1
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Particulate Cell Wall Materials of Lactobacillus acidophilus as Vaccine Adjuvant. Vet Sci 2022; 9:vetsci9120698. [PMID: 36548859 PMCID: PMC9783621 DOI: 10.3390/vetsci9120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We evaluated Lactobacillus acidophilus (LA) for adjuvant application in animal vaccines. LA particles (LAPs) are made by treating LA with purification processes and high-pressure homogenization (HPH). We found that LAPs treated with HPH with trehalose and emulsifiers had an average particle size of 179 nm, considerably smaller than LAPs without additives. First, we evaluated the adjuvanticity of LAPs using a murine model with ovalbumin antigens, revealing that LAPs, especially in a five-fold concentration, could induce a considerable antibody response compared with other current adjuvants. In poultry vaccination tests using inactivated Newcastle disease virus, LAPs alone could induce a similar antibody response compared to commercial water-in-oil (W/O) adjuvant ISA70, a commercial adjuvant, at weeks 4 and 6; however, they declined faster than ISA70 at weeks 8 and 10. LAPs added to conventional adjuvant materials, such as mineral oil-based O/W emulsions, showed similar adjuvanticity to ISA70. LA-H5-C, composed of carbomer, emulsifiers and trehalose showed no significant body weight change in acute toxicity compared to other adjuvants including ISA70, making formulated LAPs a potential candidate for use as a veterinary vaccine adjuvant.
Collapse
|
3
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
4
|
Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Ideris A. Efficacy, humoral, and cell-mediated immune response of inactivated fowl adenovirus 8b propagated in chicken embryo liver cells using bioreactor in broiler chickens. Vet World 2022; 15:2681-2692. [PMID: 36590109 PMCID: PMC9798058 DOI: 10.14202/vetworld.2022.2681-2692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Aim Fowl adenovirus (FAdV) 8b causes inclusion body hepatitis, resulting in major economic losses globally among chickens. The objectives were to inactivate FAdV 8b isolate propagated in chicken embryo liver (CEL) cells using a stirred tank bioreactor (UPM08136P5B1) and determine the humoral and cell-mediated immune response, efficacy, and virus shedding in broiler chickens. Materials and Methods The FAdV 8b isolate UPM08136P5B1 was inactivated using binary ethyleneimine, adjuvanted with Montanide 71VG, inoculated into day-old broiler chickens in a booster group (BG) and non-booster group (NBG), and challenged with a pathogenic FAdV 8b strain. Clinical signs, gross lesions, body weight (BW), liver: body weight ratio, FAdV antibody titer using enzyme-linked immunosorbent assay, and histopathological changes were recorded. The CD3+, CD4+, and CD8+ T-lymphocyte profiles of the liver, spleen, and thymus using flow cytometry, and viral load in liver and cloacal shedding using quantitative polymerase chain reaction were evaluated. Results Chickens in the challenged control group (CCG) exhibited mild clinical signs, gross lesions, and histopathological changes, which were absent in the inoculated groups, and had lower BW and higher liver BW ratio than chickens in the unchallenged control group (UCG); BG and NBG on 35- and 42-days post-inoculation (DPI). Chickens in NBG and BG had higher antibodies than UCG on 7, 21, 35, and 42 DPI. The challenged BG and NBG produced higher antibodies than the CCG on 35 DPI. T-lymphocytes were higher among the inoculated groups than UCG in the liver, spleen, and thymus. Inoculated challenged groups recorded higher CD3+, CD4+, and CD8+ T-lymphocytes on 35 and 42 DPI than CCG. The challenged control group had a significantly higher viral load in the liver than challenged that in BG on 35 DPI and BG and NBG on 42 DPI. The challenged control group had significantly higher challenge FAdV shedding than challenged inoculated groups on 35 and NBG on 42 DPI. Conclusion UPM08136P5B1 was successfully inactivated and mixed with Montanide 71VG. The inactivated vaccine candidate that induced humoral and cellular immunity was effective, reduced FAdV load in the liver, and shedding in the cloaca, and could be useful against FAdV 8b infections in chickens.
Collapse
Affiliation(s)
- Chidozie Clifford Ugwu
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Department of Animal Science and Technology, Federal University of Technology, Owerri 460114, Imo State, Nigeria
| | - Mohd Hair-Bejo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Corresponding author: Mohd Hair-Bejo, e-mail: Co-authors: CCU: , MIN: , ARO: , AI:
| | - Mat Isa Nurulfiza
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abdul Rahman Omar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aini Ideris
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Akbari E, Ajdary S, Ardakani EM, Agi E, Milani A, Seyedinkhorasani M, Khalaj V, Bolhassani A. Immunopotentiation by linking Hsp70 T-cell epitopes to Gag-Pol-Env-Nef-Rev multiepitope construct and increased IFN-gamma secretion in infected lymphocytes. Pathog Dis 2022; 80:6608937. [PMID: 35704612 DOI: 10.1093/femspd/ftac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic human immunodeficiency virus (HIV) vaccines can boost the anti-HIV host immunity to control viral replication and eliminate viral reservoirs in the absence of anti-retroviral therapy. In this study, two computationally designed multiepitope Gag-Pol-Env-Nef-Rev and Hsp70-Gag-Pol-Env-Nef-Rev constructs harboring immunogenic and highly conserved HIV T cell epitopes were generated in E. coli as polypeptide vaccine candidates. Furthermore, the multiepitope gag-pol-env-nef-rev and hsp70-gag-pol-env-nef-rev DNA vaccine constructs were prepared and complexed with MPG cell-penetrating peptide. The immunogenicity of the multiepitope constructs were evaluated using the homologous and heterologous prime/boost strategies in mice. Moreover, the secretion of IFN-γ was assessed in infected lymphocytes in vitro. Our data showed that the homologous polypeptide regimens could significantly induce a mixture of IgG1 and IgG2a antibody responses, activate T cells to secret IFN-γ, IL-5, IL-10, and generate Granzyme B. Moreover, IFN-γ secretion was significantly enhanced in single-cycle replicable (SCR) HIV-1 virions-infected splenocytes in these groups compared to uninfected splenocytes. The linkage of heat shock protein 70 (Hsp70) epitopes to Gag-Pol-Env-Nef-Rev polypeptide in the homologous regimen increased significantly cytokines and Granzyme B levels, and IFN-γ secretion in virions-infected splenocytes. Briefly, both designed constructs in the homologous regimens can be used as a promising vaccine candidate against HIV infection.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
de Miranda ALS, Lima SDA, Botelho AFM, Gomes Campos MT, Eckstein C, Minozzo JC, Chávez-Olórtegui CD, Soto-Blanco B. Protective Effectiveness of an Immunization Protocol Against the Toxic Effects of Loxosceles intermedia Venom in Rabbits. Front Vet Sci 2022; 9:852917. [PMID: 35711800 PMCID: PMC9195175 DOI: 10.3389/fvets.2022.852917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Loxosceles spp. (brown spiders) bites are responsible for the development of a syndrome consisting mainly of dermonecrotic lesions, and also systemic effects. Rabbits are one of the main experimental models used for better understanding the systemic and local effects of Loxosceles venom. The aim of this study is to evaluate the toxic and protective effects of rabbits immunized with Loxosceles spp. venom. Male New Zealand rabbits were allocated as a control group (CG; n = 5) that received adjuvant (Montanide) and phosphate-buffer saline (PBS), or as venom group (VG; n = 5) that received 21 μg of Loxosceles venom using Montanide as adjuvant. After five immunization cycles, a trial with 7 μg of Loxosceles intermedia (L. intermedia) venom was performed, and dermonecrotic lesions were measured. The rabbits were then euthanized, and their organs were collected for histopathology analysis. Rabbits that had undergone Loxosceles venom immunization protocol showed minor clinical disturbances during the experimental period. The used immunization protocol protected the rabbits against the toxic effect of the Loxosceles venom because they showed minor clinical disturbances during the experimental period.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila Eckstein
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Production and Research Center of Immunobiologicals, Piraquara, Brazil
| | - Carlos Delfin Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Benito Soto-Blanco
| |
Collapse
|
7
|
Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals (Basel) 2021; 11:ani11041046. [PMID: 33917739 PMCID: PMC8068168 DOI: 10.3390/ani11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Bovine tuberculosis is a disease that affects cattle and other animal species worldwide and represents a risk to public health. Even though there is a vaccine that has been used to control tuberculosis in humans for almost 100 years, up to now, it has not been used in animals. The reason is that vaccination interferes with the tuberculin test, the current test to diagnose tuberculosis in the field, and shows an inconsistent efficacy in animals. Recent studies report that prime vaccinating with BCG and boosting with proteins vaccinations perform better. In addition, there are reports that some polymers increase the immune response against various infectious diseases; therefore, testing a vaccine formula with polymers sounds like a wise thing to do. In this study, we showed that priming with BCG and boosting with a culture filtrate protein, alone or in combination with a polymer, the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone, are significantly reduced. Our results mean that a vaccination used as a complement of actual tuberculosis control programs in animal populations can be useful to reduce tuberculosis dissemination. Abstract Attempts to improve the immune response and efficacy of vaccines against tuberculosis in cattle, goats, and other animal species have been the focus of research in this field during the last two decades. Improving the vaccine efficacy is essential prior to running long-lasting and expensive field trials. Studies have shown that vaccine protocols utilizing boosting with proteins improve the vaccine efficacy. The use of polymers such as chitosan and PolyLactic-co-Glycolic Acid (PLGA) improves the immune response against different diseases by improving the interaction of antigens with the cellular immune system and modulating the host immune response. This study shows that the prime BCG vaccination, boosted with a culture filtrate protein (CFP), alone or in combination with chitosan and PolyLactic-co-Glycolic Acid (PLGA), have the potential to reduce tuberculosis (TB) dissemination by reducing the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone. The vaccinated groups showed significantly higher Interferon-γ levels in the blood compared to the control, nonvaccinated group after vaccination, after boosting, and after the challenge with the wild-type Mycobacterium bovis strain.
Collapse
|
8
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
9
|
Goyal DK, Keshav P, Kaur S. Immune induction by adjuvanted Leishmania donovani vaccines against the visceral leishmaniasis in BALB/c mice. Immunobiology 2021; 226:152057. [PMID: 33545508 DOI: 10.1016/j.imbio.2021.152057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by Leishmania donovani or Leishmania infantum. Currently, the patients are treated with chemotherapeutic drugs; however, their toxicity limits their use. It would be desirable to develop a vaccine against this infection. In this study, we assessed the efficacy of different vaccine formulations at variable time points. Heat-killed (HK) antigen of Leishmania donovani was adjuvanted with two adjuvants (AddaVax and Montanide ISA 201) and three immunizations at a gap of 2 weeks (wk) were given to BALB/c mice. After 2 weeks of the last booster, mice were given challenge infection and sacrificed before challenge and after 4wk, 8wk, and 12 wk post-challenge. Significant protective immunity was observed in all the immunized animals and it was indicated by the notable rise in delayed-type hypersensitivity (DTH) response, remarkably declined parasite burden, a significant increase in the levels of interferon-gamma (IFN-γ), interleukin-12, interleukin-17 (Th1 cytokines), and IgG2a in contrast to infected control mice. Montanide ISA 201 with HK antigen provided maximum protection followed by AddaVax with HK and then HK alone. These findings elaborate on the importance of the tested adjuvants in the vaccine formulations against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
10
|
Goyal DK, Keshav P, Kaur S. Adjuvanted vaccines driven protection against visceral infection in BALB/c mice by Leishmania donovani. Microb Pathog 2021; 151:104733. [PMID: 33484811 DOI: 10.1016/j.micpath.2021.104733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Kinteoplastid protozoan parasite of genus Leishmania is the pathogen that causes leishmaniasis. Its prevalence is highest after malaria and visceral leishmaniasis is the most dreaded form of infection. No vaccine is available for the disease management and it relies wholly on a few chemotherapeutic agents which are toxic and besides drug resistance their costs are the limitations. Therefore, development of an effective vaccine is urgently required. In this study, Montanide ISA 201 and AddaVax were assessed for their adjuvant potential along with formalin-inactivated or killed vaccine for the immune induction. Immunological and parasitological studies were conducted to evaluate the efficacy of different vaccine formulations in BALB/c mice before challenge infection as well as 4, 8, and 12 weeks after challenge. The efficacy of vaccines was evidenced with reduced parasite burden, the higher DTH response, Th1 cytokines, and IgG2a isotype antibody in immunized mice. All the vaccines showed their potential against Leishmania donovani infection and vaccine formulated with Montanide ISA 201 exhibited maximum efficacy. Our results suggest the potential of these vaccine formulations in controlling Leishmania infection.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
El-Jakee JK, Moussa IM, Omran MS, Ahmed BM, Elgamal MA, Hemeg HA, Mubarak AS, Al-Maary KS, Kabli SA, Marouf SA, Haji Alhaaji J. A novel bivalent Pasteurellosis-RHD vaccine candidate adjuvanted with Montanide ISA70 protects rabbits from lethal challenge. Saudi J Biol Sci 2020; 27:996-1001. [PMID: 32127779 PMCID: PMC7042632 DOI: 10.1016/j.sjbs.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/29/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, a bivalent vaccine against Pasteurella multocida and rabbit hemorrhagic disease virus (RHDV) was formulated with Montanide™ ISA70 oil adjuvant (Seppic, Paris, France). Its efficacy was evaluated and compared to similar monovalent preparations and commercially available monovalent vaccines. White new Zeeland rabbit groups (n = 10) received 2 successive doses of the tested vaccines and were challenged 2 weeks after 2nd dose with Pasteurella multocida and RHDV or either pathogens according to their vaccination schedule. Challenged not-vaccinated group of rabbits (n = 10) was included as a control. The bivalent and monovalent ISA70 preparations were found stable, safe, sterile, pure and of low viscosity. Group 3 (GP3) which received bivalent vaccine showed the highest antibody geometric mean titers against Pasteurella multocida and RHDV evaluated by ELISA and hemagglutination inhibition (HI) respectively. Following virulent challenge; Gp3 rabbits were 90% protected from challenge over other groups that showed 80% protection. Detection of either pathogen in the livers of dead and euthanized rabbits had failed except for non-vaccinated controls. The bivalent vaccine candidate was fully protective. Immunization against both pathogens can be achieved by single vaccination.
Collapse
Affiliation(s)
- Jakeen K El-Jakee
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ihab M Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mai S Omran
- Department of Autogenous Vaccine, EGYVET, VACCSERA, Dokki 12611, Giza, Egypt
| | - Basem M Ahmed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Elgamal
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hassan A Hemeg
- Department of Medical Technology/Microbiology, College of Applied Medical Science, Taibah University, Madinah, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh A Kabli
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif A Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Jwaher Haji Alhaaji
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Saudi Arabia
| |
Collapse
|
12
|
Inactivated alpha toxin from Clostridium novyi type B in nano-emulsion protect partially protects Swiss mice from lethal alpha toxin challenge. Sci Rep 2019; 9:14082. [PMID: 31575942 PMCID: PMC6773766 DOI: 10.1038/s41598-019-50683-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 11/08/2022] Open
Abstract
Nano-emulsions are promising carriers for antigen delivery. Here, we evaluated the efficacy of a water-oil nano-emulsion containing concentrated, inactivated Clostridium novyi (C. novyi) type B supernatant culture (nano-iCnB) in protecting Swiss mice against a lethal dose of alpha toxin concentrated extract. Proteins were confirmed in the nano-iCnB and their stabilities were determined according physical parameters such as Zeta Potential (ZP). Biochemical, hematological parameters and morphological appearance of liver, spleen and thigh muscle alterations were examined to determine the safety of the compound. Partial protection against lethal doses was achieved in immunized mice despite low IgG titers. These data suggest that our nano-emulsion is a simple and efficient method of promoting antigen delivery for toxin-related diseases.
Collapse
|
13
|
Ribeiro PA, Dias DS, Lage DP, Martins VT, Costa LE, Santos TT, Ramos FF, Tavares GS, Mendonça DV, Ludolf F, Gomes DA, Rodrigues MA, Chávez-Fumagalli MA, Silva ES, Galdino AS, Duarte MC, Roatt BM, Menezes-Souza D, Teixeira AL, Coelho EA. Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Mol Immunol 2019; 106:108-118. [DOI: 10.1016/j.molimm.2018.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/01/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
|