1
|
Preethika A, Sonkusare S, Suchetha Kumari N. Single nucleotide polymorphism of fatty acid desaturase gene and breast cancer risk in estrogen receptor subtype. Gene X 2022; 823:146330. [PMID: 35182678 DOI: 10.1016/j.gene.2022.146330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer of women and the second most common cancer overall globally. Data suggest that the plasma concentration of omega fatty acids (n-3 and n-6) and the impact of the genetic variant are associated with diet-related inflammatory disease, BC. This study was aimed to find an association between genetic variant rs174537 of fatty acid desaturase gene 1(FADS 1) and breast cancer estrogen receptor subtype. METHODOLOGY Hundred and two blood samples from women were quantified for fatty acids by gas chromatography. SNP rs 174537(G > T) showed maximum variability and the strongest genetic determinant in the Genome-wide association study were genotyped using Sanger sequencing. RESULTS The highest tertile of ALA showed a significantly reduced risk of BC compared to the lowest tertile (OR = 0.2, 95 %CL = 0.1-1.14, P = 0.03). Median values of ALA were higher in GT/TT genotype in ER +ve molecular subtype (P = 0.03) and DPA was higher in GG genotype of ER-ve molecular subtype (P = 0.037). When both the groups were put together the highest tertile of GG tertile showed significantly reduced risk of BC compared with the other lowest tertiles of GG and GT/TT genotypes (OR, 95% CL = 0.45(0.2-0.9). CONCLUSION The high levels of arachidonic acid and low levels of n-3 fatty acids result in a pro-inflammatory milieu and that these pro-inflammatory effects might contribute to BC. We conclude that the individuals with genetically determined lower activity of FADS1(minor allele T) will derive greater advantage from n-3 FAs than those with higher FADS1 activity (G allele) and reduce the BC risk.
Collapse
Affiliation(s)
- A Preethika
- SRM Medical College Hospital and Research Center, Kattankalathur, Tamil Nadu 603203, India
| | - Shipra Sonkusare
- Department of OBG, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India
| | - N Suchetha Kumari
- Department of Biochemistry, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India.
| |
Collapse
|
2
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
3
|
Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, Saraf SA. Biotin anchored nanostructured lipid carriers for targeted delivery of doxorubicin in management of mammary gland carcinoma through regulation of apoptotic modulator. J Liposome Res 2020; 30:21-36. [PMID: 30741049 DOI: 10.1080/08982104.2019.1579839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/01/2023]
Abstract
Mammary gland tumour has the highest incidence rate and mortality in women, worldwide. The present study envisaged a molecularly targeted nanostructured lipid carrier (NLCs) for doxorubicin (Dox) delivery capable of inducing cellular apoptosis in mammary gland tumour. NLCs were prepared utilizing Perilla frutescens oil (54-69% ω3-fatty acid) as liquid lipid to enhance entrapment of Dox through molecular ion pairing. Biotin decorated NLCs (b-Dox-NLCs) were evaluated in vitro and in vivo. The b-Dox-NLCs showed particle size of 105.2 ± 3.5 nm, zeta potential -35 ± 2 mV, entrapment 99.15 ± 1.71%, drug content 19.67 ± 2.6 mg.g-1, biotin content 5.85 ± 0.64 µg.g-1 and drug release 98.67 ± 2.43% (facilitated by acidic microenvironment) respectively. MTT assay and Flow cytometric analysis revealed higher anti-proliferative capability of b-Dox-NLCs to force apoptosis in MCF-7 cell line vis-à-vis marketed Dox, evidenced by reactive oxygen species level and mitochondrial membrane potential mediated apoptosis. Enhanced antitumor targeting, therapeutic safety and efficacy was exhibited by b-Dox-NLCs, as investigated through tumour volume, animal survival, weight variation, cardiotoxicity and biodistribution studies in 7,12-Dimethylbenz[a]anthracene induced mammary gland tumour. Immunoblotting assay demonstrated b-Dox-NLCs downregulated anti-apoptotic proteins, i.e. bcl-2, MMP-9 while upregulated pro-apoptotic proteins, i.e. caspase-9, p16 and BAX. The experimental results suggest that biotinylated ω3-fatty acid augmented NLCs loaded with Dox are capable of inducing programmed cell death in mammary tumour and can be utilized as safe and effective delivery system with enhanced potential for mammary gland carcinoma therapy.
Collapse
Affiliation(s)
- Chandra B Tripathi
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
4
|
Ashfaq W, Rehman K, Siddique MI, Khan QAA. Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil and Their Role in Cancer Research. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1686761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wardah Ashfaq
- Department of Medicine, Ameer ud Din Medical College, Lahore, Pakistan
| | - Khurram Rehman
- Department of Pharmacy, Forman Christan College (A Chartered University), Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Qurrat-Al-Ain Khan
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Plasma and erythrocyte ω-3 and ω-6 fatty acids are associated with multiple inflammatory and oxidative stress biomarkers in breast cancer. Nutrition 2019; 58:194-200. [DOI: 10.1016/j.nut.2018.07.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/23/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
|
6
|
Docosahexaenoic Acid in Combination with Dietary Energy Restriction for Reducing the Risk of Obesity Related Breast Cancer. Int J Mol Sci 2017; 19:ijms19010028. [PMID: 29271901 PMCID: PMC5795979 DOI: 10.3390/ijms19010028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/30/2022] Open
Abstract
There is strong evidence that obesity poses a significant risk factor for postmenopausal breast cancer. There are multiple mechanisms by which obesity can predispose to breast cancer, prominent among which is the creation of a pro-inflammatory milieu systemically in the visceral and subcutaneous tissue, as well as locally in the breast. Although dietary intervention studies have shown in general a favorable effect on biomarkers of breast cancer risk, it is still unclear whether losing excess weight will lower the risk. In this manuscript, we will review the evidence that omega-3 fatty acids, and among them docosahexaenoic acid (DHA) in particular, may reduce the risk of obesity related breast cancer primarily because of their pleotropic effects which target many of the systemic and local oncogenic pathways activated by excess weight. We will also review the evidence indicating that intentional weight loss (IWL) induced by dietary energy restriction (DER) will augment the tumor protective effect of DHA because of its complementary mechanisms of action and its ability to reverse the obesity-induced alterations in fatty acid metabolism predisposing to carcinogenesis. We believe that the combination of DER and DHA is a promising safe and effective intervention for reducing obesity-related breast cancer risk which needs to be validated in appropriately designed prospective, randomized clinical trials.
Collapse
|
7
|
Zanoaga O, Jurj A, Raduly L, Cojocneanu-Petric R, Fuentes-Mattei E, Wu O, Braicu C, Gherman CD, Berindan-Neagoe I. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med 2017; 15:1167-1176. [PMID: 29434704 PMCID: PMC5776638 DOI: 10.3892/etm.2017.5515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer represents one of the most common forms of cancer in women worldwide, with an increase in the number of newly diagnosed patients in the last decade. The role of fatty acids, particularly of a diet rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs), in breast cancer development is not fully understood and remains controversial due to their complex mechanism of action. However, a large number of animal models and cell culture studies have demonstrated that high levels of ω-3 PUFAs have an inhibitory role in the development and progression of breast cancer, compared to ω-6 PUFAs. The present review focused on recent studies regarding the correlation between dietary PUFAs and breast cancer development, and aimed to emphasize the main molecular mechanisms involved in the modification of cell membrane structure and function, modulation of signal transduction pathways, gene expression regulation, and antiangiogenic and antimetastatic effects. Furthermore, the anticancer role of ω-3 PUFAs through the modulation of microRNA expression levels was also reviewed.
Collapse
Affiliation(s)
- Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Physiopathology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oscar Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Texas Tech University Honors College, McClellan Hall, Lubbock, TX 79409, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Surgical Clinic II Hospital, 400006 Cluj-Napoca, Romania.,Department of Surgery, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 400349 Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology, Prof Dr Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Sánchez-Borrego R, von Schacky C, Osorio MJA, Llaneza P, Pinto X, Losa F, Navarro MC, Lubián D, Mendoza N. Recommendations of the Spanish Menopause Society on the consumption of omega-3 polyunsaturated fatty acids by postmenopausal women. Maturitas 2017; 103:71-77. [PMID: 28778336 DOI: 10.1016/j.maturitas.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/17/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023]
Abstract
The consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) has shown a great variety of beneficial effects, including cardiovascular, metabolic and inflammatory effects, which make them interesting for the postmenopausal woman. Because LCO3-PUFAs could be effective and safe during this period, a panel of experts from the Spanish Menopause Society met to establish a set of recommendations for their use in postmenopausal women based on the best available evidence. The decrease in triglycerides is the most consistent effect observed with LCO3-PUFAs (at doses greater than 3g/day). In addition, LCO3-PUFAs have antiarrhythmic effects, reduce blood pressure, improve depressive and psychotic symptoms, and do not increase the risk of cancer. However, further studies are needed to confirm the benefit of LCO3-PUFAs in the relief of menopause symptoms and osteoporosis.
Collapse
Affiliation(s)
| | - Clemens von Schacky
- Preventive Cardiology, Medizinische Klinik I, Ludwig Maximilians-University of Munich, Germany
| | | | - Plácido Llaneza
- Department of Obstetrics and Gynecology, University of Asturias, Spain
| | | | | | | | - Daniel Lubián
- Department of Obstetrics and Gynecology, University of Cadiz, Spain
| | - Nicolás Mendoza
- Departamento de Obstetricia y Ginecología, Universidad de Granada, Spain.
| |
Collapse
|
9
|
Rehman K, Mohd Amin MCI, Yuen NP, Zulfakar MH. Immunomodulatory Effectiveness of Fish Oil and omega-3 Fatty Acids in Human Non-melanoma Skin Carcinoma Cells. J Oleo Sci 2016; 65:217-24. [PMID: 26876681 DOI: 10.5650/jos.ess15256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish oil is composed of various fatty acids among which omega-3 fatty acids are considered as most beneficial. The effects of fish oil on the activity of a topical anticancer drug, imiquimod, and the immunomodulatory activity of omega-3 fatty acids was investigated in human basal and squamous cell carcinoma cell lines. Imiquimod-fish oil mixture exhibited higher carcinoma cell growth inhibition and immunomodulatory activity than imiquimod alone, especially against squamous cell carcinoma cells. Omega-3 fatty acids exhibited growth inhibition of both basal cell and squamous cell carcinoma cell lines and modulated the immune response. Omega-3 fatty acids of fish oil serve as inducers of interleukin-10, an anti-inflammatory cytokine, and as suppressors of interleukin-6 and tumor necrosis factor-alpha, which not only depress tumor growth but also adequately control the inflammatory side effects of imiquimod. Thus, imiquimod administration with fish oil could be beneficial for inhibition of non-melanoma skin carcinoma cells but further in vivo studies are needed to understand their role in skin cancer.
Collapse
Affiliation(s)
- Khurram Rehman
- Center for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan MALAYSIA
| | | | | | | |
Collapse
|
10
|
Straka S, Lester JL, Cole RM, Andridge RR, Puchala S, Rose AM, Clinton SK, Belury MA, Yee LD. Incorporation of eicosapentaenioic and docosahexaenoic acids into breast adipose tissue of women at high risk of breast cancer: a randomized clinical trial of dietary fish and n-3 fatty acid capsules. Mol Nutr Food Res 2015; 59:1780-90. [PMID: 26081224 DOI: 10.1002/mnfr.201500161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 01/04/2023]
Abstract
SCOPE The fatty acid profile of dietary lipids is reflected in mammary adipose tissue and may influence mammary gland biology and cancer risk. To determine the effects of fish consumption on breast adipose tissue fatty acids, we conducted a study of fish versus n-3 PUFA supplements in women at increased risk of breast cancer. METHODS AND RESULTS High risk women were randomized to comparable doses of marine n-3 PUFAs as canned salmon + albacore or capsules for 3 months. Pre- and posttreatment fatty acid profiles were obtained by GC. Dietary fish (n = 12) and n-3 PUFA capsules (n = 13) yielded increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma (p < 0.0001), erythrocyte membranes (p < 0.0001), and breast fat (p < 0.01) at 3 months. Women taking capsules had higher plasma and erythrocyte membrane EPA changes (∼four versus twofold, p = 0.002), without significant differences in DHA. Increases in breast adipose EPA, DHA were similar for both groups. Higher BMI correlated with smaller changes in plasma, erythrocyte membrane EPA, and breast adipose EPA, DHA. Adherence was excellent at 93.9% overall and higher in the fish arm (p = 0.01). CONCLUSION Fish provides an excellent source of n-3 PUFAs that increases breast adipose EPA, DHA similar to supplements and represents a well-tolerated intervention for future studies of the impact of n-3 PUFAs and dietary patterns on breast cancer.
Collapse
Affiliation(s)
- Shana Straka
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Joanne L Lester
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Rachel M Cole
- Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca R Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Puchala
- Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Angela M Rose
- Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Martha A Belury
- Human Sciences, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lisa D Yee
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Probing the effects of fish oil on the delivery and inflammation-inducing potential of imiquimod. Int J Pharm 2015; 490:131-41. [DOI: 10.1016/j.ijpharm.2015.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 05/17/2015] [Indexed: 02/05/2023]
|
12
|
Abstract
OBJECTIVES To review the current state of breast cancer prevention from primary prevention through survivorship, highlight cross-cutting issues, and discuss strategies for clinical integration and future research. DATA SOURCES Published articles between 1985 and 2015 and original research. CONCLUSION Cancer risk persists across the lifespan. Interprofessional strategies to reduce morbidity and mortality from cancer include primary, secondary, and tertiary prevention (survivorship). Prevention strategies across the cancer care continuum are cross-cutting and focus on measures to: prevent the onset of disease, identify and treat asymptomatic persons who have already developed risk factors or preclinical disease, and restore function, minimize the negative effects of disease, and prevent disease-related complications. IMPLICATIONS FOR NURSING PRACTICE Oncology nurses and advanced practice nurses are vital in the delivery of breast cancer prevention strategies.
Collapse
|
13
|
Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene 2014; 34:3504-13. [PMID: 25220417 PMCID: PMC4362785 DOI: 10.1038/onc.2014.283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/27/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Abstract
Obesity and inflammation are both risk factors for a variety of cancers, including breast cancer in postmenopausal women. Intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of breast cancer, and also reduces obesity-associated inflammation and insulin resistance, but whether the two effects are related is currently unknown. We tested this hypothesis in a postmenopausal breast cancer model using ovariectomized, immune-competent female mice orthotopically injected with Py230 mammary tumor cells. Obesity, whether triggered genetically or by high-fat diet (HFD) feeding, increased inflammation in the mammary fat pad and promoted mammary tumorigenesis. The presence of tumor cells in the mammary fat pad further enhanced the local inflammatory milieu. Tumor necrosis factor-alpha (TNF-α) was the most highly upregulated cytokine in the obese mammary fat pad, and we observed that TNF-α dose-dependently stimulated Py230 cell growth in vitro. An ω-3 PUFA-enriched HFD (referred to as fish oil diet, FOD) reduced inflammation in the obese mammary fat pad in the absence of tumor cells and inhibited Py230 tumor growth in vivo. Although some anti-inflammatory effects of ω-3 PUFAs were previously shown to be mediated by the G-protein-coupled receptor 120 (GPR120), the FOD reduced Py230 tumor burden in GPR120-deficient mice to a similar degree as observed in wild-type mice, indicating that the effect of FOD to reduce tumor growth does not require GPR120 in the host mouse. Instead, in vitro studies demonstrated that ω-3 PUFAs act directly on tumor cells to activate c-Jun N-terminal kinase, inhibit proliferation and induce apoptosis. Our results show that obesity promotes mammary tumor progression in this model of postmenopausal breast cancer and that ω-3 PUFAs, independent of GPR120, inhibit mammary tumor progression in obese mice.
Collapse
|
14
|
Mercier S, Villeneuve S, Moresoli C, Mondor M, Marcos B, Power KA. Flaxseed-Enriched Cereal-Based Products: A Review of the Impact of Processing Conditions. Compr Rev Food Sci Food Saf 2014; 13:400-412. [DOI: 10.1111/1541-4337.12075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Samuel Mercier
- Dept. of Chemical and Biotechnological Engineering; Univ. de Sherbrooke; 2500 Université blvd Sherbrooke Quebec J1K 2R1 Canada
| | - Sébastien Villeneuve
- Agriculture and Agri-Food Canada; Food Research and Development Centre; 3600 Casavant Blvd West Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Christine Moresoli
- Dept. of Chemical Engineering; Univ. of Waterloo; 200 Univ. Ave. West Waterloo Ontario N2L 3G1 Canada
| | - Martin Mondor
- Agriculture and Agri-Food Canada; Food Research and Development Centre; 3600 Casavant Blvd West Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Bernard Marcos
- Dept. of Chemical and Biotechnological Engineering; Univ. de Sherbrooke; 2500 Université blvd Sherbrooke Quebec J1K 2R1 Canada
| | - Krista A. Power
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Rd. W Guelph Ontario N1G 5C9 Canada
| |
Collapse
|
15
|
Leslie MA, Abdelmagid SA, Perez K, Muller WJ, Ma DW. Mammary tumour development is dose-dependently inhibited by n-3 polyunsaturated fatty acids in the MMTV-neu(ndl)-YD5 transgenic mouse model. Lipids Health Dis 2014; 13:96. [PMID: 24916956 PMCID: PMC4064525 DOI: 10.1186/1476-511x-13-96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer is attributable to modifiable risk factors including the intake of dietary n-3 polyunsaturated fatty acids (PUFA). A key piece of evidence, yet to be addressed, that would demonstrate a causal relationship between n-3 PUFA and breast cancer, is a dose-dependent effect of n-3 PUFA on tumour outcomes. Thus, the objective of the present study was to determine whether n-3 PUFA reduces mammary gland tumor outcomes in a dose-dependent manner in female MMTV-neu(ndl)-YD5 transgenic mice, an aggressive model of human breast cancer. Methods Harems were provided one of three experimental diets comprised of 0, 3 or 9% (w/w) menhaden fish oil containing n-3 PUFA. Female offspring were weaned onto the same parental diet and maintained on their respective diet for 20 weeks. Tumour onset, size and multiplicity were measured throughout the study. Fatty acid composition of mammary gland and tumours were determined by gas–liquid chromatography. Results Tumour size was significantly (p < 0.05) reduced in a dose-dependent manner. n-3 PUFA were also incorporated in a dose-dependent manner; differential incorporation was observed for eicosapentaenoic and docosapentaenoic acids into mammary gland tissue, while docosahexaenoic acid was preferentially incorporated into tumours. Conclusion Overall, the present study provides fundamental knowledge about the dose-dependent effect of n-3 PUFA on tumour outcomes in a pre-clinical model and also sheds light on the differential role of individual n-3 PUFA on tumour outcomes.
Collapse
Affiliation(s)
| | | | | | | | - David Wl Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Animal Science/Nutrition Building, Room 342, 491 Gordon Street, N1G 2W1 Guelph, ON, Canada.
| |
Collapse
|
16
|
Abstract
Overweight and obesity have reached pandemic levels on a worldwide basis and are associated with increased risk and worse prognosis for many but not all malignancies. Pathophysiologic processes that affect this association are reviewed, with a focus on the relationship between type 2 diabetes mellitus and cancer, lessons learned from the use of murine models to study the association, the impact of obesity on pancreatic cancer, the effects of dietary fats and cholesterol on cancer promotion, and the mechanisms by which the intestinal microbiome affects obesity and cancer.
Collapse
Affiliation(s)
- Nathan A Berger
- Departments of Medicine, Biochemistry, and Genetics, Center for Science, Health and Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|