1
|
Jîtcă G, Stoicescu R, Májai E. Cannabidiol Treatment in a Predator-Based Animal Model of PTSD: Assessing Oxidative Stress and Memory Performance. Int J Mol Sci 2025; 26:4491. [PMID: 40429636 PMCID: PMC12110952 DOI: 10.3390/ijms26104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Numerous preclinical and clinical studies indicate that CBD possesses various therapeutic properties, including antipsychotic, analgesic, anticonvulsant, antineoplastic, and antioxidant effects. Recent research has also highlighted its potential anxiolytic effects. This study aimed to evaluate the impact of CBD treatment in a PTSD induction model. To determine CBD's efficacy, behavioral tests assessing anxiety and memory were conducted. Additionally, two oxidative stress markers were measured to explore its antioxidant properties. Forty adult male rats were used for PTSD induction. The procedure involved exposure to predator odor on day 10, followed by a second exposure on day 20. A secondary stressor, consisting of daily cage partner changes, was also applied. The animals were randomized into four groups: two non-stressed and two stressed groups. CBD was administered at 10 mg/kg. Behavioral effects were evaluated using the open field (OF), elevated plus maze (EPM), novel object recognition (NOR), and Morris Water Maze (MWM) tests. Malondialdehyde and the GSH/GSSG ratio were assessed using liquid chromatography. CBD treatment did not significantly alter anxiety-like behavior in the EPM, though a trend toward increased vertical exploration was observed in the OF test. In memory-related assessments, no significant differences were found in the NOR test, while performance in the MWM indicated improved spatial memory, with CBD-treated rats spending more time in the target quadrant. In addition, malondialdehyde levels decreased in the CBD groups. Elevated cortisol levels in the stressed CBD group suggest a potential anxiolytic effect, warranting further research.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Robert Stoicescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Erzsébet Májai
- Department of Toxicology and Biopharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Sharina I, Awad R, Cobb S, Martin E, Marrelli SP, Reddy AK. Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. CELL REPORTS METHODS 2025; 5:100983. [PMID: 39954674 PMCID: PMC11955264 DOI: 10.1016/j.crmeth.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Non-invasive and high-temporal resolution methods for characterizing blood flow in mouse cranial arteries, such as the ophthalmic artery (OphA), are lacking. We present an application of pulsed Doppler ultrasound to provide real-time, non-invasive measurement of blood flow velocity in the OphA through an identified soft tissue window in the mouse head. We confirmed the identity of the artery and mapped its origin from the internal carotid artery by a combination of microcomputed tomography (microCT) vascular imaging and transient occlusion of the internal carotid artery. Application of our approach demonstrated sex differences in the OphA vasodilative response to agonists. We also evaluated real-time flow characteristics in the OphA in response to transient carotid artery ligation. The method will provide a simple and low-cost approach for screening drugs targeting ophthalmic blood flow and can be used as a more accessible surrogate of cerebral blood flow in both acute and longitudinal imaging studies.
Collapse
Affiliation(s)
- Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA.
| | - Radwa Awad
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Soren Cobb
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Sean P Marrelli
- Department of Neurology, The University of Texas-McGovern Medical School, Houston, TX 77030, USA
| | - Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Indus Instruments, Webster, TX 77598, USA
| |
Collapse
|
3
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Yegin B, Donmez DB, Oz S, Aydin S. Dose-related effects of ciproxifan on brain tissue in rats with cerebral ischemia-reperfusion. Int J Neurosci 2024; 134:1569-1581. [PMID: 37874217 DOI: 10.1080/00207454.2023.2273767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Cerebral ischemia is the result of decreased or interrupted blood flow to the brain. It is the third leading cause of death after cardiovascular disease and cancer. Cerebral ischemia is reversible or irreversible in neurons in the affected area, and subsequent free radical damage can be exacerbated if reperfusion occurs. Ciproxifan is used to study the involvement of histaminergic neurons in different phases such as wakefulness and cognition. We wanted to find out whether ciproxifan has a protective effect on the brain of rats with cerebral ischemia-reperfusion injury. MATERIALS AND METHODS A total of 64 adult rats (32 male and 32 female) were used for the experiment. Eight cages were formed with randomly selected rats. No substance was administered to the rats in Group 1 and no surgical procedure was performed. The cerebral ischemia-reperfusion model (clamping of the left common carotid artery for 15 min followed by reperfusion for 24 h) was applied to rats in Group 2, Group 3, and Group 4 after 7 days/single dose of saline and ciproxifan (10 mg/kg, 30 mg/kg). After that, the activitymeter, forced swim test (FST), and Morris water maze (MWM) were performed on all animals. RESULTS Rats treated with ciproxifan exhibit neurons and glial cells with histologic structures similar to those of the control group, and interestingly, these differences became more pronounced with increasing dose. Rats administered ciproxifan improved motor coordination, decreased total distance behavior, and improved learning ability. However, when the groups were compared by sex, no significant difference was found in the parameters. CONCLUSION Thus, we could conclude that ciproxifan has a protective effect on the brain to a certain extent, regardless of the dose.
Collapse
Affiliation(s)
- Bengi Yegin
- Departmant of Anatomy, Faculty of Medicine, Yuksek Ihtisas University, Cankaya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Semih Oz
- Departmant of Vocational School of Health Services, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Sule Aydin
- Department of Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| |
Collapse
|
5
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
6
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
da Silva Rodrigues F, Jantsch J, de Farias Fraga G, Luiza de Camargo Milczarski V, Silva Dias V, Scheid C, de Oliveira Merib J, Giovernardi M, Padilha Guedes R. Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring. Brain Behav Immun 2024; 119:301-316. [PMID: 38608740 DOI: 10.1016/j.bbi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória Luiza de Camargo Milczarski
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Scheid
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josias de Oliveira Merib
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Omotayo OP, Lemmer Y, Mason S. A narrative review of the therapeutic and remedial prospects of cannabidiol with emphasis on neurological and neuropsychiatric disorders. J Cannabis Res 2024; 6:14. [PMID: 38494488 PMCID: PMC10946130 DOI: 10.1186/s42238-024-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The treatment of diverse diseases using plant-derived products is actively encouraged. In the past few years, cannabidiol (CBD) has emerged as a potent cannabis-derived drug capable of managing various debilitating neurological infections, diseases, and their associated complications. CBD has demonstrated anti-inflammatory and curative effects in neuropathological conditions, and it exhibits therapeutic, apoptotic, anxiolytic, and neuroprotective properties. However, more information on the reactions and ability of CBD to alleviate brain-related disorders and the neuroinflammation that accompanies them is needed. MAIN BODY This narrative review deliberates on the therapeutic and remedial prospects of CBD with an emphasis on neurological and neuropsychiatric disorders. An extensive literature search followed several scoping searches on available online databases such as PubMed, Web of Science, and Scopus with the main keywords: CBD, pro-inflammatory cytokines, and cannabinoids. After a purposive screening of the retrieved papers, 170 (41%) of the articles (published in English) aligned with the objective of this study and retained for inclusion. CONCLUSION CBD is an antagonist against pro-inflammatory cytokines and the cytokine storm associated with neurological infections/disorders. CBD regulates adenosine/oxidative stress and aids the downregulation of TNF-α, restoration of BDNF mRNA expression, and recovery of serotonin levels. Thus, CBD is involved in immune suppression and anti-inflammation. Understanding the metabolites associated with response to CBD is imperative to understand the phenotype. We propose that metabolomics will be the next scientific frontier that will reveal novel information on CBD's therapeutic tendencies in neurological/neuropsychiatric disorders.
Collapse
Affiliation(s)
- Oluwadara Pelumi Omotayo
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR), Next Generation Health, Pretoria, South Africa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
9
|
Schouten M, Dalle S, Mantini D, Koppo K. Cannabidiol and brain function: current knowledge and future perspectives. Front Pharmacol 2024; 14:1328885. [PMID: 38288087 PMCID: PMC10823027 DOI: 10.3389/fphar.2023.1328885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid found in Cannabis sativa, commonly known as cannabis or hemp. Although currently available CBD products do not meet the safety standards of most food safety authorities to be approved as a dietary supplement or food additive, CBD has been gaining widespread attention in recent years due to its various potential health benefits. While primarily known for its therapeutic effects in managing epileptic seizures, psychosis, anxiety, (neuropathic) pain, and inflammation, CBD's influence on brain function has also piqued the interest of researchers and individuals seeking to enhance cognitive performance. The primary objective of this review is to gather, synthesize, and consolidate scientifically proven evidence on the impact of CBD on brain function and its therapeutic significance in treating neurological and mental disorders. First, basic background information on CBD, including its biomolecular properties and mechanisms of action is presented. Next, evidence for CBD effects in the human brain is provided followed by a discussion on the potential implications of CBD as a neurotherapeutic agent. The potential effectiveness of CBD in reducing chronic pain is considered but also in reducing the symptoms of various brain disorders such as epilepsy, Alzheimer's, Huntington's and Parkinson's disease. Additionally, the implications of using CBD to manage psychiatric conditions such as psychosis, anxiety and fear, depression, and substance use disorders are explored. An overview of the beneficial effects of CBD on aspects of human behavior, such as sleep, motor control, cognition and memory, is then provided. As CBD products remain largely unregulated, it is crucial to address the ethical concerns associated with their use, including product quality, consistency, and safety. Therefore, this review discusses the need for responsible research and regulation of CBD to ensure its safety and efficacy as a therapeutic agent for brain disorders or to stimulate behavioral and cognitive abilities of healthy individuals.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Bomfim AJDL, Zuze SMF, Fabrício DDM, Pessoa RMDP, Crippa JAS, Chagas MHN. Effects of the Acute and Chronic Administration of Cannabidiol on Cognition in Humans and Animals: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:955-973. [PMID: 37792394 DOI: 10.1089/can.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Introduction: The effects of cannabidiol (CBD) on cognition has been investigated in recent years to determine the therapeutic potential of this cannabinoid for a broad gamut of medical conditions, including neuropsychiatric disorders. The aim of the present study was to perform a systematic review of studies that analyzed the effects of the acute and chronic administration of CBD on cognition in humans and animals both to assess the cognitive safety of CBD and to determine a beneficial potential of CBD on cognition. Methods: The PubMed, Web of Science, PsycINFO, and Scopus databases were searched in December of 2022 for relevant articles using the following combinations of keywords: ("cannabidiol" OR "CBD") AND ("cognition" OR "processing cognitive" OR "memory" OR "language" OR "attention" OR "executive function" OR "social cognition" OR "perceptual motor ability" OR "processing speed"). Results: Fifty-nine articles were included in the present review (36 preclinical and 23 clinical trials). CBD seems not to have any negative effect on cognitive processing in rats. The clinical trials confirmed these findings in humans. One study found that repeated dosing with CBD may improve cognitive in people who use cannabis heavily but not individuals with neuropsychiatric disorders. Considering the context of neuropsychiatric disorders in animal models, CBD seems to reverse the harm caused by the experimental paradigms, such that the performance of these animals becomes similar to that of control animals. Conclusions: The results demonstrate that the chronic and acute administration of CBD seems not to impair cognition in humans without neuropsychiatric disorders. In addition, preclinical studies report promising results regarding the effects of CBD on the cognitive processing of animals. Future double-blind, placebo-controlled, randomized clinical trials with larger, less selective samples, with standardized tests, and using different doses of CBD in outpatients are of particular interest to elucidate the cognitive effects of CBD.
Collapse
Affiliation(s)
- Ana Julia de Lima Bomfim
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Stefany Mirrelle Fávero Zuze
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rebeca Mendes de Paula Pessoa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
11
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
12
|
Castelli V, Lavanco G, D’Amico C, Feo S, Tringali G, Kuchar M, Cannizzaro C, Brancato A. CBD enhances the cognitive score of adolescent rats prenatally exposed to THC and fine-tunes relevant effectors of hippocampal plasticity. Front Pharmacol 2023; 14:1237485. [PMID: 37583903 PMCID: PMC10424934 DOI: 10.3389/fphar.2023.1237485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Cesare D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
The Role of Glutamate Receptors in Epilepsy. Biomedicines 2023; 11:biomedicines11030783. [PMID: 36979762 PMCID: PMC10045847 DOI: 10.3390/biomedicines11030783] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glutamate is an essential excitatory neurotransmitter in the central nervous system, playing an indispensable role in neuronal development and memory formation. The dysregulation of glutamate receptors and the glutamatergic system is involved in numerous neurological and psychiatric disorders, especially epilepsy. There are two main classes of glutamate receptor, namely ionotropic and metabotropic (mGluRs) receptors. The former stimulate fast excitatory neurotransmission, are N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate; while the latter are G-protein-coupled receptors that mediate glutamatergic activity via intracellular messenger systems. Glutamate, glutamate receptors, and regulation of astrocytes are significantly involved in the pathogenesis of acute seizure and chronic epilepsy. Some glutamate receptor antagonists have been shown to be effective for the treatment of epilepsy, and research and clinical trials are ongoing.
Collapse
|
14
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
15
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
16
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|
17
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
18
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Meyer E, Rieder P, Gobbo D, Candido G, Scheller A, de Oliveira RMW, Kirchhoff F. Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke. Int J Mol Sci 2022; 23:12886. [PMID: 36361675 PMCID: PMC9659180 DOI: 10.3390/ijms232112886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies.
Collapse
Affiliation(s)
- Erika Meyer
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Gabriella Candido
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Rúbia Maria Weffort de Oliveira
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| |
Collapse
|
20
|
Yousaf M, Chang D, Liu Y, Liu T, Zhou X. Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders. Molecules 2022; 27:4961. [PMID: 35956911 PMCID: PMC9370304 DOI: 10.3390/molecules27154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer's disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD's effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD's derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.
Collapse
Affiliation(s)
- Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
21
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
22
|
Bandawe G. Medical cannabis and cannabidiol: A new harvest for Malawi. Malawi Med J 2022; 34:138-142. [PMID: 35991815 PMCID: PMC9356517 DOI: 10.4314/mmj.v34i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In February 2020 parliament passed the Cannabis Regulation Bill (2020) which regulates the cultivation and production of industrial hemp and medical cannabis. The country will only fully benefit from this development if the medical and scientific community can take the lead in enabling the country to exploit the plant's potential to help address some of our economic and public health challenges. This special communication provides some basic information on cannabis and discusses its history and medical uses. Cannabidiol (CBD) has emerged as one of the most important cannabis-derived phytochemicals and has formed the basis for the growth of the medical cannabis industry. The scientific data on the mechanisms of the effects of CBD on the human neuroendocrine-immune network is reviewed and the first effective cannabis-based FDA-approved treatment for epilepsy discussed. Some clinical research that is being done on the antipsychotic and neuroprotective properties of CBD is also reviewed. A case is made for the potential of CBD as a neuroprotective adjunctive therapy for the prevention of neuropsychological sequelae associated with complicated malaria. The safety profile of CBD is reviewed and finally, the potential importance of the re-medicalization of cannabis-based therapies for the broader field of phytomedicine is pointed out.
Collapse
Affiliation(s)
- Gama Bandawe
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology
| |
Collapse
|
23
|
Frandsen J, Narayanasamy P. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several C. elegans Strains Including a C. elegans Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:1165-1177. [PMID: 35385645 DOI: 10.1021/acschemneuro.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol is a nonpsychoactive phytocannabinoid produced by the Cannabis sativa plant and possesses a wide range of pharmacological activities, including anti-inflammatory, antioxidant, and neuroprotective activities. Cannabidiol functions in a neuroprotective manner, in part through the activation of cellular antioxidant pathways. The glyoxalase pathway detoxifies methylglyoxal, a highly reactive metabolic byproduct that can accumulate in the brain, and contributes to the severity of neurodegenerative diseases, including Alzheimer's disease. While cannabidiol's antioxidant properties have been investigated, it is currently unknown how it may modulate the glyoxalase pathway. In this research paper, we examine the effects of Cannabidiol on cerebellar neurons and in several Caenorhabditis elegans strains. We determined that a limited amount of Cannabidiol can prevent methylglyoxal-mediated cellular damage through enhancement of the neural glyoxalase pathway and extend the lifespan and survival of C. elegans, including a transgenic C. elegans strain modeling Alzheimer's disease.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
24
|
Janisset NRLL, Romariz SAA, Hashiguchi D, Quintella ML, Gimenes C, Yokoyama T, Filev R, Carlini E, Barbosa da Silva R, Faber J, Longo BM. Partial protective effects of cannabidiol against PTZ-induced acute seizures in female rats during the proestrus-estrus transition. Epilepsy Behav 2022; 129:108615. [PMID: 35217387 DOI: 10.1016/j.yebeh.2022.108615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 02/05/2022] [Indexed: 11/03/2022]
Abstract
Approximately 70% of women with epilepsy experience additional challenges in seizure exacerbation due to hormonal changes, particularly during fluctuations of estrogen-progesterone levels in the menstrual cycle, which is known as catamenial epilepsy. In animal models of epilepsy, a sustained increase in seizure frequency has been observed in female rats during the proestrus-estrus transition when estrogen levels are high and progesterone levels are low resembling catamenial epilepsy. Cannabidiol (CBD) has been proposed to have anticonvulsant and anti-inflammatory effects, able to decrease seizure duration and increase seizure threshold in rats with epilepsy. However, most studies have used males to investigate the pharmacological effects of CBD on seizures, and the neuroprotective effects of CBD against seizures exacerbated by hormonal fluctuations in females are still little explored. Given this scenario, the aim of the present study was to investigate whether CBD would protect against acute seizures induced by pentylenetetrazole (PTZ) in female rats during a pro-convulsant hormonal phase. Therefore, CBD (50 mg/kg) or saline was administered during the proestrus-estrus transition phase, 1 h prior to induction of seizures with PTZ (60 mg/kg), and the following parameters were recorded: duration, latency to first seizure, as well as percentage of convulsing animals (incidence), mortality, and severity of seizures. Brains were processed for immunohistochemistry for microglial cells (Iba-1), and blood was collected for the analysis of cytokines (IL-1β, IL-6, IL-10, and TNF-α). Cannabidiol pre-treated rats showed a significant reduction in duration and severity of seizures, and IL-1β levels, although the latency, incidence of seizures, and mortality rate remained unchanged as well the quantification of microglia in the selected areas. Therefore, acute administration of CBD in a single dose prior to seizure induction showed a partial neuroprotective effect against seizure severity and inflammation, suggesting that female rats in the proconvulsant phase of proestrus-estrus have a low seizure threshold and are more resistant to the anticonvulsant effects of CBD. It appears that other doses or administration windows of CBD may be required to achieve a full protective effect against seizures, suggesting that CBD could be used as an adjunctive therapy during fluctuations of estrogen-progesterone levels. In this sense, considering the hormonal fluctuation as a seizure-potentiating factor, our study contributes to understand the anticonvulsant activity of CBD in females in a pro-convulsant hormonal phase, similar to catamenial seizures in humans.
Collapse
Affiliation(s)
- Nilma R L L Janisset
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Simone A A Romariz
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Debora Hashiguchi
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Miguel L Quintella
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Christiane Gimenes
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Thais Yokoyama
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Renato Filev
- Departamento de Psiquiatria e Psicologia Médica, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Elisaldo Carlini
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Regina Barbosa da Silva
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP Baixada Santista, Brazil
| | - Jean Faber
- Departamento de Neurologia e Neurocirurgia, Laboratório de Neuroengenharia e Neurocognição, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil.
| |
Collapse
|
25
|
García-Baos A, Puig-Reyne X, García-Algar Ó, Valverde O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother 2021; 141:111813. [PMID: 34126352 DOI: 10.1016/j.biopha.2021.111813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foetal alcohol spectrum disorder (FASD) is the umbrella term used to describe the physical and mental disabilities induced by alcohol exposure during development. Early alcohol exposure induces cognitive impairments resulting from damage to the central nervous system (CNS). The neuroinflammatory response accompanied by neurodegenerative mechanisms contribute to those detrimental alterations. Cannabidiol (CBD) has recently emerged as an anti-inflammatory drug that might be useful to treat several neuropsychiatric disorders. In our study, we assessed the effects of CBD on long-lasting cognitive deficits induced by early alcohol exposure. Furthermore, we analysed long-term pro-inflammatory and apoptotic markers within the prefrontal cortex and hippocampus. To model alcohol binge drinking during gestational and lactation periods, we used pregnant C57BL/6 female mice with time-limited access to 20% v/v alcohol solution. Following the prenatal and lactation alcohol exposure (PLAE), we treated the male and female offspring with CBD from post-natal day (PD) 25 until PD34, and we evaluated their cognitive performance at PD60. Our results showed that CBD treatment during peri-adolescence period ameliorates cognitive deficits observed in our FASD-like mouse model, without sex differences. Moreover, CBD restores the PLAE-induced increased levels of TNFα and IL-6 in the hippocampus. Thus, our study provides new insights for CBD as a therapeutic agent to counteract cognitive impairments and neuroinflammation caused by early alcohol exposure.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Puig-Reyne
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Óscar García-Algar
- Neonatology Unit, ICGON, IDIBAPS, Hospital Clínic-Maternitat, BCNatal, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
26
|
Neuroprotective and Symptomatic Effects of Cannabidiol in an Animal Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22168920. [PMID: 34445626 PMCID: PMC8396349 DOI: 10.3390/ijms22168920] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia Nigra pars compacta, leading to classical PD motor symptoms. Current therapies are purely symptomatic and do not modify disease progression. Cannabidiol (CBD), one of the main phytocannabinoids identified in Cannabis Sativa, which exhibits a large spectrum of therapeutic properties, including anti-inflammatory and antioxidant effects, suggesting its potential as disease-modifying agent for PD. The aim of this study was to evaluate the effects of chronic treatment with CBD (10 mg/kg, i.p.) on PD-associated neurodegenerative and neuroinflammatory processes, and motor deficits in the 6-hydroxydopamine model. Moreover, we investigated the potential mechanisms by which CBD exerted its effects in this model. CBD-treated animals showed a reduction of nigrostriatal degeneration accompanied by a damping of the neuroinflammatory response and an improvement of motor performance. In particular, CBD exhibits a preferential action on astrocytes and activates the astrocytic transient receptor potential vanilloid 1 (TRPV1), thus, enhancing the endogenous neuroprotective response of ciliary neurotrophic factor (CNTF). These results overall support the potential therapeutic utility of CBD in PD, as both neuroprotective and symptomatic agent.
Collapse
|
27
|
Meyer E, Bonato JM, Mori MA, Mattos BA, Guimarães FS, Milani H, de Campos AC, de Oliveira RMW. Cannabidiol Confers Neuroprotection in Rats in a Model of Transient Global Cerebral Ischemia: Impact of Hippocampal Synaptic Neuroplasticity. Mol Neurobiol 2021; 58:5338-5355. [PMID: 34302281 DOI: 10.1007/s12035-021-02479-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023]
Abstract
Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Bianca Andretto Mattos
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Alline Cristina de Campos
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil.
| |
Collapse
|
28
|
Moser U. Tetrahydrocannabinol and cannabidiol as an oromucosal spray in a 1:1 ratio: a therapeutic option for patients with central post-stroke pain syndrome? BMJ Case Rep 2021; 14:14/7/e243072. [PMID: 34230048 DOI: 10.1136/bcr-2021-243072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Central pain after stroke due to brainstem infarction is very rare. Treatment is difficult and specific guidelines are lacking. This is the report of a 61-year-old female patient who, after a posterolateral left medulla oblongata insult with incomplete Wallenberg syndrome, subsequently developed a burning and tingling pain in the contralateral leg and a burning and shooting pain in the ipsilateral face in trigeminal branches 1 and 2. More than 3 years of therapy with amitriptyline, gabapentin, pregabalin and various grade II and III opioids was ineffective or showed intolerable side effects. The administration of tetrahydrocannabinol and cannabidiol as an oromucosal spray in a 1:1 ratio improved the pain situation and quality of life quickly and permanently. The encouraging results in the present case may suggest that treatment with medical cannabis should be considered in similar cases when standard therapies are insufficient.
Collapse
|
29
|
Salehi C, Seiiedy M, Soraya H, Fazli F, Ghasemnejad-Berenji M. Pretreatment with bisoprolol and vitamin E alone or in combination provides neuroprotection against cerebral ischemia/reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:685-695. [PMID: 33106920 DOI: 10.1007/s00210-020-02007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 01/26/2023]
Abstract
Global cerebral ischemia/reperfusion (I/R) induces selective neuronal injury in the hippocampus, leading to severe impairment in behavior, learning, and memory functions. This study aimed to evaluate the neuroprotective effects of bisoprolol (biso) and vitamin E (vit E) treatment alone or in combination on cerebral ischemia/reperfusion (I/R) injury. A total of 30 male rats were divided randomly into five groups (n = 6), sham, I/R, I/R + biso, I/R + vit E, and I/R + biso+vit E. Cerebral I/R group underwent global ischemia by bilateral common carotid artery occlusion for 20 min. Treatment groups received drugs once daily intraperitoneally for 7 days before the I/R induction. Locomotive and cognitive behaviors were utilized by open-field and Morris water maze tests. After behavioral testing, the brain was removed and processed to evaluate cerebral infarct size, histopathologic changes, myeloperoxidase (MPO) activity, and malondialdehyde (MDA) level. In I/R group tissue MDA and MPO levels and cerebral infarct size were significantly increased in comparison with the sham group. Furthermore, significant deficits were observed in locomotion and spatial memory after I/R. The areas of cerebral infarction, MPO, and MDA levels in biso, vit E, and combination group were significantly reduced compared with I/R group. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration in all treated groups with the most profound reduction in the combination group. According to the behavioral tests, administration of biso and/or vit E protected locomotive ability and improved spatial memory after cerebral I/R. Our findings show that biso and vit E have beneficial effects against the I/R injury and due to their synergistic effects when administered in combination, may have a more pronounced protective effect on the cerebral I/R injury.
Collapse
Affiliation(s)
- Chiman Salehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Monireh Seiiedy
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran.
| | - Farzaneh Fazli
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran.
| |
Collapse
|
30
|
Vrechi TAM, Leão AHFF, Morais IBM, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Ureshino RP, Smaili SS, Pereira GJS. Cannabidiol induces autophagy via ERK1/2 activation in neural cells. Sci Rep 2021; 11:5434. [PMID: 33686185 PMCID: PMC7940388 DOI: 10.1038/s41598-021-84879-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Talita A M Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ingrid B M Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Diadema Campus, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
32
|
Sheikholeslami MA, Ghafghazi S, Pouriran R, Mortazavi SE, Parvardeh S. Attenuating effect of paroxetine on memory impairment following cerebral ischemia-reperfusion injury in rat: The involvement of BDNF and antioxidant capacity. Eur J Pharmacol 2021; 893:173821. [PMID: 33347827 DOI: 10.1016/j.ejphar.2020.173821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Memory impairments are frequently reported in patients suffering from brain ischemic diseases. Oxidative/nitrosative stress, synaptic plasticity, and brain-derived neurotrophic factor (BDNF) are involved in the physiopathology of brain ischemia-induced memory disorders. In the present study, the effect of paroxetine as an efficacious antidepressant medication with antioxidant properties was evaluated on passive avoidance memory deficit following cerebral ischemia in rats. Transient occlusion of common carotid arteries was applied to induce ischemia-reperfusion injury in male Wistar rats. Paroxetine (5, 10, 20 mg/kg) was administered intraperitoneally once daily before (for 3 days) or after (for 7 days) the induction of ischemia. A week after ischemia-reperfusion injury, passive avoidance memory, long-term potentiation (LTP), BDNF levels, total antioxidant capacity, the activity of antioxidant enzymes (including catalase, glutathione peroxidase, and superoxide dismutase), the concentration of malondialdehyde (MDA), and nitric oxide (NO) were investigated in the hippocampus. In the passive avoidance test, paroxetine significantly increased the step-through latency and decreased the time spent in the dark compartment. This affirmative function of paroxetine on the passive avoidance memory was accompanied by the improvement of hippocampal LTP and an obvious augmentation in the BDNF contents. Besides, paroxetine caused a significant rise in the total antioxidant capacity and antioxidant enzyme activity; while decreased the hippocampal levels of NO and MDA. It was ultimately attained that paroxetine attenuates cerebral ischemia-induced passive avoidance memory dysfunction in rats by the enhancement of hippocampal synaptic plasticity and BDNF content together with the suppression of oxidative/nitrosative stress.
Collapse
Affiliation(s)
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Erfan Mortazavi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
34
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules 2020; 25:molecules25215186. [PMID: 33171772 PMCID: PMC7664437 DOI: 10.3390/molecules25215186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.
Collapse
|
36
|
The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. Int J Mol Sci 2020; 21:ijms21186740. [PMID: 32937917 PMCID: PMC7554803 DOI: 10.3390/ijms21186740] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders. Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases. Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions. Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys. In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.
Collapse
|
37
|
Bloomfield MAP, Green SF, Hindocha C, Yamamori Y, Yim JLL, Jones APM, Walker HR, Tokarczuk P, Statton B, Howes OD, Curran HV, Freeman TP. The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study. J Psychopharmacol 2020; 34:981-989. [PMID: 32762272 PMCID: PMC7436497 DOI: 10.1177/0269881120936419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is being investigated as a potential treatment for several medical indications, many of which are characterised by altered memory processing. However, the mechanisms underlying these effects are unclear. AIMS Our primary aim was to investigate how CBD influences cerebral blood flow (CBF) in regions involved in memory processing. Our secondary aim was to determine if the effects of CBD on CBF were associated with differences in working and episodic memory task performance. METHODS We used a randomised, crossover, double-blind design in which 15 healthy participants were administered 600 mg oral CBD or placebo on separate days. We measured regional CBF at rest using arterial spin labelling 3 h after drug ingestion. We assessed working memory with the digit span (forward, backward) and n-back (0-back, 1-back, 2-back) tasks, and we used a prose recall task (immediate and delayed) to assess episodic memory. RESULTS CBD increased CBF in the hippocampus (mean (95% confidence intervals) = 15.00 (5.78-24.21) mL/100 g/min, t14 = 3.489, Cohen's d = 0.75, p = 0.004). There were no differences in memory task performance, but there was a significant correlation whereby greater CBD-induced increases in orbitofrontal CBF were associated with reduced reaction time on the 2-back working memory task ( r= -0.73, p = 0.005). CONCLUSIONS These findings suggest that CBD increases CBF to key regions involved in memory processing, particularly the hippocampus. These results identify potential mechanisms of CBD for a range of conditions associated with altered memory processing, including Alzheimer's disease, schizophrenia, post-traumatic stress disorder and cannabis-use disorders.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, UK,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK,Michael Bloomfield, Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, University College London, Maple House, Tottenham Court Road, London W1T 7NF, UK.
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Yumeya Yamamori
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Jocelyn Lok Ling Yim
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Augustus P M Jones
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Hannah R Walker
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Pawel Tokarczuk
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ben Statton
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Department of Psychology, University of Bath, Bath, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
38
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
39
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Dunn AL, Michie PT, Hodgson DM, Harms L. Adolescent cannabinoid exposure interacts with other risk factors in schizophrenia: A review of the evidence from animal models. Neurosci Biobehav Rev 2020; 116:202-220. [PMID: 32610181 DOI: 10.1016/j.neubiorev.2020.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Many factors and their interaction are linked to the aetiology of schizophrenia, leading to the development of animal models of multiple risk factors and adverse exposures. Differentiating between separate and combined effects for each factor could better elucidate schizophrenia pathology, and drive development of preventative strategies for high-load risk factors. An epidemiologically valid risk factor commonly associated with schizophrenia is adolescent cannabis use. The aim of this review is to evaluate how early-life adversity from various origins, in combination with adolescent cannabinoid exposure interact, and whether these interactions confer main, synergistic or protective effects in animal models of schizophrenia-like behavioural, cognitive and morphological alterations. Patterns emerge regarding which models show consistent synergistic or protective effects, particularly those models incorporating early-life exposure to maternal deprivation and maternal immune activation, and sex-specific effects are observed. It is evident that more research needs to be conducted to better understand the risks and alterations of interacting factors, with particular interest in sex differences, to better understand the translatability of these preclinical models to humans.
Collapse
Affiliation(s)
- Ariel L Dunn
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren Harms
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
41
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
42
|
Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, Weston-Green K. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109666. [PMID: 31202911 DOI: 10.1016/j.pnpbp.2019.109666] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
43
|
Effects of Vitamin C on the Prevention of Ischemia-Reperfusion Brain Injury: Experimental Study in Rats. Int J Vasc Med 2019; 2019:4090549. [PMID: 32089885 PMCID: PMC7012208 DOI: 10.1155/2019/4090549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Reperfusion syndrome after carotid endarterectomy is a complication associated with cerebrovascular self-regulation in a chronically hypoperfused cerebral hemisphere, leading to severe neurological damage. Vitamin C is an important antioxidant in brain metabolism that has shown some neuroprotective actions. Objective To investigate the potential effects of vitamin C on cerebral reperfusion in comparison with placebo (saline) in rats. Methods Male Wistar rats were divided into 3 groups: (i) Sham (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control ( Results Rats treated with vitamin C presented with a similar behavior as compared to the Sham group in all the three tests (p > 0.05), but it was significantly different from controls (p > 0.05), but it was significantly different from controls (p > 0.05), but it was significantly different from controls ( Conclusion In the present study, vitamin C was associated with behavioral and motor preservation as well as decreased cerebral MDA levels after induced cerebral ischemia in rats.
Collapse
|
44
|
Branca JJV, Morucci G, Becatti M, Carrino D, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Cannabidiol Protects Dopaminergic Neuronal Cells from Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224420. [PMID: 31718076 PMCID: PMC6888634 DOI: 10.3390/ijerph16224420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
The protective effect of cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, against neuronal toxicity induced by cadmium chloride (CdCl2 10 μM) was investigated in a retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cell line. CBD (1 μM) was applied 24 h before and removed during cadmium (Cd) treatment. In differentiated neuronal cells, CBD significantly reduced the Cd-dependent decrease of cell viability, and the rapid reactive oxygen species (ROS) increase. CBD significantly prevented the endoplasmic reticulum (ER) stress (GRP78 increase) and the subcellular distribution of the cytochrome C, as well as the overexpression of the pro-apoptotic protein BAX. Immunocytochemical analysis as well as quantitative protein evaluation by western blotting revealed that CBD partially counteracted the depletion of the growth associated protein 43 (GAP43) and of the neuronal specific class III β-tubulin (β3 tubulin) induced by Cd treatment. These data showed that Cd-induced neuronal injury was ameliorated by CBD treatment and it was concluded that CBD may represent a potential option to protect neuronal cells from the detrimental effects of Cd toxicity.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
- Correspondence: (J.J.V.B.); (G.M.); Tel.: +39-055-2758067 (J.J.V.B.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
- Correspondence: (J.J.V.B.); (G.M.); Tel.: +39-055-2758067 (J.J.V.B.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy;
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| |
Collapse
|
45
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
46
|
Ceprián M, Vargas C, García-Toscano L, Penna F, Jiménez-Sánchez L, Achicallende S, Elezgarai I, Grandes P, Hind W, Pazos MR, Martínez-Orgado J. Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats. Front Pharmacol 2019; 10:1131. [PMID: 31611802 PMCID: PMC6775595 DOI: 10.3389/fphar.2019.01131] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/30/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy. Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals. We hereby aimed to study CBD’s effects on long-lasting HI-induced myelination deficits in newborn rats. Thus, P7 Wistar rats received s.c. vehicle (HV) or cannabidiol (HC) after HI brain damage (left carotid artery electrocoagulation plus 10% O2 for 112 min). Controls were non-HI pups. At P37, neurobehavioral tests were performed and immunohistochemistry [quantifying mature oligodendrocyte (mOL) populations and myelin basic protein (MBP) density] and electron microscopy (determining axon number, size, and myelin thickness) studies were conducted in cortex (CX) and white matter (WM). Expression of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) were analyzed by western blot at P14. HI reduced mOL or MBP in CX but not in WM. In both CX and WM, axon density and myelin thickness were reduced. MBP impairment correlated with functional deficits. CBD administration resulted in normal function associated with normal mOL and MBP, as well as normal axon density and myelin thickness in all areas. CBD’s effects were not associated with increased BDNF or GDNF expression. In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.
Collapse
Affiliation(s)
- María Ceprián
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Carlos Vargas
- Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Laura García-Toscano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Federica Penna
- Department of DBSV, Laboratory of Neuropsychopharmacology, University of Insubria, Varese, Italy
| | - Laura Jiménez-Sánchez
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain
| | - Svein Achicallende
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Izaskun Elezgarai
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Pedro Grandes
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | | | - M Ruth Pazos
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José Martínez-Orgado
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| |
Collapse
|
47
|
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. Neurotoxicology 2019; 74:282-298. [PMID: 31412258 DOI: 10.1016/j.neuro.2019.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are the most represented phytocannabinoids in Cannabis sativa plants. However, CBD may present with a different activity compared with the psychotomimetic THC. Most typically, CBD is reported to be used in some medical conditions, including chronic pain. Conversely, the main aim of this systematic review is to assess and summarise the available body of evidence relating to both efficacy and safety of CBD as a treatment for psychiatric disorders, alone and/or in combination with other treatments. Eligible studies included randomized controlled trials (RCT) assessing the effect of CBD in a range of psychopathological conditions, such as substance use; psychosis, anxiety, mood disturbances, and other psychiatric (e.g., cognitive impairment; sleep; personality; eating; obsessive-compulsive; post-traumatic stress/PTSD; dissociative; and somatic) disorders. For data gathering purposes, the PRISMA guidelines were followed. The initial search strategy identified some n = 1301 papers; n = 190 studies were included after the abstract's screening and n = 27 articles met the inclusion criteria. There is currently limited evidence regarding the safety and efficacy of CBD for the treatment of psychiatric disorders. However, available trials reported potential therapeutic effects for specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Further large-scale RCTs are required to better evaluate the efficacy of CBD in both acute and chronic illnesses, special categories, as well as to exclude any possible abuse liability.
Collapse
Affiliation(s)
| | - Angelo Ricciardi
- Camden and Islington NHS Mental Health Foundation Trust, London, UK; Department of Mental Health, ASL Roma 1, Rome, Italy
| | - Caroline Zangani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Stefania Chiappini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
48
|
Kleckner AS, Kleckner IR, Kamen CS, Tejani MA, Janelsins MC, Morrow GR, Peppone LJ. Opportunities for cannabis in supportive care in cancer. Ther Adv Med Oncol 2019; 11:1758835919866362. [PMID: 31413731 PMCID: PMC6676264 DOI: 10.1177/1758835919866362] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Cannabis has the potential to modulate some of the most common and debilitating symptoms of cancer and its treatments, including nausea and vomiting, loss of appetite, and pain. However, the dearth of scientific evidence for the effectiveness of cannabis in treating these symptoms in patients with cancer poses a challenge to clinicians in discussing this option with their patients. A review was performed using keywords related to cannabis and important symptoms of cancer and its treatments. Literature was qualitatively reviewed from preclinical models to clinical trials in the fields of cancer, human immunodeficiency virus (HIV), multiple sclerosis, inflammatory bowel disease, post-traumatic stress disorder (PTSD), and others, to prudently inform the use of cannabis in supportive and palliative care in cancer. There is a reasonable amount of evidence to consider cannabis for nausea and vomiting, loss of appetite, and pain as a supplement to first-line treatments. There is promising evidence to treat chemotherapy-induced peripheral neuropathy, gastrointestinal distress, and sleep disorders, but the literature is thus far too limited to recommend cannabis for these symptoms. Scant, yet more controversial, evidence exists in regard to cannabis for cancer- and treatment-related cognitive impairment, anxiety, depression, and fatigue. Adverse effects of cannabis are documented but tend to be mild. Cannabis has multifaceted potential bioactive benefits that appear to outweigh its risks in many situations. Further research is required to elucidate its mechanisms of action and efficacy and to optimize cannabis preparations and doses for specific populations affected by cancer.
Collapse
Affiliation(s)
- Amber S Kleckner
- Cancer Control and Survivorship, University of Rochester Medical Center, CU 420658, 265 Crittenden Blvd., Rochester, NY 14642, USA
| | - Ian R Kleckner
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles S Kamen
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Mohamedtaki A Tejani
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Janelsins
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Gary R Morrow
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Luke J Peppone
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
49
|
Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol Biochem Behav 2019; 181:93-100. [DOI: 10.1016/j.pbb.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/21/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022]
|
50
|
Schleicher EM, Ott FW, Müller M, Silcher B, Sichler ME, Löw MJ, Wagner JM, Bouter Y. Prolonged Cannabidiol Treatment Lacks on Detrimental Effects on Memory, Motor Performance and Anxiety in C57BL/6J Mice. Front Behav Neurosci 2019; 13:94. [PMID: 31133833 PMCID: PMC6513893 DOI: 10.3389/fnbeh.2019.00094] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 01/27/2023] Open
Abstract
The Cannabis plant contains more than 100 currently known phytocannabinoids. Regarding the rising consumption of the non-psychotropic phytocannabinoid cannabidiol (CBD) in people's everyday life (e.g., beauty products, food and beverages), the importance of studies on the influence of CBD on healthy humans and rodents is evident. Therefore, the behavioral profile of CBD was investigated with a battery of behavioral tests, including motor, anxiety, and memory tests after prolonged CBD treatment. Adult C57Bl/6J wildtype (WT) mice were daily intraperitoneally injected with 20 mg/kg CBD for 6 weeks starting at two different points of ages (3 months and 5 months) to compare the influence of prolonged CBD treatment with a washout period (former group) to the effects of long term CBD treatment (current group). Our results show that CBD treatment does not influence motor performance on an accelerating Rotarod test, while it also results in a lower locomotor activity in the open field (OF). No influence of CBD on spatial learning and long term memory in the Morris Water Maze (MWM) was observed. Memory in the Novel Object Recognition test (NORT) was unaffected by CBD treatment. Two different anxiety tests revealed that CBD does not affect anxiety behavior in the Dark-Light Box (DLB) and OF test. Although, anxiety is altered by current CBD treatment in the Elevated Plus Maze (EPM). Moreover, CBD-treated C57Bl/6J mice showed an unaltered acoustic startle response (ASR) compared to vehicle-treated mice. However, current CBD treatment impairs prepulse inhibition (PPI), a test to analyze sensorimotor gating. Furthermore, prolonged CBD treatment did not affect the hippocampal neuron number. Our results demonstrate that prolonged CBD treatment has no negative effect on the behavior of adult C57Bl/6J mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center Goettingen (UMG), Georg-August-University, Goettingen, Germany
| |
Collapse
|