganisms were obtained during the induced spoiling process in packages by pair incubation of sausages at different temperatures. The turbidity method was used to determine the microbiota susceptibility to PPCP. A controlled in situ design was performed by adding PPCP on the surface or to the mass of the sausages. Sodium lactate FCC85, which was used according to the manufacturer’s recommendation, was included in the design for comparison. The results revealed that PPCP was as efficient as FCC85, which indicates PPCP as a promising alternative to the use of natural technologies to preserve and develop functional cooked sausages. Moreover, a strategy to use preservatives in vacuum-packaged cooked sausages was presented: the concentration needed to achieve the total inhibition of the microbiota determined by an in vitro trial should be respected when adding PPCP on the sausages’ surface. When adding PPCP to the mass of the sausages, the concentration that showed a partial inhibition in vitro can also be applied in situ.
Collapse
|
12
|
Chan MZA, Liu SQ. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|