1
|
Alrefaee SH, Aljohani FS, El-Khatib M, Shahin YH, Elwakil BH, Shahin SH, Akl SH, Moneer EA, Darwish AAE. Evaluation of potential antiparasitic effect of ZnO nanoparticles on experimental cryptosporidiosis in immunosuppressed mice. Biometals 2025; 38:647-661. [PMID: 40009283 DOI: 10.1007/s10534-025-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Cryptosporidium is a food and water-borne enteric protozoan that infects a wide range of vertebrates, causing life-threatening complications, particularly in immunocompromised hosts. The absence of effective anti-cryptosporidial medications could be attributed to the parasite's specific intestinal location, as well as the lack of research into the mechanism by which the protozoan impairs intestine cellular function. The present work aimed to evaluate the in vivo efficacy of zinc nanoparticles in the treatment of experimental cryptosporidiosis infection in immunosuppressed mice. Small-sized ZnO-NPs revealed better treatment efficacy than Large-sized ZnO-NPs in all studies. Nitazoxanide-treated group revealed the highest percentage reduction of the oocyst's counts followed by the small-sized ZnO-NPs treated group. The small-sized ZnO-NPs treated mice group showed a minimal inflammatory effect in all examined treated tissues when compared to the infected non-treated group. The morphological structure of the oocysts was examined using SEM indicating variable degrees of morphological changes in the treated mice. Moreover, the levels of biochemical analyses were significantly lower in the treated group. The histopathological study revealed the significant effect of small-sized ZnO-NPs in treating cryptosporidiosis.
Collapse
Affiliation(s)
- Salhah Hamed Alrefaee
- Department of Chemistry, College of Science, Taibah University, 30799, Yanbu, Saudi Arabia
| | - Faizah S Aljohani
- Department of Chemistry, College of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - M El-Khatib
- Department of Basic Sciences, Faculty of Computer Science and Artificial Intelligence, Pharos University, Alexandria, Egypt
| | - Yahya H Shahin
- Department of Medical Laboratory Technology, Faculty of Health and Medical Techniques, Almaaqal University, Basrah, Iraq
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt.
| | - Sendianah H Shahin
- Department of Economics and Agribusiness, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sara H Akl
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Esraa Abdelhamid Moneer
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Amira Abd-Elfattah Darwish
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| |
Collapse
|
2
|
Nasser M, El-atif MBA, Alaa H, Abdelaziz M, Mustafa M, Masour M, Magdy S, Mohsen S, El Karamany Y, Farid A. Discovering the anti-parasitic activity of melatonin loaded lecithin/chitosan nanoparticles against giardiasis and cryptosporidiosis in Balb/c infected mice. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2025; 14:12. [DOI: 10.1186/s43088-024-00588-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/05/2024] [Indexed: 05/04/2025] Open
Abstract
Abstract
Background
Giardia duodenalis and Cryptosporidium parvum are the primary causes of diarrhea with global attention due to the severe pathophysiological changes leading to mortality. During this study, we explored the biological protozoal contaminants (Giardia and Cryptosporidium spp.) in some areas of the Nile River. Then, we evaluated effectiveness of melatonin (Mel) and melatonin loaded lecithin/chitosan nanoparticles (Mel-LCNPs) against giardiasis and cryptosporidiosis in mice models using parasitological and inflammatory response examination.
Results
The number of positive samples for Cryptosporidium was higher than that for Giardia with percentage of 46.67% and 40.0%, respectively. Prior to treatment, the physical characterization (hydrodynamic size and zeta potential) and in vitro characterization of Mel-LCNPs were carried. Mel-LCNPs revealed a hydrodynamic size of 78.8 nm and a zeta potential of − 27.2 mV. Furthermore, they have powerful antioxidant and anti-inflammatory properties, while displaying minimal anticoagulant and cytotoxic effects during in vivo evaluation. Mel was consistently discharged from nanoparticles in a regulated and enduring manner for 36 h. Moreover, Mel in NPs has an entrapment efficiency (EE) of 33.6% and a drug loading capacity (DLC) of 7.2% and significant reduction (100% and 99.4%, respectively) in the shedding of Giardia cysts and Cryptosporidium oocysts. This reduction was higher than that observed with Mel alone or LCNPs alone on the 14th day post-infection. Moreover, mice of group V, which received Mel-LCNP treatment, exhibited significantly normal levels of interleukin-4 (IL-4) and interferon-gamma (IFN-γ) as well as healthy control mice group (group I).
Conclusion
Mel-LCNPs were highly effective preparations against giardiasis and cryptosporidiosis in Balb/c mice experimentally infected with proved antioxidant, anti-inflammatory, and immunological modulatory characteristics.
Collapse
|
3
|
Mahmoud NR, Younis AI, Zalat RS, Soliman ASA, Khater MM. Therapeutic potential of platelet rich plasma against experimental Cryptosporidium parvum infection: in vivo study in immunosuppressed mice. J Parasit Dis 2024; 48:849-859. [PMID: 39493467 PMCID: PMC11528079 DOI: 10.1007/s12639-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/17/2024] [Indexed: 11/05/2024] Open
Abstract
The present study was designed to assess the possible effects of platelet rich plasma (PRP) when used individually and in combination with nitazoxanide (NTZ) on experimental Cryptosporidium parvum (C. parvum) infection. It was conducted on 100 male albino mice, laboratory bred in Theodore Bilharz Research Institute. Starting from the 7th day post infection (p.i), therapeutics were given to immunosuppressed infected mice, which were divided as follows; oral NTZ treated group (0.2 mg/g/day for 6 consecutive days), six-PRP-treated groups (0.5 μl/g/week) to be administered intravenously (IV) in 1st, 2nd, 3rd week as PRP alone in (3 groups) and combined with oral NTZ (0.2 mg/g/day for 6 consecutive days) in (3 groups). Parasitological, histopathological and immunohistochemical assessments of therapeutics under study were done. Fecal pellets collected from groups at different intervals were stained using modified Ziehl-Neelsen and examined under microscope. Among PRP-treated groups, the highest significant percentage of oocyst reduction (89.96%) was observed in the group received 3 doses of PRP in combination with NTZ on the 35th day post infection. Likewise, the histopathological examination of small intestinal tissue sections showed improvement in villous architecture with mild to moderate stunting and moderate inflammatory infiltrates in lamina propria. Immunohistochemical staining of small intestinal tissue sections showed moderate increase in the expression of TGF-β1. Therefore, PRP can be a novel strategy in the treatment of cryptosporidiosis particularly when combined with NTZ.
Collapse
Affiliation(s)
- Nada R. Mahmoud
- Medical Parasitology Department, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Azza I. Younis
- Medical Parasitology Department, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rabab S. Zalat
- Parasitology Department, Theodor Bilharz Research Institute, Imbaba, Giza Egypt
| | | | - Mona M. Khater
- Medical Parasitology Department, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Hamdy DA, Ismail MAM, El-Askary HM, Abdel-Baki AAS, Al-Quraishy S, Mohamed F, Ahmed MM, Fouad FM, Hassan AO, Abdel-Tawab H. Green synthesis of zinc oxide/Allium sativum nano-composite and its efficacy against murine cryptosporidiosis. Microsc Res Tech 2024; 87:1912-1925. [PMID: 38558483 DOI: 10.1002/jemt.24541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/21/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidiosis is a global health problem threats life of immunocompromised patients. Allium sativum (A. sativum) is one of the therapeutic options for cryptosporidiosis. This study develops green synthesized ZnO-NPs based on A. sativum extract, and assesses its therapeutic application in treating experimental cryptosporidiosis in immunosuppressed mice. FTIR, scanning electron microscopy, and zeta analyzer were used for characterization of bio ZnO-NPs. The morphology of prepared materials appeared as sponge with many pores on the whole surface that allows the feasibility of bio ZnO-NPs for different biological activities. Its structural analysis was highly stabilized with negative charge surface which indicated for well distribution into the parasite matrix. Twenty-five immunosuppressed Cryptosporidium parvum infected mice, classified into 5 groups were sacrificed at 21th day after infection with evaluation of parasitological, histopathological, oxidative, and proinflammatory biomarkers. Treated mice groups with 50 and 100 mg/kg of AS/ZnO-NPs showed a highly significant decline (79.9% and 83.23%, respectively) in the total number of expelled oocysts. Both doses revealed actual amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. They also significantly produced an increase in GSH values and improved the changes in NO and MDA levels, and showed high anti-inflammatory properties. This study is the first to report green synthesis of ZnO/A. sativum nano-composite as an effective therapy in treating cryptosporidiosis which gave better results than using A. sativum alone. It provides an economical and environment-friendly approach towards novel delivery synthesis for antiparasitic applications. RESEARCH HIGHLIGHTS: Green synthesis of ZnO-NPs was developed using A. sativum extract. The morphology of prepared ZnO-NPs appeared as sponge with many pores on SEM The study evaluates its therapeutic efficacy against murine cryptosporidiosis The green synthesized ZnO-NPs significantly reduced percent of oocyst shedding, improved the pathological changes, and showed high antioxidant and anti-inflammatory potentials.
Collapse
Affiliation(s)
- Doaa A Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mousa A M Ismail
- Department of Medical Parasitology, College of Medicine, Cairo University, Giza, Egypt
| | - Hala M El-Askary
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Ahmed
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma M Fouad
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
AlFaleh FA, Ismael SS, Aguilar-Marcelino L, Silva FEM, Ashraf T, Abbas RZ, Qamar W. Use of nanoparticles, a modern means of drug delivery, against cryptosporidiosis. J Adv Vet Anim Res 2023; 10:704-719. [PMID: 38370897 PMCID: PMC10868694 DOI: 10.5455/javar.2023.j726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Cryptosporidium is a primary cause of waterborne epidemics, despite being previously considered only an opportunistic pathogen. The disease is associated with significant economic losses in humans and animals that are brought on by diarrhea, which frequently causes dehydration. Contact with diseased people or animals, as well as polluted water, is the major cause of infection. Different drugs are used to control the parasites. Nitazoxanide (NTZ), which is an anti-protozoan and anti-viral drug, can be used to control helminths, viruses, and protozoan parasites as a broad-spectrum antibiotic and has been approved by the food and drug authority (FDA). However, the problem is the development of resistance over a period of time in these parasites. Nanoparticles have received significant attention as possible anti-parasitic agents in recent years. By directing medications to specific cellular locations, targeted drug delivery minimizes the side effects of medications. Nanoparticles have demonstrated effectiveness against different Cryptosporidium species. Nanoparticles loaded with NTZ are found to be an effective remedy for C. parvum in young ones and decrease the oocyst count shed in the stools. Additionally, silver nanoparticles have proven to be effective against C. parvum by releasing silver ions that breach the cell wall of the oocyst, causing the escape of intracellular contents and the destruction of sporozoites within the oocyst. Implementing tiny particles for the purification of consuming water from Cryptosporidium is an economical and environmentally sustainable process. However, the use of nanoparticles in medicine requires more research.
Collapse
Affiliation(s)
- Faleh A. AlFaleh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Shameeran Salman Ismael
- Medical Laboratory Sciences Department, College of Health Sciences, University of Duhok, Duhok, Iraq
| | | | | | - Tayyaba Ashraf
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Hamdy DA, Ismail MAM, El-Askary HM, Abdel-Tawab H, Ahmed MM, Fouad FM, Mohamed F. Newly fabricated zinc oxide nanoparticles loaded materials for therapeutic nano delivery in experimental cryptosporidiosis. Sci Rep 2023; 13:19650. [PMID: 37949873 PMCID: PMC10638360 DOI: 10.1038/s41598-023-46260-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cryptosporidiosis is a global health problem that threatens the lives of immunocompromised patients. This study targets to fabricate and investigate the efficiency of zinc oxide nanoparticles (ZnO-NPs), nitazoxanide (NTZ)-loaded ZnO-NPs, and Allium sativum (A. sativum)-loaded ZnO-NPs in treating cryptosporidiosis. Further FTIR, SEM, XRD, and zeta analysis were used for the characterization of ZnO-NPs and loaded materials. The morphology of loaded materials for ZnO-NPs changed into wrapped layers and well-distributed homogenous particles, which had a direct effect on the oocyst wall. The charge surface of all particles had a negative sign, which indicated well distribution into the parasite matrix. For anti-cryptosporidiosis efficiency, thirty immunosuppressed Cryptosporidium parvum-infected mice, classified into six groups, were sacrificed on the 21st day after infection with an evaluation of parasitological, histopathological, and oxidative markers. It was detected that the highest reduction percent of Cryptosporidium oocyst shedding was (81.5%) in NTZ, followed by (71.1%) in A. sativum-loaded ZnO-NPs-treated groups. Also, treatment with A. sativum and NTZ-loaded ZnO-NPs revealed remarkable amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. Furthermore, they significantly produced an increase in GSH values and improved the changes in NO and MDA levels. In conclusion, this study is the first to report ZnO-NPs as an effective therapy for treating cryptosporidiosis, especially when combined with other treatments that enhance their antioxidant activity. It provides an economical and environment-friendly approach to novel delivery synthesis for antiparasitic applications.
Collapse
Affiliation(s)
- Doaa A Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mousa A M Ismail
- Department of Medical Parasitology, College of Medicine, Cairo University, Giza, Egypt
| | - Hala M El-Askary
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Heba Abdel-Tawab
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Ahmed
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma M Fouad
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
7
|
Beshay EVN, Nassef NE, El Shafei OK, Saleh MM, Kora MA, Shalaan FH. Therapeutic efficacy of proton pump inhibitor (omeprazole) on cryptosporidiosis parvum in immunosuppressed experimental mice. J Parasit Dis 2023; 47:535-549. [PMID: 37520212 PMCID: PMC10382457 DOI: 10.1007/s12639-023-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/04/2023] [Indexed: 08/01/2023] Open
Abstract
Cryptosporidiosis is one of the most frequent food and water-borne diseases. The disease might be life-threatening in immunosuppressed patients. Unfortunately, the only approved drug, nitazoxanide, is with variable efficacies, particularly in malnourished children and immunocompromised patients. Therefore, there is a need to discover an alternative treatment that could be achieved by targeting the metabolic pathways. One of the important enzymes in the glycolysis pathway of C. parvum is triosephosphate isomerase, which could be hindered by the proton pump inhibitor (PPI) omeprazole. In this study, omeprazole was repurposed against C. parvum infection in experimentally immunosuppressed mice. This study was conducted on five mice groups (n = 10). Group I (Normal Control), group II (Infected Control): Mice were infected orally with 1 × 105 C. parvum oocysts on the 15th day of DEX induced immunosuppression. Group III (NTZ-treated): infected and treated by NTZ. Group IV (Omeprazole-treated), and lastly, Group V (NTZ + Omeprazole-treated). The result obtained with omeprazole alone was better than nitazoxanide regarding oocyst shedding reduction percentages (84.9% & 56.1%, respectively). Also, it was better regarding restoration of histopathological and ultrastructural architectures, improvement of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and renal functions (urea and creatinine), and the reduction of C. parvum triosephosphate isomerase (TIM) gene expression by RT-PCR. However, the best results were obtained with the combined treatment. Hence, omeprazole could be considered a novel drug option to treat this life-threatening parasitic infection either alone or combined with NTZ, especially in immunosuppressed patients.
Collapse
Affiliation(s)
- Engy V N Beshay
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Nashaat E Nassef
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Omaima K El Shafei
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona M Saleh
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona A Kora
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia Egypt
| | - Fatma H Shalaan
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| |
Collapse
|
8
|
Khaleil SR, Mira NM, Ghanem NF, M El-Mehasseb I, Helal IB, El-Shafai NM. Dual mechanism (sunlight/dark) of the self-assembly nitazoxanide drug on cellulose nanocrystal surface for destroying the Cryptosporidium parvum oocysts. Int J Biol Macromol 2023; 247:125823. [PMID: 37453638 DOI: 10.1016/j.ijbiomac.2023.125823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Destruction of the cryptosporidium parvum (C. parvum) Oocysts is the main target of the work via the improvement effect of the nitazoxanide (NTZ) drug by increasing the drug adsorption process without changing the cell viability. The synthesis of a self-assembly nanocomposite (NCP) of cellulose nanocrystals (CNC) and NTZ drug was performed successfully via the chemical precipitation methods without utilizing the temperature. Also, the characterization of the fabricated NCP was achieved by different techniques to confirm the natural formation of the NCP. The efficient loading of the NTZ drug on the CMC surface and the release process of NCP was calculated by a UV-Visible spectroscopy device, and the loading efficiency is 37 %. The release efficiency is displayed at 66.3 % after 6 h, and 97 % after 48 h at pH 7.4 with NTZ pure, while the release efficiency of CNC@NTZ at the same pH is 61 % after 6 h, and 86 % after 48 h at pH 7.4. The cytotoxicity of different concentrations of NCP was conducted on normal mouse liver cells (BNL) via the quick screening cytotoxicity method (SRB). The effect of NCP on C. parvum was detected with an in-vivo study in the dark and under sunlight conditions. Compared to the NTZ and CNC, the fabricated NCP was able to destroy 89.3 % of the oocyst wall after 96 h. Moreover, a sporulation inhibition percentage of 53.97 % ± 0.63 % was achieved by a maximum concentration of 7 mg/mL after 9.5 h. The results are very encouraging to use the modified NCP as an alternative NTZ drug, although further research is required in terms of clinical trials.
Collapse
Affiliation(s)
- Shrouk R Khaleil
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nora F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| |
Collapse
|
9
|
Luhanda F, Irunde JI, Kuznetsov D. Modeling cryptosporidiosis in humans and cattle: Deterministic and stochastic approaches. Parasite Epidemiol Control 2023; 21:e00293. [PMID: 36915636 PMCID: PMC10006701 DOI: 10.1016/j.parepi.2023.e00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Cryptosporidiosis is a zoonotic disease caused by Cryptosporidium. The disease poses a public and veterinary health problem worldwide. A deterministic model and its corresponding continuous time Markov chain (CTMC) stochastic model are developed and analyzed to investigate cryptosporidiosis transmission dynamics in humans and cattle. The basic reproduction number R 0 for the deterministic model and stochastic threshold for the CTMC stochastic model are computed by the next generation matrix method and multitype branching process, respectively. The normalized forward sensitivity index method is used to determine the sensitivity index for each parameter in R 0 . Per capita birth rate of cattle, the rate of cattle to acquire cryptosporidiosis infection from the environment and the rate at which infected cattle shed Cryptosporidium oocysts in the environment play an important role in the persistence of the disease whereas Cryptosporidium oocysts natural death rate, cattle recovery rate and cattle natural death rate are most negative sensitive parameters in the dynamics of cryptosporidiosis. Numerical results for CTMC stochastic model show that the likelihood of cryptosporidiosis extinction is high when it arises from an infected human. However, there is a major outbreak if cryptosporidiosis emerges either from infected cattle or from Cryptosporidium oocysts in the environment or when it emerges from all three infectious compartments. Therefore to control the disease, control measures should focus on maintaining personal and cattle farm hygiene and decontaminating the environment to destroy Cryptosporidium oocysts.
Collapse
Affiliation(s)
- Faraja Luhanda
- Department of Applied Mathematics and Computational Science, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Tengeru, Arusha, Tanzania.,Department Mathematics, Physics and Informatics, University of Dar es Salaam, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Jacob I Irunde
- Department Mathematics, Physics and Informatics, University of Dar es Salaam, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Dmitry Kuznetsov
- Department of Applied Mathematics and Computational Science, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Tengeru, Arusha, Tanzania
| |
Collapse
|
10
|
Hassan ZR, Salama DEA, Ibrahim HF. Apoptotic changes in the intestinal epithelium of Cryptosporidium-infected mice after silver nanoparticles treatment versus nitazoxanide. J Parasit Dis 2022; 46:1011-1020. [PMID: 36457780 PMCID: PMC9606195 DOI: 10.1007/s12639-022-01520-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 10/16/2022] Open
Abstract
Cryptosporidium has been identified as one of the prevalent opportunistic parasites that cause diarrhea, which may be persistent and fatal. Current chemotherapeutic agents, including nitazoxanide (NTZ), are frequently associated with therapeutic failure, and their roles in the induction of apoptosis in cryptosporidiosis remain to be a topic of debate. Thus, this study aimed to assess the apoptotic changes in cryptosporidiosis in immunocompetent (IC) and immunosuppressed (IS) mice after treatment with silver nanoparticles (AgNPs) and NTZ either alone or after loading. In total, 120 laboratory-bred Swiss albino mice were divided into two groups. Group A included IC mice, while Group B included IS mice. Both groups were divided into six subgroups: noninfected nontreated, infected nontreated, infected AgNP-treated, infected NTZ-treated, infected AgNP-loaded NTZ (full-dose)-treated, and infected AgNP-loaded NTZ (half-dose)-treated. The assessment was achieved through parasitological, histopathological, and apoptotic marker expression evaluation. AgNP-loaded NTZ (different doses) treatment showed the highest oocyst shedding reduction and remarkable improvement in histopathological changes, followed by individual treatment with NTZ and then AgNPs in IC and IS mice. Results of apoptotic marker expression revealed that AgNP-loaded NTZ treatment exhibited a promising role in regulating apoptotic changes in cryptosporidiosis through the expression of the lowest levels of cytochrome C and caspase-3 in IC and IS mice at the end of the experiment. Therefore, AgNP-loaded NTZ can be a potential therapeutic agent against cryptosporidiosis for IC and IS mice.
Collapse
Affiliation(s)
- Zeinab R. Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa E. A. Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Hanan F. Ibrahim
- Department of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Fahmy MEA, Abdelaal AA, Hassan SI, Shalaby MA, Ismail MAM, Khairy RA, Badawi MA, Afife AA, Fadl HO. Antiparasitic and immunomodulating effects of nitazoxanide, ivermectin and selenium on Cryptosporidium infection in diabetic mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e012121. [PMID: 34852131 DOI: 10.1590/s1984-29612021087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The present work aims to investigate the antiparasitic and the immunomodulating effects of nitazoxanide (NTZ) and ivermectin (IVC) alone or combined together or combined with selenium (Se), on Cryptosporidium infection in diabetic mice. The results revealed that the combined NTZ and IVC therapy achieved the highest reduction of fecal oocysts (92%), whereas single NTZ showed the lowest reduction (63%). Also, adding Se to either NTZ or IVC resulted in elevation of oocyst reduction from 63% to 71% and from 82% to 84% respectively. All treatment regimens, with the exception of NTZ monotherapy, showed a significant improvement in the intestinal histopathology, the highest score was in combined NTZ and IVC therapy. The unique results of immunohistochemistry in this study showed reversal of the normal CD4/CD8 T cell ratio in the infected untreated mice, however, following therapy it reverts back to a normal balanced ratio. The combined (NTZ+ IVC) treatment demonstrated the highest level of CD4 T cell expression. Taken together, NTZ and IVC combined therapy showed remarkable anti-parasitic and immunostimulatory effects, specifically towards the CD4 population that seem to be promising in controlling cryptosporidiosis in diabetic individuals. Further research is required to explore other effective treatment strategies for those comorbid patients.
Collapse
Affiliation(s)
| | - Amany Ahmed Abdelaal
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine - AFCM, Cairo, Egypt
| | - Soad Ismail Hassan
- Medical Parasitology Department, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | - Maisa Ahmed Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | | | - Rasha Ahmed Khairy
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Adam Ashraf Afife
- College of Life Sciences, Faculty of Medicine, Leicester University, United Kingdom
| | - Hanaa Omar Fadl
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|