1
|
Choi YJ, Rosa BA, Fernandez-Baca MV, Ore RA, Martin J, Ortiz P, Hoban C, Cabada MM, Mitreva M. Independent origins and non-parallel selection signatures of triclabendazole resistance in Fasciola hepatica. Nat Commun 2025; 16:2996. [PMID: 40148292 PMCID: PMC11950404 DOI: 10.1038/s41467-025-57796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Triclabendazole (TCBZ) is the primary treatment for fascioliasis, a global foodborne zoonosis caused by Fasciola hepatica. Widespread resistance to TCBZ (TCBZ-R) in livestock and a rapid rise in resistant human infections are significant concerns. To understand the genetic basis of TCBZ-R, we sequenced the genomes of 99 TCBZ-sensitive (TCBZ-S) and 210 TCBZ-R adult flukes from 146 bovine livers in Cusco, Peru. We identify genomic regions of high differentiation (FST outliers above the 99.9th percentile) that encod genes involved in the EGFR-PI3K-mTOR-S6K pathway and microtubule function. Transcript expression differences are observed in microtubule-related genes between TCBZ-S and -R flukes, both without drug treatment and in response to treatment. Using only 30 SNPs, it is possible to differentiate between TCBZ-S and -R parasites with ≥75% accuracy. Our outlier loci are distinct from the previously reported TCBZ-R-associated QTLs in the UK, suggesting an independent evolution of resistance alleles. Effective genetics-based TCBZ-R surveillance must consider the heterogeneity of loci under selection across diverse geographical populations.
Collapse
Affiliation(s)
- Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Martha V Fernandez-Baca
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Rodrigo A Ore
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Miguel M Cabada
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru.
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
3
|
Rufino-Moya PJ, Zafra Leva R, Martínez-Moreno Á, Buffoni L, Valderas García E, Pérez Arévalo J, Molina-Hernández V, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno FJ. Advancement in Diagnosis, Treatment, and Vaccines against Fasciola hepatica: A Comprehensive Review. Pathogens 2024; 13:669. [PMID: 39204269 PMCID: PMC11357060 DOI: 10.3390/pathogens13080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In this review article, we aim to provide an overview of fasciolosis in ruminants. Diagnosis through new coprological methods (such as Flukefinder®, FLOTAC®, and Mini-FLOTAC®) remains the most suitable approach for farms. Regarding treatment, there is a scarcity of available drugs, and resistance to them has prompted new approaches (including drug combinations, enhanced metabolism, or the use of natural compounds) to address this issue. Additionally, several researchers have developed vaccines to control the disease, but their efficacy varies, and none are currently sufficient for commercial use. Further studies are needed to better understand all aspects discussed in this manuscript, with the goal of improving diagnosis, treatment, and disease control. It is important to note that this manuscript does not delve into in-depth knowledge of the discussed aspects; rather, it provides an overview of the different methodologies related to these three aspects of parasitic disease.
Collapse
Affiliation(s)
- Pablo José Rufino-Moya
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
| | - Rafael Zafra Leva
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Elora Valderas García
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24004 León, Spain
| | - José Pérez Arévalo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Verónica Molina-Hernández
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - María T. Ruiz-Campillo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Guillem Herrera-Torres
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Francisco J. Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| |
Collapse
|
4
|
Wulandari AR, Nurlaelasari A, Nugroho HA, Cahyadi M, Kurniawan W, Hamid PH. Ethanolic extract of Etlingera elatior flower exhibits anthelmintic properties to Fasciola gigantica in vitro. Open Vet J 2023; 13:576-587. [PMID: 37304615 PMCID: PMC10257460 DOI: 10.5455/ovj.2023.v13.i5.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Background Fasciolosis is a parasitic disease affecting the hepatobiliary system of livestock worldwide. The control of the fluke is important to be performed in endemic regions. Aim This study aims to evaluate the effect of Etlingera elatior ethanolic extract on egg and adult stadia of Fasciola gigantica. Methods Fasciola gigantica in different stages were incubated with E. elatior ethanolic extract in different concentrations and time points. Results The number of developed eggs with different concentrations of 1.25%, 2.5%, and 5% was significantly decreased by 36.67%, 56.67%, and 56.67% on day 11 post-incubation, which showed an ovicidal effect of the herb. The developed eggs on day 14, which were represented by hatched larvae, were also decreased by 70%, 50%, and 13.33%, respectively. Significant flukicidal effects were observed in the incubation time of 80 minutes for the concentration of 20% (p = 0.007) and 640 minutes for 10% concentration (p = 0.003). Surface microscopy of adult F. gigantica showed damaged skin and spina with the erosion of the inner membrane and detached syncytium from the tegument. Conclusion Overall, the results indicate that E. elatior has a promising anthelmintic property against F. gigantica in both ova and adult stages.
Collapse
Affiliation(s)
- Aisyah Retno Wulandari
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Andini Nurlaelasari
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Herjuno Ari Nugroho
- Reseach Center for Applied Zoology, National Research and Innovation Agency, Jakarta Pusat, Indonesia
| | - Muhamad Cahyadi
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wahyu Kurniawan
- Department of Animal Production, Agency of Livestock and Fishery Services, Boyolali District, Central Java, Indonesia
| | - Penny Humaidah Hamid
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
5
|
African swine fever virus: A raised global upsurge and a continuous threaten to pig husbandry. Microb Pathog 2022; 167:105561. [DOI: 10.1016/j.micpath.2022.105561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
6
|
Gupta P, Sonewane K, Chouhan S, Rajan M, Chauhan N, Rout O, Kumar A, Baghel G. Pharmacological, ethnomedicinal, and evidence-based comparative review of Moringa oleifera Lam. ( Shigru) and its potential role in the management of malnutrition in tribal regions of India, especially Chhattisgarh. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_69_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Abdelrahma KA, Ghazy AA, Beshir Ata E. Better Understanding of Important Aspects Associated with Vaccines Development for Controlling Viral Diseases in Animals. INTERNATIONAL JOURNAL OF DAIRY SCIENCE 2020; 15:114-122. [DOI: 10.3923/ijds.2020.114.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Aboelsoued D, Toaleb NI, Abdel Megeed KN, Hassan SE, Ibrahim S. Cellular immune response and scanning electron microscopy in the evaluation of Moringa leaves aqueous extract effect on Cryptosporidium parvum in buffalo intestinal tissue explants. J Parasit Dis 2019; 43:393-401. [PMID: 31406404 DOI: 10.1007/s12639-019-01103-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
Cryptosporidium is an apicomplexan parasite of human and animals and is considered as an important co-factor in neonatal diarrhea. In this study, an explant culture was used as an in vitro model of buffalo intestine to evaluate the effect of Moringa leaves extract on Cryptosporidium parvum (C. parvum) oocysts using light and scanning electron microscopy and measuring IFN-γ, IL-12 and IL-14 in the culture supernatants. C. parvum oocysts were collected from naturally-infected calf feces, isolated, excysted and then co-inoculated with ileal tissue explants culture medium. The prepared Moringa leaves extract was then introduced to the infected tissues in the concentrations of 100 mg/ml and 300 mg/ml. After 24 h, tissues were collected and processed for light and scanning electron microscopy. Also, culture supernatants were collected for cytokines measurement. C. parvum parasitophorous vacuoles were found attached to the surface of tissue in Cryptosporidium-infected ileal tissue explants. High magnification imaging of ileal tissue explants using scanning electron microscopy showed that Moringa leaves extracts had a great effect on Cryptosporidium-infected ileal tissue explants. There was a high significant (P < 0.001) increase in IFN-γ, IL-12 and IL-14 (375, 275 and 90 pg/ml, respectively) in the supernatants of infected non-treated ileal tissue explant culture plate wells compared to the control non-infected ones (74.66, 75 and 50 pg/ml, respectively). A concentration of 100 mg/ml Moringa extract exhibited the highest anticryptosporidial effect causing a significant decrease in IFN-γ, IL-12 and IL-14 levels (225, 150 and 65 pg/ml, respectively) compared with supernatants of infected non-treated ileal explant culture plate wells. In this study, explant culturing of buffalo ileal tissues allowed investigating the pathogenesis of cryptosporidiosis using light and scanning electron microscopy and studying changes in cytokine levels in tissues with and without Moringa leaves extract treatment. This model could help to understand the regulation of intestinal secretory and inflammatory responses, and could be useful for the screening of potential anticryptosporidial candidate compounds.
Collapse
Affiliation(s)
- Dina Aboelsoued
- 1Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Nagwa I Toaleb
- 1Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Kadria N Abdel Megeed
- 1Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Soad E Hassan
- 1Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Sally Ibrahim
- 2Department of Animal Reproduction and AI, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| |
Collapse
|