1
|
Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Fernández-Sanjurjo M, Fernández-García B, Tomás-Zapico C, Iglesias-Gutiérrez E. Modulation of microRNAs through Lifestyle Changes in Alzheimer's Disease. Nutrients 2023; 15:3688. [PMID: 37686720 PMCID: PMC10490103 DOI: 10.3390/nu15173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Paola Pinto-Hernandez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Juan Castilla-Silgado
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Almudena Coto-Vilcapoma
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Manuel Fernández-Sanjurjo
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Benjamín Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
- Department of Morphology and Cell Biology, Anatomy, University of Oviedo, 33006 Asturias, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| |
Collapse
|
2
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
3
|
Davinelli S, Scapagnini G. The Pharma-Nutritional Role of Antioxidant Phytochemicals in Health and Disease. Antioxidants (Basel) 2022; 11:antiox11061081. [PMID: 35739978 PMCID: PMC9219760 DOI: 10.3390/antiox11061081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
|
4
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA Methylation in the Adult Brain through Diet. Nutrients 2021; 13:nu13113979. [PMID: 34836233 PMCID: PMC8618930 DOI: 10.3390/nu13113979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism and nutrition have a significant role in epigenetic modifications such as DNA methylation, which can influence gene expression. Recently, it has been suggested that bioactive nutrients and gut microbiota can alter DNA methylation in the central nervous system (CNS) through the gut-brain axis, playing a crucial role in modulating CNS functions and, finally, behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation during adulthood. We will provide an overview of potential interactions among diet, gastrointestinal microbiome and epigenetic alterations on brain methylation and behavior. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, we will explore new ways to modulate DNA hydroxymethylation, which is particularly abundant in neural tissue, through diet.
Collapse
Affiliation(s)
- Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Sara Uceda
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Manuel Reiriz
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33003 Oviedo, Spain
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain
- Correspondence: ; Tel.: +34-91-452-1101
| |
Collapse
|
6
|
Filippelli M, Campagna G, Vito P, Zotti T, Ventre L, Rinaldi M, Bartollino S, dell'Omo R, Costagliola C. Anti-inflammatory Effect of Curcumin, Homotaurine, and Vitamin D3 on Human Vitreous in Patients With Diabetic Retinopathy. Front Neurol 2021; 11:592274. [PMID: 33633656 PMCID: PMC7901953 DOI: 10.3389/fneur.2020.592274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: To determine the levels of pro-inflammatory cytokines and soluble mediators (TNF-α, IL6, IL2, and PDGF-AB) in 28 vitreous biopsies taken from patients with proliferative diabetic retinopathy (PDR) and treated with increasing doses of curcumin (0. 5 and 1 μM), with or without homotaurine (100 μM) and vitamin D3 (50 nM). Materials and Methods: ELISA tests were performed on the supernatants from 28 vitreous biopsies that were incubated with bioactive molecules at 37°C for 20 h. The concentration of the soluble mediators was calculated from a calibration curve and expressed in pg/mL. Shapiro-Wilk test was used to verify the normality of distribution of the residuals. Continuous variables among groups were compared using the General Linear Model (GLM). Homoscedasticity was verified using Levene and Brown-Forsythe tests. Post-hoc analysis was also performed with the Tukey test. A p ≤ 0.05 was considered statistically significant. Results: The post-hoc analysis revealed statistically detectable changes in the concentrations of TNF-α, IL2, and PDGF-AB in response to the treatment with curcumin, homotaurine, and vitamin D3. Specifically, the p-values for between group comparisons are as follows: TNF-α: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.008, (curcumin 0.5 μM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0004, (curcumin 0.5 μM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.02, (curcumin 1 μM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.025, and (homotaurine 100 μM + vitamin D3 50 nM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.009; IL2: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0023, and (curcumin 0.5 μM vs. curcumin 0.5 μM+ homotaurine 100 μM + vitamin D3 50 nM) p = 0.0028; PDGF-AB: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.04, (untreated vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0006, (curcumin 0.5 μM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.006, and (homotaurine 100 μM + vitamin D3 50 nM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.022. IL6 levels were not significantly affected by any treatment. Conclusions: Pro-inflammatory cytokines are associated with inflammation and angiogenesis, although there is a discrete variability in the doses of the mediators investigated among the different vitreous samples. Curcumin, homotaurine, and vitamin D3 individually have a slightly appreciable anti-inflammatory effect. However, when used in combination, these substances are able to modify the average levels of the soluble mediators of inflammation and retinal damage. Multi-target treatment may provide a therapeutic strategy for diabetic retinopathy in the future. Clinical Trial Registration : The trial was registered at clinical trials.gov as NCT04378972 on 06 May 2020 ("retrospectively registered") https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid = S0009UI8&selectaction = Edit&uid = U0003RKC&ts = 2&cx = dstm4o.
Collapse
Affiliation(s)
- Mariaelena Filippelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppe Campagna
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Pasquale Vito
- Sannio Tech Consortium, Apollosa, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Zotti
- Sannio Tech Consortium, Apollosa, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Luca Ventre
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University Eye Clinic, Turin, Italy
| | - Michele Rinaldi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto dell'Omo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Sannio Tech Consortium, Apollosa, Italy
| |
Collapse
|
7
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
8
|
Scuderi L, Davinelli S, Iodice CM, Bartollino S, Scapagnini G, Costagliola C, Scuderi G. Melatonin: Implications for Ocular Disease and Therapeutic Potential. Curr Pharm Des 2020; 25:4185-4191. [PMID: 31724508 DOI: 10.2174/1381612825666191113110225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
Melatonin, an indoleamine secreted mainly by the pineal gland, is known to modulate a wide range of circadian functions. However, this neurohormone is also synthesized within the eye and acts directly on ocular structures to mediate a variety of physiological processes. This review is focused on the role and therapeutic potential of melatonin in ocular diseases. We summarize data indicating that melatonin may represent a powerful tool to counteract ocular dysfunctions such as uveitis, glaucoma, age-related macular degeneration, and diabetic retinopathy. A search strategy was conducted to identify studies in PubMed (January 1990 to September 2017). In particular, we included experimental studies, clinical trials, and reviews to provide suitable insights and elucidations regarding the action of melatonin on age-related ocular disorders. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. Additionally, melatonin appears to be safe and well-tolerated, even at high doses, and no adverse/side effects were reported. Although this topic remains under intense investigation, we can conclude that melatonin, as a single agent or in combination with other drugs, is an attractive pharmacological candidate for age-related ocular diseases.
Collapse
Affiliation(s)
- Luca Scuderi
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Clemente Maria Iodice
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gianluca Scuderi
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
9
|
Targeting Metabolic Consequences of Insulin Resistance in Polycystic Ovary Syndrome by D-chiro-inositol and Emerging Nutraceuticals: A Focused Review. J Clin Med 2020; 9:jcm9040987. [PMID: 32252239 PMCID: PMC7230532 DOI: 10.3390/jcm9040987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder associated with ovarian dysfunction, infertility, menstrual irregularity, and hormonal impairments. Over the last decade, several studies have shown that some PCOS women have insulin resistance (InsR) and hyperinsulinemia, apart from being overweight or obese. Therefore, a crucial clinical aspect is that PCOS patients might develop glucose intolerance and type 2 diabetes. Insulin-sensitizing drugs have been used as first-line treatment to improve hyperinsulinemia in women with PCOS. Although reducing PCOS symptoms and signs, several used insulin-sensitizer drugs may induce side effects, which reduces compliance. D-chiro-inositol (DCI), which is a naturally occurring stereoisomer of inositol, has been classified as an insulin-sensitizer and seems to mitigate multiple InsR-related metabolic alterations in PCOS with a safe profile. However, according to a multi-targeted design, the supplementation with DCI can be synergistically integrated by combining other potential insulin-sensitizing drugs and/or nutraceuticals. The literature provides the initial support for using several unexplored nutraceutical interventions that may target relevant metabolic abnormalities associated with InsR in PCOS. With a need to promote interest in clinical research, this review aims to discuss the efficacy of DCI and the role of emerging nutraceuticals for managing InsR in PCOS.
Collapse
|
10
|
Lin Y, Liang X, Yao Y, Xiao H, Shi Y, Yang J. Osthole attenuates APP-induced Alzheimer's disease through up-regulating miRNA-101a-3p. Life Sci 2019; 225:117-131. [PMID: 30951743 DOI: 10.1016/j.lfs.2019.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
AIM Alzheimer's disease (AD) is a slowly progressing neurodegenerative disorder that attributed to the increase of amyloid precursor protein (APP). Recently, evidence indicates that microRNA alterations are involved in the development of AD. In this paper, we demonstrated whether osthole could delay the occurrence of AD by regulating miRNA. METHODS Microarray was used to discover differential miRNAs in AD. The target genes regulated by miRNA were predicted by databases; The protective effects of osthole on APP/PS1 mice were determined by Morris Water Maze, H&E and Nissl staining; The APP-SH-SY5Y cells were transfected with miRNA-101a-3p inhibitor, the expression of miRNA-101a-3p and APP mRNA in APP/PS1 mice and APP-SH-SY5Y cells were detected by RT-PCR; And western blot and ICC staining were used to detect the APP and Aβ proteins expression. KEY FINDINGS MiRNA-101a-3p was the osthole-mediated miRNA in AD and APP is the target gene. Osthole could increase the learning and memory ability in APP/PS1 mice and inhibit APP mRNA/protein expression by up-regulating miRNA-101a-3p. For exploring the underlying mechanism, miR-101a-3p inhibitor was transfected into the APP-SH-SY5Y cells. We can know that osthole had a protective effect on APP-SH-SY5Y cells, and it could raise miRNA-101a-3p expression and inhibit APP mRNA/protein expression, the formation of Aβ protein was inhibited too. SIGNIFICANCE These results emphasized that osthole had a protective effect on APP/PS1 mice and APP-SH-SY5Y cells. The main cause was due to osthole could inhibit APP expression by up-regulating miRNA-101a-3p so as to help delay the occurrence of AD.
Collapse
Affiliation(s)
- Ying Lin
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China
| | - Xicai Liang
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China
| | - Yingjia Yao
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China
| | - Honghe Xiao
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China
| | - Yue Shi
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China
| | - Jingxian Yang
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China.
| |
Collapse
|
11
|
Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front Cell Neurosci 2018; 12:373. [PMID: 30405355 PMCID: PMC6206263 DOI: 10.3389/fncel.2018.00373] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a pathological feature of quite a number of Central Nervous System diseases such as Alzheimer and Parkinson's disease among others. The hallmark of brain neuroinflammation is the activation of microglia, which are the immune resident cells in the brain and represents the first line of defense when injury or disease occur. Microglial activated cells can adopt different phenotypes to carry out its diverse functions. Thus, the shift into pro-inflammatory/neurotoxic or anti-inflammatory/neuroprotective phenotypes, depending of the brain environment, has totally changed the understanding of microglia in neurodegenerative disease. For this reason, novel therapeutic strategies which aim to modify the microglia polarization are being developed. Additionally, the understanding of how nutrition may influence the prevention and/or treatment of neurodegenerative diseases has grown greatly in recent years. The protective role of Mediterranean diet (MD) in preventing neurodegenerative diseases has been reported in a number of studies. The Mediterranean dietary pattern includes as distinctive features the moderate intake of red wine and extra virgin olive oil, both of them rich in polyphenolic compounds, such as resveratrol, oleuropein and hydroxytyrosol and their derivatives, which have demonstrated anti-inflammatory effects on microglia on in vitro studies. This review summarizes our understanding of the role of dietary phenolic compounds characteristic of the MD in mitigating microglia-mediated neuroinflammation, including explanation regarding their bioavailability, metabolism and blood-brain barrier.
Collapse
Affiliation(s)
- Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Ana B. Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Stéphanie Krisa
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Tristan Richard
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - M. Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Puca AA, Spinelli C, Accardi G, Villa F, Caruso C. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev 2018; 174:95-102. [DOI: 10.1016/j.mad.2017.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023]
|
13
|
Davinelli S, Chiosi F, Di Marco R, Costagliola C, Scapagnini G. Cytoprotective Effects of Citicoline and Homotaurine against Glutamate and High Glucose Neurotoxicity in Primary Cultured Retinal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2825703. [PMID: 29163753 PMCID: PMC5661090 DOI: 10.1155/2017/2825703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Citicoline and homotaurine are renowned compounds that exhibit potent neuroprotective activities through distinct molecular mechanisms. The present study was undertaken to demonstrate whether cotreatment with citicoline and homotaurine affects cell survival in primary retinal cultures under experimental conditions simulating retinal neurodegeneration. Primary cultures were obtained from the retina of fetal rats and exposed to citicoline plus homotaurine (100 μM). Subsequently, neurotoxicity was induced using excitotoxic levels of glutamate and high glucose concentrations. The effects on retinal cultures were assessed by cell viability and immunodetection of apoptotic oligonucleosomes. The results showed that a combination of citicoline and homotaurine synergistically decreases proapoptotic effects associated with glutamate- and high glucose-treated retinal cultures. This study provides an insight into the potential application of citicoline and homotaurine as a valuable tool to exert neuroprotective effects against retinal damage.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Flavia Chiosi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
14
|
Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer's disease and epigenetic. Crit Rev Food Sci Nutr 2017; 59:102-113. [PMID: 28799782 DOI: 10.1080/10408398.2017.1359488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and is a chronic neurodegenerative disease that is becoming widespread. For this reason, in recent years factors affecting the development, progression and cognitive function of the AD have been emphasized. Nutrients and other bioactive nutrients are among the factors that are effective in AD. In particular, vitamins A, C and E, vitamins B1, B6 and B12, folate, magnesium, choline, inositol, anthocyanins, isoflavones etc. nutrients and bioactive nutrients are known to be effective in the development of AD. Nutrients and nutrient components may also have an epigenetic effect on AD. At the same time, nutrients and bioactive food components slow down the progression of the disease. For this reason, the effect of nutrients and food components on AD was examined in this review.
Collapse
Affiliation(s)
- Elif Celik
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| | - Nevin Sanlier
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| |
Collapse
|
15
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
16
|
Wang J, Song Y, Gao M, Bai X, Chen Z. Neuroprotective Effect of Several Phytochemicals and Its Potential Application in the Prevention of Neurodegenerative Diseases. Geriatrics (Basel) 2016; 1:geriatrics1040029. [PMID: 31022822 PMCID: PMC6371135 DOI: 10.3390/geriatrics1040029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
The detrimental effects of oxidative stress and chronic neuroinflammation on neuronal cell death have been implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The nutritional neuroscience is quickly growing, and phytochemicals or phytobioactive compounds such as curcumin, resveratrol, propolis, ginsenoside, and ω-3 polyunsaturated fatty acids (PUFAs) have been extensively applied to potential therapeutic purposes for numerous neurodegenerative diseases for their anti-oxidative and anti-inflammatory effects. However, their administration as food supplements in the daily diet of the elderly is normally a voluntary and less-organized behavior, indicating the uncertainty of therapeutic effects in this sporadic population; specifically, the effective physiological dosages and the real positive effects in preserving brain health have not yet been fully elucidated. In this review, we collect several lines of evidence on these compounds, which constitute a major type of nutraceuticals and are widely integrated into the daily anti-aging caring of elderly patients, and discuss the underlying anti-oxidative and anti-inflammatory mechanisms of these phytochemicals. In conclusion, we highlight the implications of these compounds in the prevention and treatment of geriatric diseases, and of the potential supplementation procedures used as a dietary therapeutic program in clinical nursing services for patients with neurodegenerative diseases or for the elderly in certain communities, which we hope will lead to more beneficial health outcomes with respect to brain function, innate immunity, and gastrointestinal function, as well as more economic and social benefits.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Yuetao Song
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Xujing Bai
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Zheng Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| |
Collapse
|
17
|
Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. IMMUNITY & AGEING 2016; 13:16. [PMID: 27081392 PMCID: PMC4831196 DOI: 10.1186/s12979-016-0070-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
Collapse
|
18
|
Giulietti A, Vignini A, Nanetti L, Mazzanti L, Di Primio R, Salvolini E. Alzheimer's Disease Risk and Progression: The Role of Nutritional Supplements and their Effect on Drug Therapy Outcome. Curr Neuropharmacol 2016; 14:177-190. [PMID: 26415975 PMCID: PMC4825948 DOI: 10.2174/1570159x13666150928155321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/28/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly population. Despite significant advancements in understanding the genetic and molecular basis of AD, the pathology still lacks treatments that can slow down or reverse the progression of cognitive deterioration. Recently, the relationship between nutrient deficiency and dementia onset has been highlighted. AD is in fact a multifactorial pathology, so that a multi-target approach using combinations of micronutrients and drugs could have beneficial effects on cognitive function in neurodegenerative brain disorders leading to synaptic degeneration. Primarily, this review examines the most recent literature regarding the effects of nutrition on the risk/progression of the disease, focusing attention mostly on antioxidants agents, polyunsaturated fatty acids and metals. Secondly, it aims to figure out if nutritional supplements might have beneficial effects on drug therapy outcome. Even if nutritional supplements showed contrasting evidence of a likely effect of decreasing the risk of AD onset that could be studied more deeply in other clinical trials, no convincing data are present about their usefulness in combination with drug therapies and their effectiveness in slowing down the disease progression.
Collapse
Affiliation(s)
| | | | | | - L Mazzanti
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | | | | |
Collapse
|
19
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
20
|
Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br J Nutr 2015; 115:449-65. [DOI: 10.1017/s0007114515004687] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCurcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin also possesses neuroprotective and cognitive-enhancing properties that may help delay or prevent neurodegenerative diseases, including Alzheimer’s disease (AD). Currently, clinical diagnosis of AD is onerous, and it is primarily based on the exclusion of other causes of dementia. In addition, phase III clinical trials of potential treatments have mostly failed, leaving disease-modifying interventions elusive. AD can be characterised neuropathologically by the deposition of extracellular β amyloid (Aβ) plaques and intracellular accumulation of tau-containing neurofibrillary tangles. Disruptions in Aβ metabolism/clearance contribute to AD pathogenesis. In vitro studies have shown that Aβ metabolism is altered by curcumin, and animal studies report that curcumin may influence brain function and the development of dementia, because of its antioxidant and anti-inflammatory properties, as well as its ability to influence Aβ metabolism. However, clinical studies of curcumin have revealed limited effects to date, most likely because of curcumin’s relatively low solubility and bioavailability, and because of selection of cohorts with diagnosed AD, in whom there is already major neuropathology. However, the fresh approach of targeting early AD pathology (by treating healthy, pre-clinical and mild cognitive impairment-stage cohorts) combined with new curcumin formulations that increase bioavailability is renewing optimism concerning curcumin-based therapy. The aim of this paper is to review the current evidence supporting an association between curcumin and modulation of AD pathology, including in vitro and in vivo studies. We also review the use of curcumin in emerging retinal imaging technology, as a fluorochrome for AD diagnostics.
Collapse
|
21
|
Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D, Pan S. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep 2015; 12:3081-8. [PMID: 25955795 DOI: 10.3892/mmr.2015.3728] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD), characterized by β-amyloid deposition and neurodegeneration, is the most common cause of dementia worldwide. Emerging evidence suggests that ectopic expression of micro (mi)RNAs is involved in the pathogenesis of AD. There is increasing evidence that miRNAs expressed in the brain are involved in neuronal development, survival and apoptosis. The expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is regulated by dysregulated miRNAs in the brain. The present study determined the expression levels of the miRNA-29 (miR-29) family in peripheral blood samples of patients with AD and demonstrated a marked decrease in the expression of miR-29c compared with age-matched controls. In addition, a significant increase in the expression of BACE1 was observed in the peripheral blood of patients with AD. Correlation analysis revealed that the expression of miR-29c was negatively correlated with the protein expression of BACE1 in the peripheral blood samples from patients with AD. The present study also investigated the role of miR-29 on hippocampal neurons in vitro and in vivo. The results demonstrated that the upregulation of miR-29c promoted learning and memory behaviors in SAMP8 mice, at least partially, by increasing the activity of protein kinase A/cAMP response element-binding protein, involved in neuroprotection. This evidence suggested that miR-29c may be a promising potential therapeutic target against AD.
Collapse
Affiliation(s)
- Guoshuai Yang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyan Zhou
- Department of Neurology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Yidong Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tao Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guohu Weng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dan Yu
- Department of Neurology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
22
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|