1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Yan Z, Luo J, Wang Y, Yang J, Su M, Jiang L, Yang J, Dai M, Liu A. PPARα suppresses low-intensity-noise-induced body weight gain in mice: the activated HPA axis plays an critical role. Int J Obes (Lond) 2024; 48:1274-1282. [PMID: 38902386 DOI: 10.1038/s41366-024-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND As the second most risky environmental pollution, noise imposes threats to human health. Exposure to high-intensity noise causes hearing impairment, psychotic disorders, endocrine modifications. The relationship among low-intensity noise, obesity and lipid-regulating nuclear factor PPARα is not yet clear. METHODS In this study, male wild-type (WT) and Pparα-null (KO) mice on a high-fat diet (HFD) were exposed to 75 dB noise for 12 weeks to explore the effect of low-intensity noise on obesity development and the role of PPARα. 3T3-L1 cells were treated with dexamethasone (DEX) and sodium oleate (OA) to verify the down-stream effect of hypothalamic-pituitary-adrenal (HPA) axis activation on the adipose tissues. RESULTS The average body weight gain (BWG) of WT mice on HFD exposed to noise was inhibited, which was not observed in KO mice. The mass and adipocyte size of adipose tissues accounted for the above difference of BWG tendency. In WT mice on HFD, the adrenocorticotropic hormone level was increased by the noise challenge. The aggravation of fatty liver by noise exposure occurred in both mouse lines, and the transport of hepatic redundant lipid to adipose tissues were similar. The lipid metabolism in adipose tissue driven by HPA axis accorded with the BWG inhibition in vivo, validated in 3T3-L1 adipogenic stem cells. CONCLUSION Chronic exposure to low-intensity noise aggravated fatty liver in both WT and KO mice. BWG inhibition was observed only in WT mice, which covered up the aggravation of fatty liver by noise exposure. PPARα mediates the activation of HPA axis by noise exposure in mice on HFD. Elevated adrenocorticotropic hormone (ACTH) promoted lipid metabolism in adipocytes, which contributed to the disassociation of BWG and fatty liver development in male WT mice. Summary of PPARα suppresses noise-induced body weight gain in mice on high-fat-diet. Chronic exposure to low-intensity noise exposure inhibited BWG by PPARα-dependent activation of the HPA axis.
Collapse
Affiliation(s)
- Zheng Yan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ying Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mingli Su
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lei Jiang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Julin Yang
- Department of Basic Nutrition, Ningbo College of Health Sciences, Ningbo, 315211, China
| | - Manyun Dai
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Aiming Liu
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
4
|
Amyloid-beta (Aβ 1-42)-induced paralysis in Caenorhabditis elegans is reduced through NHR-49/PPARalpha. Neurosci Lett 2020; 730:135042. [PMID: 32413539 DOI: 10.1016/j.neulet.2020.135042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023]
Abstract
Alzheimer´s disease is a neurodegenerative disorder characterized by the misfolding and aggregation of amyloid β (Aβ). Agonists of peroxisomal proliferator-activated receptors (PPARs) are discussed as anti-amyloidogenic compounds, e.g. due to their cholesterol-lowering activities. In a previous study we have shown in Caenorhabditis elegans expressing human Aβ in muscle cells, that inhibition of steroid-signaling, by RNAi of respective members of the signaling pathway or by reducing cellular cholesterol uptake, both increases the nuclear translocation of the foxo transcription factor DAF-16 and concomitantly reduces Aβ-induced paralysis. Using RNAi in the present study we show that NHR-49/PPARalpha inhibits steroidal-signaling upstream of DAF-9, a cytochrome P450-dependent enzyme which generates dafachronic acids as ligands for the nuclear hormone receptor DAF-12, and upstream of DAF-12 itself. The NHR-49/PPARalpha agonist fenofibrate reduces Aβ-induced paralysis in dependence on nhr-49 and nuclear translocation of DAF-16. In conclusion, activation of NHR-49/PPARalpha inhibits the steroidal-signaling pathway which increases the nuclear translocation of DAF-16 and inhibits the Aβ-induced phenotype in an Alzheimer model of C. elegans.
Collapse
|
5
|
Gupta S, Nair A, Jhawat V, Mustaq N, Sharma A, Dhanawat M, Khan SA. Unwinding Complexities of Diabetic Alzheimer by Potent Novel Molecules. Am J Alzheimers Dis Other Demen 2020; 35:1533317520937542. [PMID: 32864980 PMCID: PMC10623924 DOI: 10.1177/1533317520937542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is one of the aggressive disorders in global society. No pharmacotherapy is available for permanent diabetes cure, although management is possible with drugs and physical activities. One of the recent complications noticed in type 2 diabetes mellitus includes diabetes-induced Alzheimer. It has been proposed that the possible diabetes-induced Alzheimer could be of type 3 diabetes. A variety of cross-sectional studies have proved that type 2 diabetes mellitus is one of the factors responsible for the pathophysiology of Alzheimer. New drug molecules developed by pharmaceutical companies with adequate neuroprotective effect have demonstrated their efficacy in treatment of Alzheimer in various preclinical diabetic studies. Patients of type 2 diabetes mellitus may show the benefit with existing drugs but may not cause complete cure. Extensive studies are being carried out to find new drug molecules that show their potential as antidiabetic drug and could treat type 2 diabetes-induced Alzheimer as well. This review provides an overview about the recent advancement in pharmacotherapy of diabetes-induced Alzheimer. The pathomechanistic links between diabetes and Alzheimer as well as neurochemical changes in diabetes-induced Alzheimer are also briefed.
Collapse
Affiliation(s)
- Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, MM (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Vikas Jhawat
- Department of Pharmaceutical Sciences, G. D Goenka University, Gurugram, Haryana, India
| | - Nazia Mustaq
- Department of Pharmacology, MM College of Pharmacy, MM (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Abhishek Sharma
- Department of Pharmacology, MM College of Pharmacy, MM (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Sciences, MM College of Pharmacy, MM (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Shah Alam Khan
- Department of Pharmacy, Oman Medical College, Muscat, Oman
| |
Collapse
|
6
|
Mirza R, Sharma B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull 2019; 147:36-46. [PMID: 30769127 DOI: 10.1016/j.brainresbull.2019.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with two major behavioral symptoms i.e. repetitive behavior and social-communication impairment. The unknown etiology of ASD is responsible for the difficulty in identifying the possible therapeutic modulators for ASD. Valproic acid (VPA) is an anticonvulsant drug in both human and rodents with teratogenic effects during pregnancy. Therefore, prenatal exposure of VPA induced autism spectrum disorder like phenotypes in both human and rodents. Peroxisome proliferator-activated receptor-alpha (PPAR-α) is widely localized in the brain. This research investigates the utility of fenofibrate, a selective agonist of PPAR-α in prenatal VPA-induced experimental ASD in Wistar rats. The prenatal VPA has induced social impairment (three chambers social behavior apparatus), repetitive behavior (Y-maze), hyperlocomotion (actophotometer), anxiety (elevated plus maze) and low exploratory activity (hole board test). Also, prenatal VPA treated rats have shown higher levels of oxidative stress (increased in thiobarbituric acid reactive species and decreased in reduced glutathione level) and inflammation (increased in interleukin-6, tumor necrosis factor-α and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. Treatment with fenofibrate significantly attenuated prenatal VPA-induced social impairment, repetitive behavior, hyperactivity, anxiety, and low exploratory activity. Furthermore, fenofibrate also decreased the prenatal VPA-induced oxidative stress and inflammation in brain regions. Hence, it may be concluded that fenofibrate may provide neurobehavioral and biochemical benefits in prenatal VPA-induced autism phenotypes in rats.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Delhi, India.
| |
Collapse
|
7
|
Piemontese L. An innovative approach for the treatment of Alzheimer's disease: the role of peroxisome proliferator-activated receptors and their ligands in development of alternative therapeutic interventions. Neural Regen Res 2019; 14:43-45. [PMID: 30531068 PMCID: PMC6262998 DOI: 10.4103/1673-5374.241043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer’s disease is a multifactorial pathology, for which no cure is currently available. Nowadays, researchers are moving towards a new hypothesis of the onset of the illness, linking it to a metabolic impairment. This innovative approach will lead to the identification of new targets for the preparation of new effective drugs. Peroxisome proliferator-activated receptors and their ligands are the ideal candidates to reach the necessary breakthrough to defeat this complicate disease.
Collapse
Affiliation(s)
- Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
9
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
10
|
Hiremathad A, Piemontese L. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer's disease therapy. Neural Regen Res 2017; 12:1256-1261. [PMID: 28966636 PMCID: PMC5607816 DOI: 10.4103/1673-5374.213541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Nowadays, Alzheimer's disease (AD) is widely recognized as a real social problem. In fact, only five drugs are FDA approved for the therapy of this widespread neurodegenerative disease, but with low results so far. Three of them (rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors, memantine is a N-methyl-D-aspartate receptor antagonist, whereas the fifth formulation is a combination of donepezil with memantine. The prevention and treatment of AD is the new challenge for pharmaceutical industry, as well as for public institutions, physicians, patients, and their families. The discovery of a new and safe way to cure this neurodegenerative disease is urgent and should not be delayed further. Because of the multiple origin of this pathology, a multi-target strategy is currently strongly pursued by researchers. In this review, we have discussed new structures designed to better the activity on the classical AD targets. We have also examined old and new potential drugs that could prove useful future for the therapy of the pathology by acting on innovative, not usual, and not yet fully explored targets like peroxisome proliferator-activated receptor (PPARs).
Collapse
Affiliation(s)
- Asha Hiremathad
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, India
| | - Luca Piemontese
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
11
|
Zhu WB, Tian FJ, Liu LQ. Chikusetsu (CHI) triggers mitochondria-regulated apoptosis in human prostate cancer via reactive oxygen species (ROS) production. Biomed Pharmacother 2017; 90:446-454. [PMID: 28391166 DOI: 10.1016/j.biopha.2017.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
The prostate cancer prognosis is still not fully understood. Chikusetsu saponin Iva (CHI), isolated from Aralia taibaiensis, shows anti-cancer and anti-inflammatory properties. Here, in our study, we attempted to explore the efficiency and the possible molecular mechanism by which CHI may suppress prostate cancer. CHI was found to inhibit prostate cancer cell proliferation and induce cell death without cytotoxicity in prostate normal cells. CHI resulted in intracellular reactive oxygen species (ROS) production, and induced apoptosis regulated by mitochondria in vitro studies. CHI-caused apoptosis was shown in both caspase-dependent and -independent manner, which released cyto-c, enhancing caspases expression and promoting apoptosis-inducing factors (AIF) as well as endonuclease G (Endo G) nuclear transfer, respectively. Moreover, in vivo study showed that prostate tumor was inhibited by CHI administration through apoptosis induction. Thus, the results illustrated that CHI might be an effective therapeutic strategy for prostate cancer treatment in future.
Collapse
Affiliation(s)
- Wen-Bin Zhu
- Department of Urology, Linyi People's Hospital, Linyi, 27 East Jiefang Rd, Lanshan, Linyi, Shandong, PR China
| | - Fu-Jun Tian
- Department of Dermatology, Linyi People's Hospital, Linyi, 27 East Jiefang Rd, Lanshan, Linyi, Shandong, PR China
| | - Li-Qian Liu
- Department of Dermatology, Linyi People's Hospital, Linyi, 27 East Jiefang Rd, Lanshan, Linyi, Shandong, PR China.
| |
Collapse
|
12
|
Sun H, Luo G, Chen D, Xiang Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front Pharmacol 2016; 7:247. [PMID: 27582705 PMCID: PMC4987408 DOI: 10.3389/fphar.2016.00247] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Rhein is a major medicinal ingredient isolated from several traditional Chinese medicines, including Rheum palmatum L., Aloe barbadensis Miller, Cassia angustifolia Vahl., and Polygonum multiflorum Thunb. Rhein has various pharmacological activities, such as anti-inflammatory, antitumor, antioxidant, antifibrosis, hepatoprotective, and nephroprotective activities. Although more than 100 articles in PubMed are involved in the pharmacological mechanism of action of rhein, only a few focus on the relationship of crosstalk among multiple pharmacological mechanisms. The mechanism of rhein involves multiple pathways which contain close interactions. From the overall perspective, the pathways which are related to the targets of rhein, are initiated by the membrane receptor. Then, MAPK and PI3K-AKT parallel signaling pathways are activated, and several downstream pathways are affected, thereby eventually regulating cell cycle and apoptosis. The therapeutic effect of rhein, as a multitarget molecule, is the synergistic and comprehensive result of the involvement of multiple pathways rather than the blocking or activation of a single signaling pathway. We review the pharmacological mechanisms of action of rhein by consulting literature published in the last 100 years in PubMed. We then summarize these pharmacological mechanisms from a comprehensive, interactive, and crosstalk perspective. In general, the molecular mechanism of action of drug must be understood from a systematic and holistic perspective, which can provide a theoretical basis for precise treatment and rational drug use.
Collapse
Affiliation(s)
- Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Guangwen Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
13
|
p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci Rep 2016; 6:25628. [PMID: 27156849 PMCID: PMC4860716 DOI: 10.1038/srep25628] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and age-related neurodegenerative disease. Elucidating the cellular changes that occur during ageing is an important step towards understanding the pathogenesis and progression of neurodegenerative disorders. SIRT6 is a member of the mammalian sirtuin family of anti-aging genes. However, the relationship between SIRT6 and AD has not yet been elucidated. Here, we report that SIRT6 protein expression levels are reduced in the brains of both the 5XFAD AD mouse model and AD patients. Aβ42, a major component of senile plaques, decreases SIRT6 expression, and Aβ42-induced DNA damage is prevented by the overexpression of SIRT6 in HT22 mouse hippocampal neurons. Also, there is a strong negative correlation between Aβ42-induced DNA damage and p53 levels, a protein involved in DNA repair and apoptosis. In addition, upregulation of p53 protein by Nutlin-3 prevents SIRT6 reduction and DNA damage induced by Aβ42. Taken together, this study reveals that p53-dependent SIRT6 expression protects cells from Aβ42-induced DNA damage, making SIRT6 a promising new therapeutic target for the treatment of AD.
Collapse
|
14
|
Giniatullin R, Bart G, Tavi P. Complex role of peroxisome proliferator activator receptors (PPARs) in nociception. Scand J Pain 2015; 9:70-71. [PMID: 29911637 DOI: 10.1016/j.sjpain.2015.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio 70211, Kuopio, Finland.,Open Laboratory of Neurobiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Kazan, Russia
| | - Geneviève Bart
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio 70211, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio 70211, Kuopio, Finland
| |
Collapse
|