1
|
Jeong H, Hwang US, Choi H, Park YS. Assessing the Anti-Obesity Potential of Lactococcus lactis subsp. lactis CAB701: Modulation of Adipocyte Differentiation and Lipid Metabolism in In Vitro and In Vivo Models. Probiotics Antimicrob Proteins 2025; 17:1203-1216. [PMID: 38064160 DOI: 10.1007/s12602-023-10198-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 05/07/2025]
Abstract
In this study, the potential anti-obesity effects of Lactococcus lactis subsp. lactis CAB701, a probiotic strain isolated from cabbage, were investigated using in vitro and in vivo assays. L. lactis subsp. lactis CAB701 inhibited adipocyte differentiation of 3T3-L1 cells by 67%. In an in vivo model of high-fat diet-induced obese mice, treatment with L. lactis subsp. lactis CAB701 markedly reduced body weight and peri-epididymal fat mass, and significantly reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels. Molecular analysis revealed a significant modulation of key genes and proteins involved in lipid metabolism and adipogenesis. Specifically, fatty acid synthase and peroxisome proliferator-activated receptor gamma were significantly downregulated in peri-epididymal adipose tissue, alluding to the molecular mechanism underlying the anti-obesity effects exerted by L. lactis subsp. lactis CAB701. Furthermore, histological examination revealed a significant reduction in adipocyte size in the treated group, indicating effective adipose tissue remodeling. Our findings suggest that L. lactis subsp. lactis CAB701 mediates anti-obesity effects through the modulation of critical molecular markers and lipid profiles. L. lactis subsp. lactis CAB701 thus represents a promising candidate for combating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | | | | | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Han KS, Lee KY, Kim SH, Lee HG. Anti-adipogenic effect of Latilactobacillus curvatus CK17 isolated from kimchi and its potential probiotic properties. Food Sci Biotechnol 2025; 34:1995-2004. [PMID: 40196344 PMCID: PMC11972260 DOI: 10.1007/s10068-025-01819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 04/09/2025] Open
Abstract
Probiotics and their cellular constituents are pivotal in modulating lipid metabolism in adipocytes, potentially offering novel approaches to obesity prevention. This study investigates the probiotic characteristics and anti-adipogenic effects of lactic acid bacteria (LAB) strains isolated from kimchi. Twenty LAB strains, identified as Latilactobacillus sakei, Latilactobacillus curvatus, and Leuconostoc mesenteroides, were evaluated for lipase inhibitory activity. Among them, L. sakei CKC1 and L. curvatus CK17 exhibited the strongest inhibition and were selected for further study. Notably, L. curvatus CK17 significantly reduced lipid accumulation in 3T3-L1 adipocytes and downregulated key adipogenic markers, including PPARγ, C/EBPα, aP2, SREBP1c, ACC, and FAS (p < 0.05). Additionally, CK17 survived simulated digestive conditions, adhered effectively to Caco-2 cells, and exhibited antibacterial activity. These findings suggest that L. curvatus CK17 as a promising probiotic candidate for obesity prevention, with potent anti-adipogenic properties.
Collapse
Affiliation(s)
- Ki Soo Han
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Kwang Yeon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Su Hyun Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| |
Collapse
|
3
|
Baliyan N, Goel A, Sharma SK, Gupta M, Padwad Y, Kumar R. Integration of Conjugated Linoleic Acid-Producing Probiotic Strains Having Anti-adipogenic Properties with Honey and Oyster Mushrooms for the Formulation of Non-dairy Probiotic Beverage. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10525-2. [PMID: 40202588 DOI: 10.1007/s12602-025-10525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Conjugated linoleic acid (CLA) has been linked to various health benefits, including anti-cancer, anti-diabetic, and anti-obesity effects. Obesity, marked by abnormal fat deposition, increases the risk of metabolic disorders such as cardiovascular diseases and type-2 diabetes. Natural anti-adipogenic modulators with insulin sensitivity are one of the approaches to address the issue. In the present study, four distinct CLA-producing probiotic strains (Lacticaseibacillus paracasei LUL:01, Latilactobacillus curvatus LGM:16, Lactiplantibacillus paraplantarum LRJ1:09, and Enterococcus faecalis LJM:05) were assessed in vitro for their potential anti-adipogenic properties using 3T3-L1 preadipocytes. Out of four strains, LGM:16 inhibited lipid accumulation (100.27%), reduced intracellular triglyceride content (168.42, 168.16, and 153.66 mg/dL in a dose-dependent manner), and enhanced insulin sensitivity (32.23%) by increasing glucose uptake. Quantitative reverse-transcription polymerase chain reaction revealed the expression genes (PPARγ, C/EBPα, and GLUT-4) in LGM:16 strain. Consequently, LGM: 16 was used to develop a non-dairy probiotic formulation incorporating honey and Pleurotus ostreatus mushroom, ensuring a probiotic count above the minimum recommended level of 6 Log10 CFU/mL. Further, response surface methodology optimized probiotic beverage formulation to achieve favorable nutritional, good sensory profile, antioxidant, and anti-obesity activity, making it a promising candidate for health benefits.
Collapse
Affiliation(s)
- Neha Baliyan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Himachal Pradesh, Post Box No. 06, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Goel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Sanjeev Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Himachal Pradesh, Post Box No. 06, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mahesh Gupta
- Food and Nutraceutical Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Yogendra Padwad
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Himachal Pradesh, Post Box No. 06, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
4
|
Park JY, Yoon HJ, Lee NK, Paik HD. Antioxidant and Immunostimulatory Effects of Lactobacillus Strains in RAW 264.7 Macrophages via NF-κB and MAPK Signaling Pathways. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10526-1. [PMID: 40184022 DOI: 10.1007/s12602-025-10526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Modern stressors such as stress, irregular lifestyles, lack of exercise, and poor eating habits weaken immunity, thereby increasing susceptibility to infections and chronic diseases. Probiotics are functional ingredients that regulate gut microbiota, enhance immune function, and reduce oxidative stress. In this study, we identified novel probiotic candidates with antioxidant and immunostimulatory properties. Lactiplantibacillus plantarum WB4304, L. plantarum WB4305, and Levilactobacillus brevis WB4306, isolated from the traditional fermented food kimchi, exhibited acid and bile salt tolerance and strong adhesion to HT-29 cells, suggesting their suitability for intestinal colonization. Their safety was confirmed through hemolytic activity, bile salt hydrolase activity, and antibiotic susceptibility assays. Notably, L. plantarum WB4304 and L. plantarum WB4305 exhibited higher radical scavenging activities than Lacticaseibacillus rhamnosus GG. These strains significantly enhanced nitric oxide (NO) production and phagocytosis in RAW 264.7 macrophages. Immune activation was mediated by upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α through the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Among the three strains, L. plantarum WB4304 and L. plantarum WB4305 exhibited the most pronounced immunostimulatory effects. These findings suggest the potential of L. plantarum WB4304, L. plantarum WB4305, and L. brevis WB4306 as safe and functional probiotics, with promising applications in oxidative stress management and immune health enhancement.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun Joo Yoon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Sitdhipol J, Niwasabutra K, Chaiyawan N, Nuankham K, Thanagornyothin T, Tanasupawat S, Chanput WP, Phapugrangkul P, Chaipanya C, Phuengjayaem S, Poothong S, Kingkaew E. Evaluating the safety and efficacy of Lacticaseibacillus paracasei TISTR 2593 as a therapeutic probiotic for obesity prevention. Front Microbiol 2025; 16:1501395. [PMID: 40241731 PMCID: PMC11999940 DOI: 10.3389/fmicb.2025.1501395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
Several recent studies have reported the potential of probiotics in reducing body weight and fat mass and improving glucose and lipid metabolism. Therefore, probiotic administration is considered an alternative approach for treating obesity. The objective of this study was to evaluate the probiotic properties and antiadipogenic potential of the strain TISTR 2593. Through whole-genome sequence analysis, the strain TISTR 2593 was identified as Lacticaseibacillus paracasei. L. paracasei TISTR 2593 exhibited γ-hemolytic activity (nonhemolysis) and demonstrated susceptibility to antibiotics, indicating that it is generally safe for consumption. Additionally, this strain displayed desirable probiotic properties, including tolerance to artificial gastric juice and bile salts, adhesion to Caco-2 cells, and the ability to inhibit pathogens. Furthermore, L. paracasei TISTR 2593 exhibited cholesterol-reducing capability and demonstrated antiadipogenic activity. In 3T3-L1 adipocytes, treatment with 10% (w/v) heated L. paracasei TISTR 2593 cells resulted in an approximately 50% reduction in lipid accumulation, similar to the positive control (quercetin). Moreover, L. paracasei TISTR 2593 heat-killed cells dose-dependently decreased the expression levels of CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, two vital transcription factors involved in the early stage of adipocyte differentiation. These findings suggest that L. paracasei TISTR 2593 possesses probiotic and functional properties, including antiadipogenic activity, supporting its potential as a therapeutic probiotic supplement for preventing obesity. Overall, the results of this study indicate that L. paracasei TISTR 2593 exhibits promising probiotic characteristics and beneficial effects on adipogenesis modulation, reinforcing its potential as a therapeutic option in obesity prevention.
Collapse
Affiliation(s)
- Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Kanidta Niwasabutra
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Neungnut Chaiyawan
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Kamonsri Nuankham
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Thanaphol Thanagornyothin
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Somboon Tanasupawat
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | | | - Pongsathon Phapugrangkul
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Chaivarakun Chaipanya
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Sukanya Phuengjayaem
- Faculty of Science, Department of Microbiology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Saranporn Poothong
- Faculty of Veterinary Science, Department of Animal Husbandry, Chulalongkorn University, Bangkok, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
6
|
Wang S, Li J, Liu WH, Li N, Liang H, Hung W, Jiang Q, Cheng R, Shen X, He F. Lacticaseibacillus paracasei K56 inhibits lipid accumulation in adipocytes by promoting lipolysis. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3511-3521. [DOI: 10.26599/fshw.2023.9250034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Yun YR, Lee JE, Lee S, Hong SW. Exploring the anti-obesity effects of kimchi through enhanced thermogenesis in differentiated T37i brown adipocytes. Food Nutr Res 2024; 68:10738. [PMID: 39239457 PMCID: PMC11375445 DOI: 10.29219/fnr.v68.10738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Background Previous research has demonstrated the anti-obesity effects of kimchi in 3T3-L1 adipocytes and mice with diet-induced obesity by assessing the expression of obesity-associated genes. Additionally, recent studies have identified mechanisms involving thermogenesis that support these effects. Objective This study aims to further investigate the anti-obesity properties of kimchi, focusing on its impact on thermogenic activity in differentiated T37i brown adipocytes. Design The study first evaluated the antioxidant potential of kimchi using total antioxidant capacity (TAC) and ferric reducing antioxidant power (FRAP) assays. Optimal differentiation conditions for T37i adipocytes were established before proceeding with evaluations of cell viability, intracellular triglyceride (TG) content, lipid accumulation, and the expression of genes and proteins related to obesity and thermogenesis. Results Kimchi maintained over 90% cell viability in T37i adipocytes at concentrations up to 1,000 μg/mL. Efficient differentiation of T37i preadipocytes was achieved using a medium containing 10% calf serum, 2 nM 3,3',5-triiodo-L-thyronin (T3), and 100 nM insulin. Kimchi significantly reduced intracellular TG levels and lipid accumulation, compared to the control group, and enhanced the expression of genes and proteins related to thermogenesis while reducing the expression of obesity-related genes. Discussion The findings suggest that kimchi exerts its anti-obesity effects by modulating thermogenic and obesity-related pathways in brown adipocytes, which may be partially attributed to its antioxidant properties. Conclusions Kimchi shows promise as a preventive measure against obesity by influencing metabolic pathways associated with both obesity and thermogenesis in T37i brown adipocytes.
Collapse
Affiliation(s)
- Ye-Rang Yun
- World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji-Eun Lee
- World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | | |
Collapse
|
8
|
Yun YR, Lee JE. Kimchi attenuates endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice. Nutr Res 2024; 124:43-54. [PMID: 38367426 DOI: 10.1016/j.nutres.2024.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Kimchi is a traditional fermented food that contains abundant nutrients and functional ingredients with various health benefits. We previously reported that kimchi active components suppress hepatic steatosis caused by endoplasmic reticulum (ER) stress in vitro and in vivo. Therefore, we assessed the effect of kimchi on the inhibition of hepatic steatosis caused by ER stress in HepG2 cells and C57BL/6N mice to verify the hypothesis that kimchi may potentially inhibit nonalcoholic fatty liver disease. We investigated the effect of kimchi on cell viability and triglyceride concentrations in cells and on lipid profile, lipid accumulation, and expression of related genes in cells and mice with hepatic steatosis. A mechanistic study was also performed using the liver X receptor α agonist T0901317 and the AMP-activated protein kinase agonist AICAR. Kimchi was noncytotoxic and effectively reduced triglyceride concentrations and suppressed hepatic steatosis-related gene expression in cells and mice. Additionally, kimchi recovered weight loss, lowered the serum and liver tissue lipid profiles, suppressed lipid accumulation, and reduced the effects of T0901317 and AICAR on lipogenic gene expression in tunicamycin-treated mice. Our results highlight that kimchi could prevent hepatic steatosis caused by ER stress in cells and mice.
Collapse
Affiliation(s)
- Ye-Rang Yun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea.
| | - Ji-Eun Lee
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
9
|
Hyun IK, Hong SW, Ma MJ, Chang JY, Lee S, Yun YR. Anti-Obesity Effect of Kimchi with Starter Cultures in 3T3-L1 Cells. J Microbiol Biotechnol 2024; 34:123-131. [PMID: 37830224 PMCID: PMC10840470 DOI: 10.4014/jmb.2307.07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Lactic acid bacteria (LAB) isolated from kimchi have various functions, including antioxidant, anti-inflammation, and anti-obesity activities, and are therefore widely used in the food, pharmaceutical, and medical fields. To date, the health functionalities of LAB have been widely reported; however, those of kimchi fermented with LAB as a starter have rarely been reported. Therefore, research on the selection of LAB with anti-obesity activity and the health functionality of kimchi fermented with LAB is needed. In the present study, LAB with anti-obesity activity were initially selected by measuring the Oil-Red O intensity. Among the four LAB strains, anti-obesity activity was confirmed by measuring cell viability, lipid levels, and lipid accumulation. Then, starter kimchi (SK) was prepared by inoculating selected LABs, and its pH, total acidity, and salinity were compared with those of naturally fermented kimchi (NK). Lastly, anti-obesity activity was also investigated in 3T3-L1 cells. Selected LAB showed no cytotoxicity up to 107 CFU/ml, with Lactobacillus brevis JC7 and Leuconostoc mesenteroides KCKM0828 having higher inhibitory effects on TG, TC content and lipid accumulation. Most SKs showed fermentation properties similar to those of the NK. SKs showed no cytotoxicity at concentrations of up to 1,000 μg/ml. SKs showed strong inhibitory effects on TG content, lipid accumulation, and obesity-related gene and protein expressions. Taken together, the utilization of LAB as a starter could improve the health benefits of kimchi.
Collapse
Affiliation(s)
- In-Kyung Hyun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Sung Wook Hong
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Min-Ji Ma
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Ji Yoon Chang
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Ye-Rang Yun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Zhu D, Liu J, Sun X, Gao F, Duan H, Dong L, Wang X, Wu C. Pediococcus pentosaceus PR-1 modulates high-fat-died-induced alterations in gut microbiota, inflammation, and lipid metabolism in zebrafish. Front Nutr 2023; 10:1087703. [PMID: 36819708 PMCID: PMC9929557 DOI: 10.3389/fnut.2023.1087703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Obesity is a health issue worldwide. This study aimed to evaluate the beneficial effects of Pediococcus pentococcus PR-1 on the modulating of gut microbiota, inflammation and lipid metabolism in high-fat-diet (HFD)-fed zebrafish. Methods Adult zebrafish were fed a commercial (C), high fat (H, 25% fat), probiotic (P, 106 CFU/g), or high fat with probiotic (HP) diets twice daily for 5 weeks. Gut microbiota were analysed using 16S rRNA gene sequencing. Gene expressions of intestinal cytokine, intestinal TJ protein, and liver lipid metabolism were analysed by quantitative real-time polymerase chain reaction. Biochemical and histological analysis were also performed. Results and discussion P. pentosaceus PR-1 reduced body weight and BMI, indicating its anti-obesity effect. The 16S rRNA sequencing results showed HFD induced a distinct gut microbiota structure from C group, which was restored by probiotic. P. pentosaceus PR-1 improved gut health by decreasing the abundance of Ralstonia and Aeromonas which were increased induced by HFD. Moreover, probiotic restored abundance of Fusobacteria, Cetobacterium and Plesiomonas, which were decreased in HFD-fed zebrafish. The results of quantitative real-time polymerase chain reaction showed probiotic suppressed HFD-induced inflammation by decreasing the expressions of IL-1b and IL-6. Levels of hepatic TNF-α, IL-1ß, and IL-6 were reduced by probiotic in HFD-fed zebrafish. Probiotic also ameliorated gut barrier function by increasing the expressions of occludin, Claudin-1, and ZO-1. Probiotic exerted anti-adipogenic activity through regulating the expressions of SREBP1, FAS and LEPTIN. Levels of hepatic triglyceride, total cholesterol, low density lipoprotein were also reduced by probiotic. Histological analysis showed probiotic alleviated liver steatosis and injury induced by HFD. P. pentosaceus PR-1 might be useful as a dietary health supplement, especially for reducing obesity.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,*Correspondence: Yue Liu ✉
| | - Danxu Zhu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiwen Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Sun
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Feng Gao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Huiping Duan
- Department of Internal Medicine, Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,Changxin Wu ✉
| |
Collapse
|
11
|
Cha J, Kim YB, Park SE, Lee SH, Roh SW, Son HS, Whon TW. Does kimchi deserve the status of a probiotic food? Crit Rev Food Sci Nutr 2023; 64:6512-6525. [PMID: 36718547 DOI: 10.1080/10408398.2023.2170319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kimchi is a traditional fermented vegetable side dish in Korea and has become a global health food. Kimchi undergoes spontaneous fermentation, mainly by lactic acid bacteria (LAB) originating from its raw ingredients. Numerous LAB, including the genera Leuconostoc, Weissella, and Lactobacillus, participate in kimchi fermentation, reaching approximately 9-10 log colony forming units per gram or milliliter of food. The several health benefits of LAB (e.g., antioxidant and anti-inflammatory properties) combined with their probiotic potential in complex diseases including obesity, cancer, atopic dermatitis, and immunomodulatory effect have generated an interest in the health effects of LAB present in kimchi. In order to estimate the potential of kimchi as a probiotic food, we comprehensively surveyed the health functionalities of kimchi and kimchi LAB, and their effects on human gut environment, highlighting the probiotics function.
Collapse
Affiliation(s)
- Jeongmin Cha
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| |
Collapse
|