1
|
Ali MA, Zhang Y, Ni Q, Huang AQ, Dou S, Tang Y, Xu X, Zeng C. SIRT5 alleviates oxidative stress of boar sperm induced by cryopreservation through IDH2 and SOD2 pathway. Theriogenology 2025; 241:117424. [PMID: 40198939 DOI: 10.1016/j.theriogenology.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Excessive production of reactive oxygen species (ROS) and lipid peroxidation result in decreased motility, fertility, farrowing rate and litter size during boar sperm cryopreservation. Our previous study reported that cryopreservation leads to differential expression of genes (SIRT5 and IDH2) which regulate the energy metabolism and quality of sperm. But how SIRT5 regulates the metabolism and oxidative stress in boar sperm are still unknown. In the present study, we first determined the regulation of IDH2 and SOD2 by SIRT5 after its knockdown and then determined the role of SIRT5 in regulation of oxidative stress, metabolic activities, motility and fertility potential by its specific inhibitor (Suramin, SUR) and activator (Resveratrol, RSV). Then the effect of cryopreservation was evaluated on mRNA and protein expressions of SIRT5, IDH2 and SOD2 in boar sperm. A decrease in expressions was observed at both mRNA and protein for all these genes. Additionally, RSV and SUR treatment led to up and downregulation of mRNA and protein of both IDH2 and SOD2. A significant decrease (P < 0.05) in ROS levels and improvement in sperm motility, acrosomal integrity, MMP, PMI and ATP were observed in post-thaw sperm after activation of SIRT5 with RSV. Additionally, BAX and 4HNE levels were significantly (P < 0.05) reduced in RSV treated sperm. In conclusion, this study demonstrated that SIRT5 activator (RSV) improved the quality of boar sperm by upregulation of IDH2 and SOD2. At the same time, the oxidative stress was reduced via interaction among SIRT5, IDH2 and SOD2.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - An-Qi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yiguo Tang
- Daocheng Kangbaqing Animal Husbandry Co., Ltd, Sichuan, China
| | - Xinhong Xu
- Daocheng Kangbaqing Animal Husbandry Co., Ltd, Sichuan, China
| | - Changjun Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Xie Y, Cai N, Liu X, He L, Ma Y, Yan C, Liang J, Ouyang SH, Luo A, He Y, Lu J, Ao D, Liu J, Ye Z, Liu B, He RR, Li W. SIRT5: a potential target for discovering bioactive natural products. J Nat Med 2025; 79:441-464. [PMID: 39979670 PMCID: PMC12058867 DOI: 10.1007/s11418-024-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
Silent information regulator 5 (SIRT5) is the fifth member of the sirtuin family, which is mainly expressed in mitochondrial matrix. SIRT5 plays a key role in metabolism and antioxidant responses, and is an important regulator for maintaining intracellular homeostasis. Given its involvement in multiple cellular processes, dysregulation of SIRT5 activity is associated with a variety of diseases. This review explores the structural characteristics of SIRT5 that influence its substrate specificity, highlights recent research advances, and summarizes its four key enzymatic activities along with their corresponding substrates in disease contexts. We also discuss the natural products that modulate SIRT5 activity and identify potential targets of SIRT5 through virtual docking, which may provide new therapeutic avenues. Although the mechanism of SIRT5 in diseases needs to be further elucidated and deglutathionylation activities are still at an early stage, targeting SIRT5 and its substrates holds significant promise for the development of novel therapeutics.
Collapse
Affiliation(s)
- Yuwei Xie
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaohua Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liangliang He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yiming Ma
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Changyu Yan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Juan Liang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Ao Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingzhi He
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jia Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
3
|
Strzałka P, Krawiec K, Wiśnik A, Jarych D, Czemerska M, Zawlik I, Pluta A, Wierzbowska A. The Role of the Sirtuin Family Histone Deacetylases in Acute Myeloid Leukemia-A Promising Road Ahead. Cancers (Basel) 2025; 17:1009. [PMID: 40149343 PMCID: PMC11940623 DOI: 10.3390/cancers17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute myeloid leukemia (AML) corresponds to a heterogeneous group of clonal hematopoietic diseases, which are characterized by uncontrolled proliferation of malignant transformed myeloid precursors and their inability to differentiate into mature blood cells. The prognosis of AML depends on many variables, including the genetic features of the disease. Treatment outcomes, despite the introduction of new targeted therapies, are still unsatisfactory. Recently, there have been an increasing number of reports on enzymatic proteins of the sirtuin family and their potential importance in cancer in general. Sirtuins are a group of 7 (SIRT1-7) NAD+-dependent histone deacetylases with pleiotropic effects on metabolism, aging processes, and cell survival. They are not only responsible for post-translational modification of histones but also play various biochemical functions and interact with other proteins regulating cell survival, such as p53. Thus, their role in key mechanisms of tumorigenesis makes them a worthwhile topic in AML. Different sirtuins have been shown to act oppositely depending on the biological context, the mechanism of which requires further exploration. This review provides a comprehensive description of the significance and role of sirtuins in AML in light of the current state of knowledge. It focuses in particular on molecular mechanisms regulated by sirtuins and signaling pathways involved in leukemogenesis, as well as clinical aspects and potential therapeutic targets in AML.
Collapse
Affiliation(s)
- Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| |
Collapse
|
4
|
Tharayil JS, Kandettu A, Chakrabarty S. The curious case of mitochondrial sirtuin in rewiring breast cancer metabolism: Mr Hyde or Dr Jekyll? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167691. [PMID: 39864670 DOI: 10.1016/j.bbadis.2025.167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins. Several studies have identified the role of mitochondrial sirtuins in age-related pathologies and the rewiring of cancer metabolism. Mitochondrial sirtuins regulate cellular functions by contributing to post-translational modifications, including deacetylation, ADP-ribosylation, demalonylation, and desuccinylation of diverse cellular proteins to maintain cellular homeostasis. Here, we review and discuss the structure and function of the mitochondrial sirtuins and their role as metabolic regulators in breast cancer. Altered breast cancer metabolism may promote tumor progression and has been an essential target for therapy. Further, we discuss the potential role of targeting mitochondrial sirtuin and its impact on breast cancer progression using sirtuin inhibitors and activators as anticancer agents.
Collapse
Affiliation(s)
- Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Zhuang Y, Zhang Y, Liu C, Zhong Y. Interplay Between the Circadian Clock and Sirtuins. Int J Mol Sci 2024; 25:11469. [PMID: 39519022 PMCID: PMC11545976 DOI: 10.3390/ijms252111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is an autonomous timekeeping system evolved by organisms to adapt to external changes, regulating a variety of important physiological and behavioral processes. Recent studies have shown that the sirtuin family of histone deacetylases is involved in regulating the expression of clock genes and plays an important role in maintaining the normal rhythm of clock gene expression and behavior. Moreover, sirtuins are regulated directly or indirectly by the circadian clock system. The mutual regulation between the circadian clock and sirtuins is likely involved in a variety of signal transduction and metabolism processes. In this review, we discuss the molecular mechanisms and research progress on the intertwined relationship between the circadian clock and sirtuins, mainly in mammals, highlighting sirtuins as molecular links between metabolic control and circadian rhythms and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Yan Zhuang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yantong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yingbin Zhong
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Peng A, Li J, Xing J, Yao Y, Niu X, Zhang K. The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases. Front Mol Biosci 2024; 11:1480617. [PMID: 39513038 PMCID: PMC11540786 DOI: 10.3389/fmolb.2024.1480617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is a rate-limiting enzyme in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway, and plays a vital role in the regulation of cell metabolic activity, reprogramming, aging and apoptosis. NAMPT synthesizes nicotinamide mononucleotide (NMN) through enzymatic action, which is a key protein involved in host defense mechanism and plays an important role in metabolic homeostasis and cell survival. NAMPT is involved in NAD metabolism and maintains intracellular NAD levels. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs), the members are capable of sensing cellular NAD+ levels. NAMPT-NAD and SIRT constitute a powerful anti-stress defense system. In this paper, the structure, biological function and correlation with diseases of NAMPT are introduced, aiming to provide new ideas for the targeted therapy of related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| |
Collapse
|
7
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
9
|
Barzegari A, Omidi Y, Gueguen V, Meddahi-Pellé A, Letourneur D, Pavon-Djavid G. Nesting and fate of transplanted stem cells in hypoxic/ischemic injured tissues: The role of HIF1α/sirtuins and downstream molecular interactions. Biofactors 2023; 49:6-20. [PMID: 32939878 DOI: 10.1002/biof.1674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The nesting mechanisms and programming for the fate of implanted stem cells in the damaged tissue have been critical issues in designing and achieving cell therapies. The fracture site can induce senescence or apoptosis based on the surrounding harsh conditions, hypoxia, and oxidative stress (OS). Respiration deficiency, disruption in energy metabolism, and consequently OS induction change the biophysical, biochemical, and cellular components of the native tissue. Additionally, the homeostatic molecular players and cell signaling might be changed. Despite all aforementioned issues, in the native stem cell niche, physiological hypoxia is not toxic; rather, it is vitally required for homing, self-renewal, and differentiation. Hence, the key macromolecular players involved in the support of stem cell survival and re-adaptation to a new dysfunctional niche must be understood for managing the cell therapy outcome. Hypoxia-inducible factor 1-alpha is the master transcriptional regulator, involved in the cell response to hypoxia and the adaptation of stem cells to a new niche. This protein is regulated by interaction with sirtuins. Sirtuins are highly conserved NAD+-dependent enzymes that monitor the cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals to modulate the homing and fate of stem cells. Herein, new insights into the nesting of stem cells in hypoxic-ischemic injured tissues were provided and their programming in a new dysfunctional niche along with the involved complex macromolecular players were critically discussed.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Anne Meddahi-Pellé
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
10
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
11
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
12
|
The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters. Int J Mol Sci 2022; 23:ijms231810598. [PMID: 36142505 PMCID: PMC9501354 DOI: 10.3390/ijms231810598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nearly 30% of infertility cases are caused by male factor. This study aimed at checking the associations between the sialylation degree of glycoprotein clusterin (CLU) and levels of oxidative–antioxidant balance markers in infertile men. Using lectin-ELISA with biotinylated lectins specific to α2,6-linked (Sambucus nigra agglutinin, SNA) and α2,3-linked (Maackia amurensis agglutinin, MAA) sialic acid (SA), the CLU sialylation in 132 seminal plasmas (SP) and 91 blood sera (BS) were analyzed. Oxidative–antioxidant status was measured by determining Sirtuin-3 (SIRT3), Sirtuin-5 (SIRT5), total antioxidant status (TAS), and ferric reducing antioxidant power (FRAP) levels. We indicate that multiple sperm disorders are associated with decreased expression of MAA-reactive SA in SP. Decreased SP SIRT3 concentrations may be associated with teratozoospermia and oligoasthenoteratozoospermia. ROC curve and cluster analysis revealed that SP relative reactivity of CLU glycans with MAA, the value of MAA/SNA ratio, and SIRT3 and SIRT5 concentrations may constitute an additional set of markers differentiating infertile oligoasthenoteratozoospermic patients (OAT) from normozoospermic (N), asthenoteratozoospermic (AT) and teratozoospermic (T). The multinomial logistic regression analysis confirmed the potential utility of SIRT3 determinations for differentiation between N and OAT groups as well as between N and T groups for SIRT3 and SIRT5. For BS, based on ROC curve and cluster analysis, relative reactivities of CLU glycans with SNA, MAA, SIRT3 and FRAP concentrations may be useful in the differentiation of normozoospermic patients from those with sperm disorders. The multinomial logistic regression analysis showed that the SNA relative reactivity with CLU glycans significantly differentiated the N group from AT, OAT and T groups, and FRAP concentrations significantly differed between N and AT groups, which additionally confirms the potential utility of these biomarkers in the differentiation of infertile patients with abnormal sperm parameters. The knowledge about associations between examined parameters may also influence future research aimed at seeking new male infertility therapies.
Collapse
|
13
|
Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci 2022; 307:120870. [PMID: 35948118 DOI: 10.1016/j.lfs.2022.120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Sirtuins perform an important effect on the neural cell fate following stroke. Several mechanisms that have been correlated with stroke are oxidative stress, apoptosis, necrosis and autophagy. Autophagy is usually regarded as unitary of the neural cell survival mechanisms. Recently, the importance of the sirtuins effect on autophagy by antioxidant agents for stroke treatment mentioned in various studies. One of these agents is melatonin. Melatonin can modulate autophagy by changing on sirtuin pathways. Melatonin and its metabolites adjust various sirtuins pathways related to apoptosis, proliferation, metastases, autophagy and inflammation in case of stroke. In this review, we will discuss about the modulation of autophagy by melatonin via sirtuins in stroke.
Collapse
|
14
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
15
|
Ul Haq MF, Kayani MA, Arshad T, Hadi Anwar RA, Saeed N, Shafique R, Abbasi SF, Ahmed MW, Mahjabeen I. Genetic interactions of mitochondrial sirtuins in brain tumorigenesis. Future Oncol 2022; 18:597-611. [PMID: 35034477 DOI: 10.2217/fon-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The present study was designed to understand the role of expression variations of mitochondrial imported sirtuins in brain tumorigenesis. The expression levels of mitochondrial imported sirtuins were further analyzed for biomarker potential. Methods: Samples from 200 brain tumors and 200 healthy control tissues were used for expression analysis using qPCR and for DNA damage using LORD-Q analysis. Results: Significant deregulation of SIRT3 (p = 0.002), SIRT4 (p = 0.03) and SIRT5 (p = 0.006) was observed in brain tumors versus controls. Co-expression analysis showed a significant correlation between the mitochondrial imported sirtuins versus apoptotic genes. LORD-Q analysis showed a significantly increased frequency of lesions/10 kb of mitochondrial imported sirtuins (p < 0.0001) in brain tumor tissue versus controls. Conclusion: The present study showed a correlation between variations of mitochondrial imported sirtuins and increased brain tumor risk.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Taaha Arshad
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Raja Abdul Hadi Anwar
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Sumaira Fidda Abbasi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| |
Collapse
|
16
|
Pukhalskaia AE, Diatlova AS, Linkova NS, Kvetnoy IM. Sirtuins: Role in the Regulation of Oxidative Stress and the Pathogenesis of Neurodegenerative Diseases. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:164-174. [DOI: 10.1007/s11055-022-01217-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2025]
|
17
|
Ji Z, Liu GH, Qu J. Mitochondrial sirtuins, metabolism, and aging. J Genet Genomics 2021; 49:287-298. [PMID: 34856390 DOI: 10.1016/j.jgg.2021.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Of the multiple signaling pathways that regulate metabolism, such as PI3K/AKT, mTOR, AMPK, and sirtuins, mammalian sirtuins also play unique roles in aging. By understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will focus on canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and oxidative stress, calorie restriction and disease.
Collapse
Affiliation(s)
- Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
19
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
20
|
Jaiswal A, Xudong Z, Zhenyu J, Saretzki G. Mitochondrial sirtuins in stem cells and cancer. FEBS J 2021; 289:3393-3415. [PMID: 33866670 DOI: 10.1111/febs.15879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
The mammalian sirtuin family consists of seven proteins, three of which (SIRT3, SIRT4, and SIRT5) localise specifically within mitochondria and preserve mitochondrial function and homeostasis. Mitochondrial sirtuins are involved in diverse functions such as deacetylation, ADP-ribosylation, demalonylation and desuccinylation, thus affecting various aspects of cell fate. Intriguingly, mitochondrial sirtuins are able to manage these delicate processes with accuracy mediated by crosstalk between the nucleus and mitochondria. Previous studies have provided ample information about their substrates and targets, whereas less is known about their role in cancer and stem cells. Here, we review and discuss recent advances in our understanding of the structural and functional properties of mitochondrial sirtuins, including their targets in cancer and stem cells. These advances could help to improve the understanding of their interplay with signalling cascades and pathways, leading to new avenues for developing novel drugs for sirtuin-related disease treatments. We also highlight the complex network of mitochondrial sirtuins in cancer and stem cells, which may be important in deciphering the molecular mechanism for their activation and inhibition.
Collapse
Affiliation(s)
- Amit Jaiswal
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zhu Xudong
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ju Zhenyu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Gabriele Saretzki
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang W, Jin Y, Hou K, Cheng Y, Qi J, Qu X, Liu Y, Che X, Hu X. LncRNA APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR autophagic degradation via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis in lung adenocarcinoma. Biomark Res 2021; 9:9. [PMID: 33516270 PMCID: PMC7847171 DOI: 10.1186/s40364-021-00262-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosinase kinase inhibitor (EGFR-TKI) resistance is the major obstacle in the treatment of lung adenocarcinoma (LUAD) patients harboring EGFR-sensitive mutations. However, the long non-coding RNAs (lncRNAs) related to EGFR-TKIs resistance and their functional mechanisms are still largely unknown. This study aimed to investigate the role and regulatory mechanism of lncRNA APCDD1L-AS1 in icotinib resistance of lung cancer. METHODS Molecular approaches including qRT-PCR, MTT assay, colony formation, RNA interference and cell transfection, RNA immunoprecipitation (RIP), dual luciferase reporter assay, RNA fluorescence in situ hybridization, TUNEL assay, flow cytometry, immunoblotting, xenograft model and transcriptome sequencing were used to investigate the mechanism of APCDD1L-AS1 in icotinib resistance. RESULTS A novel lncRNA, APCDD1L-AS1 was identified as the most significantly upregulated lncRNA in icotinib-resistant LUAD cells by the transcriptome sequencing and differential lncRNA expression analysis. We found that APCDD1L-AS1 not only promoted icotinib resistance, but also upregulated the protein expression level of EGFR. Mechanistically, APCDD1L-AS1 promoted icotinib resistance and EGFR upregulation by sponging with miR-1322/miR-1972/miR-324-3p to remove the transcription inhibition of SIRT5. Furthermore, SIRT5 elevated EGFR expression and activation by inhibiting the autophagic degradation of EGFR, finally promoting icotinib resistance. Consistently, the autophagy initiator rapamycin could decrease EGFR levels and increase the sensitivity of icotinib-resistant LUAD cells to icotinib. CONCLUSION APCDD1L-AS1 could promote icotinib resistance by inhibiting autophagic degradation of EGFR via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis. The combination of autophagy initiator and EGFR-TKIs might serve as a potential new strategy for overcoming EGFR-TKIs resistance in LUAD patients.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Zichang Yang
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Wanxia Fang
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China.
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
22
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
23
|
Kumar S, Attrish D, Srivastava A, Banerjee J, Tripathi M, Chandra PS, Dixit AB. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets 2020; 25:75-85. [PMID: 33275850 DOI: 10.1080/14728222.2021.1860016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Epilepsy is a network-level neurological disorder characterized by unprovoked recurrent seizures and associated comorbidities. Aberrant activity and localization of histone deacetylases (HDACs) have been reported in epilepsy and HDAC inhibitors (HDACi) have been used for therapeutic purposes. Several non-histone targets of HDACs have been recognized whose reversible acetylation can modulate protein functions and can contribute to disease pathology. Areas covered: This review provides an overview of HDACs in epilepsy and reflects its action on non-histone substrates involved in the pathogenesis of epilepsy and explores the effectiveness of HDACi as anti-epileptic drugs (AEDs). It also covers the efforts undertaken to target the interaction of HDACs with their substrates. We have further discussed non-deacetylase activity possessed by specific HDACs that might be essential in unraveling the molecular mechanism underlying the disease. For this purpose, relevant literature from 1996 to 2020 was derived from PubMed. Expert opinion: The interaction of HDACs and their non-histone substrates can serve as a promising therapeutic target for epilepsy. Pan-HDACi offers limited benefits to the epileptic patients. Thus, identification of novel targets of HDACs contributing to the disease and designing inhibitors targeting these complexes would be more effective and holds a greater potential as an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Sonali Kumar
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | - Diksha Attrish
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | | | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| |
Collapse
|
24
|
Yang CN, Lin SK, Kok SH, Wang HW, Lee YL, Shun CT, Chi CW, Yang H, Hong CY. The possible role of sirtuin 5 in the pathogenesis of apical periodontitis. Oral Dis 2020; 27:1766-1774. [PMID: 33191606 DOI: 10.1111/odi.13723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/07/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We investigated the relation between expression of sirtuin 5 (SIRT5) in osteoblastic cells and progression of apical periodontitis. The role of SIRT5 in hypoxia-induced reactive oxygen species (ROS) formation and osteoblast apoptosis was also examined. MATERIALS AND METHODS Progression of rat apical periodontitis was monitored by conventional radiography and microcomputed tomography. SIRT5 and oxidative stress biomarker 8-OHdG in bone-lining cells were assessed by immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to demonstrate apoptosis. In primary human osteoblasts cultured under hypoxia, Western blot was used to analyze SIRT5 expression and cleavage of pro-caspase 3 and poly(ADP-ribose) polymerase (PARP). SIRT5 was overexpressed through lentiviral technique. ROS formation and mitochondrial membrane potential changes were assessed by MitoSOX-Red and JC-1 fluorescence, respectively. Immunofluorescence microscope was used to evaluate mitochondrial release of cytochrome c. RESULTS In rat apical periodontitis, disease progression was accompanied by decreased expression of SIRT5, increased oxidative stress, and enhanced apoptosis in bone-lining cells. SIRT5 was suppressed in cultured osteoblasts under hypoxia. SIRT5 overexpression ameliorated hypoxia-enhanced ROS formation, mitochondrial depolarization, cytochrome c leakage, activation of caspase-3, and PARP fragmentation. CONCLUSIONS SIRT5 is able to alleviate hypoxia-enhanced osteoblast apoptosis. SIRT5 augmentation may have therapeutic potential for apical periodontitis.
Collapse
Affiliation(s)
- Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Wen Chi
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Mazumder S, Barman M, Bandyopadhyay U, Bindu S. Sirtuins as endogenous regulators of lung fibrosis: A current perspective. Life Sci 2020; 258:118201. [PMID: 32781070 DOI: 10.1016/j.lfs.2020.118201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Fibrotic lung diseases qualify among the most dreaded irreversible interstitial pulmonary complications with progressive yet largely unpredictable clinical course. Idiopathic pulmonary fibrosis (IPF) is the most challenging prototype characterized by unknown and complex molecular etiology, severe dearth of non-invasive therapeutic options and average lifespan of 2-5 years in patients post diagnosis. Lung fibrosis (LF) is a leading cause of death in the industrialized world with the propensity to contract, significantly increasing with age. Approximately 45% deaths in US are attributed to fibrotic diseases while around 7% respiratory disease-associated deaths, annually in UK, are actually attributed to IPF. Recent developments in the field of LF have unambiguously pointed towards the pivotal role of Sirtuins (SIRTs) in regulating disease progression, thereby qualifying as potential anti-fibrotic drug targets. These NAD+-dependent lysine deacetylases, deacylases and ADP-ribosyltransferases are evolutionarily conserved proteins, regulated by diverse metabolic/environmental factors and implicated in age-related degenerative and inflammatory disorders. While SIRT1, SIRT6 and SIRT7 are predominantly nuclear, SIRT3, SIRT4, SIRT5 are mainly mitochondrial and SIRT2 is majorly cytosolic with occasional nuclear translocation. SIRT1, SIRT3, SIRT6 and SIRT7 are documented as cytoprotective sirtuins implicated in cardiovascular, pulmonary and metabolic diseases including fibrosis; however functional roles of remaining sirtuins in pulmonary pathologies are yet elusive. Here, we provide a comprehensive recent update on the regulatory role of sirtuins on LF along with discussion on potential therapeutic modulation of endogenous Sirtuin expression through synthetic/plant-derived compounds which can help synthetic chemists and ethnopharmacologists to design new-generation cheap, non-toxic Sirtuin-based drugs against LF.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Mukta Barman
- Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India.
| |
Collapse
|
26
|
The Roles of Sirtuin Family Proteins in Cancer Progression. Cancers (Basel) 2019; 11:cancers11121949. [PMID: 31817470 PMCID: PMC6966446 DOI: 10.3390/cancers11121949] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or deacylase activity and are linked to various cancer-related biological pathways as regulators of transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis, and tumorigenesis. Although sirtuin family members have a high degree of homology, they may play different roles in various kinds of cancer. This review highlights their fundamental roles in tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer, namely, as tumor promoters or tumor suppressors.
Collapse
|
27
|
Sun X, Wang S, Gai J, Guan J, Li J, Li Y, Zhao J, Zhao C, Fu L, Li Q. SIRT5 Promotes Cisplatin Resistance in Ovarian Cancer by Suppressing DNA Damage in a ROS-Dependent Manner via Regulation of the Nrf2/HO-1 Pathway. Front Oncol 2019; 9:754. [PMID: 31456942 PMCID: PMC6700301 DOI: 10.3389/fonc.2019.00754] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Sirtuin 5 (SIRT5), a mitochondrial class III NAD-dependent deacetylase, plays controversial roles in tumorigenesis and chemoresistance. Accordingly, its role in ovarian cancer development and drug resistance is not fully understood. Here, we demonstrate that SIRT5 is increased in ovarian cancer tissues compared to its expression in normal tissues and this predicts a poor response to chemotherapy. SIRT5 levels were also found to be higher in cisplatin-resistant SKOV-3 and CAOV-3 ovarian cancer cells than in cisplatin-sensitive A2780 cells. Furthermore, this protein was revealed to facilitate ovarian cancer cell growth and cisplatin-resistance in vitro. Mechanistically, we show that SIRT5 contributes to cisplatin resistance in ovarian cancer by suppressing cisplatin-induced DNA damage in a reactive oxygen species (ROS)-dependent manner via regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway.
Collapse
Affiliation(s)
- Xiaodan Sun
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shouhan Wang
- Department of Hepatopancreatobiliary Surgery, Jilin Province Cancer Hospital, Changchun, China
| | - Junda Gai
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ji Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chen Zhao
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lin Fu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Zhang R, Wang C, Tian Y, Yao Y, Mao J, Wang H, Li Z, Xu Y, Ye M, Wang L. SIRT5 Promotes Hepatocellular Carcinoma Progression by Regulating Mitochondrial Apoptosis. J Cancer 2019; 10:3871-3882. [PMID: 31333804 PMCID: PMC6636294 DOI: 10.7150/jca.31266] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/12/2019] [Indexed: 12/15/2022] Open
Abstract
SIRT5 belongs to a family of NAD+-dependent lysine deacetylases called sirtuins. Although accumulating evidence indicates SIRT5 upregulation in cancers, including liver cancer, the detailed roles and mechanisms remain to be revealed. Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths among men worldwide, and finding effective targets for HCC treatment and prevention is urgently needed. In the present study, we confirmed that mitochondrial sirtuins, particularly SIRT5, are more highly expressed in HCC cell lines than in normal liver cell lines. Moreover, SIRT5 knockdown suppresses HCC cell proliferation and SIRT5 overexpression promotes HCC cell proliferation. Furthermore, we verified that SIRT5 knockdown increases HCC cell apoptosis via the mitochondrial pathway. By co-IP and western blotting, we illustrated that SIRT5 deacetylates cytochrome c thus regulating HCC cell apoptosis. Taken together, our findings suggest that SIRT5 may function as a prognostic factor and drug target for HCC treatment.
Collapse
Affiliation(s)
- Rixin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Chengye Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Yu Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China.,Department of Vascular Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Yifan Yao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Jiakai Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Haibo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Zhenghan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Yakun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, NO.457, Zhongshan Road, Dalian, Liaoning 116023, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, NO.467, Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
29
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
30
|
Sidorova-Darmos E, Sommer R, Eubanks JH. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Front Cell Neurosci 2018; 12:196. [PMID: 30090057 PMCID: PMC6068278 DOI: 10.3389/fncel.2018.00196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD+). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rosa Sommer
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol 2018; 53:311-334. [PMID: 29637793 DOI: 10.1080/10409238.2018.1458071] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases/ADP-ribosyltransferases that have emerged as candidate targets for new therapeutics to treat metabolic disorders and other diseases, including cancer. The sirtuin SIRT5 resides primarily in the mitochondrial matrix and catalyzes the removal of negatively charged lysine acyl modifications; succinyl, malonyl, and glutaryl groups. Evidence has now accumulated to document the roles of SIRT5 as a significant regulator of cellular homeostasis, in a context- and cell-type specific manner, as has been observed previously for other sirtuin family members. SIRT5 regulates protein substrates involved in glycolysis, the TCA cycle, fatty acid oxidation, electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification, among other processes. SIRT5 plays pivotal roles in cardiac physiology and stress responses and is involved in the regulation of numerous aspects of myocardial energy metabolism. SIRT5 is implicated in neoplasia, as both a tumor promoter and suppressor in a context-specific manner, and may serve a protective function in the setting of neurodegenerative disorders. Here, we review the current understanding of functional impacts of SIRT5 on its metabolic targets, and its molecular functions in both normal and pathological conditions. Finally, we will discuss the potential utility of SIRT5 as a drug target and also summarize the current status, progress, and challenges in developing small molecule compounds to modulate SIRT5 activity with high potency and specificity.
Collapse
Affiliation(s)
- Surinder Kumar
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA
| | - David B Lombard
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA.,b Institute of Gerontology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
32
|
Abstract
SIGNIFICANCE Developing evidence in the literature suggests that sirtuin 5 (SIRT5) may be involved in metabolic reprogramming, an emerging hallmark of cancer by which neoplastic cells reconfigure their metabolism to support the anabolic demands of rapid cell division. SIRT5 is one of the seven members of the nicotinamide adenine dinucleotide-dependent sirtuin family of lysine deacetylases. It removes succinyl, malonyl, and glutaryl groups from protein targets within the mitochondrial matrix and other subcellular compartments. SIRT5 substrates include a number of proteins integral to metabolism. Recent Advances: New work has begun to elucidate the roles of SIRT5 in glycolysis, tricarboxylic acid cycle, fatty acid oxidation, nitrogen metabolism, pentose phosphate pathway, antioxidant defense, and apoptosis. CRITICAL ISSUES In this study, we summarize biological functions of SIRT5 reported in normal tissues and in cancer and discuss potential mechanisms whereby SIRT5 may impact tumorigenesis, particularly focusing on its reported roles in metabolic reprogramming. Finally, we review current efforts to target SIRT5 pharmacologically. FUTURE DIRECTIONS The biological significance of SIRT5 has been elucidated in the context of only an extremely small fraction of its targets and interactors. There is no doubt that further studies in this area will provide a wealth of insights into functions of SIRT5 and its targets in normal and neoplastic cells. Antioxid. Redox Signal. 28, 677-690.
Collapse
Affiliation(s)
| | - Angela H. Guo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28:643-661. [PMID: 28891317 PMCID: PMC5824489 DOI: 10.1089/ars.2017.7290] [Citation(s) in RCA: 568] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well. CRITICAL ISSUES A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts. FUTURE DIRECTIONS Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | - Nicholas J Mack
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
34
|
Liang F. Olfactory receptor neuronal dendrites become mostly intra-sustentacularly enwrapped upon maturity. J Anat 2018; 232:674-685. [PMID: 29313978 DOI: 10.1111/joa.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
Abstract
The mammalian olfactory epithelium (OE) sustains persistent neurogenesis even in the adult. Sustentacular cells therein play both epithelial and neuroglial roles, although their relation with olfactory receptor neurons (ORNs) and their function in ORN maturation remain insufficiently understood. Sustentacular wrapping of ORN dendrites has been long known but always considered a minor presence, as opposed to the supposedly unwrapped majority of ORN dendrites at inter-sustentacular borderlines. Using immunofluorescence, confocal and immuno-electron microscopy, the current study examined cytoarchitectonic organization and maturation of ORN dendrites at the rat OE apical layer. Contrary to common belief, the observations here on tangential histological sections of the OE apical junctional belt layer showed on average 53.93% sustentacular cell-enwrapped, 18.46% partially wrapped (in the vertical grooves on the sides of sustentacular apices) and 27.61% unwrapped ORN dendrites (at the borderlines between sustentacular cells). The enwrapped dendrites were found within the confines of sustentacular apices but linked to the sides of the latter each by a mesentery (mesodendrite) of sustentacular plasma membranes and autotypic cell junctions. Up to six dendrites were seen in one sustentacular apical process. As marked by high and low immunoreactivity for class III beta-tubulin, respectively, immature and mature ORN dendrites accounted on average for 12.46 and 87.54% of the total ORN dendrites at the OE apical layer. By correlative analysis of the maturity level and wrapping status, most immature ORN dendrites were found unwrapped (immature unwrapped = 9.71% of the total dendrites), and practically no immature dendrites appeared enwrapped. In contrast, mature ORN dendrites comprised all the enwrapped (mature enwrapped = 53.93% of the total), most of the partially wrapped (mature partially wrapped = 15.71% of the total) and a portion of the unwrapped ORN dendrites (mature unwrapped = 17.9% of the total dendrites). Based on the current findings and previous data by other researchers, it is concluded that immature ORN dendrites emerge vertically from the OE apical surface between sustentacular cell apices. A large majority of the newly emerged dendrites then undergo sideways migration, sustentacular enwrapment and further maturation. Only a small minority of the newly emerged dendrites reach maturity and remain unwrapped. These divergent maturational courses imply structural or functional differences between the enwrapped and unwrapped mature ORN dendrites.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, Hirschey MD, Steegborn C, Madsen AS, Olsen CA. Mechanism-Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Marina Auth
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kathrin R. Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Martin Pannek
- Universität Bayreuth; Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Dhaval P. Bhatt
- Duke University Medical Center; Sarah W. Stedman Nutrition and Metabolism Center; 4321 Medical Park Drive Durham NC 27704 USA
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Matthew D. Hirschey
- Duke University Medical Center; Sarah W. Stedman Nutrition and Metabolism Center; 4321 Medical Park Drive Durham NC 27704 USA
| | - Clemens Steegborn
- Universität Bayreuth; Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Andreas S. Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
36
|
Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, Hirschey MD, Steegborn C, Madsen AS, Olsen CA. Mechanism-Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight. Angew Chem Int Ed Engl 2017; 56:14836-14841. [PMID: 29044784 PMCID: PMC5814306 DOI: 10.1002/anie.201709050] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/18/2022]
Abstract
The sirtuin enzymes are important regulatory deacylases in a variety of biochemical contexts and may therefore be potential therapeutic targets through either activation or inhibition by small molecules. Here, we describe the discovery of the most potent inhibitor of sirtuin 5 (SIRT5) reported to date. We provide rationalization of the mode of binding by solving co-crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more "drug-like" properties. Importantly, enzyme kinetic evaluation revealed a slow, tight-binding mechanism of inhibition, which is unprecedented for SIRT5. This is important information when applying inhibitors to probe mechanisms in biology.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Marina Auth
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kathrin R Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Martin Pannek
- Universität Bayreuth, Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Dhaval P Bhatt
- Duke University Medical Center, Sarah W. Stedman Nutrition and Metabolism Center, 4321 Medical Park Drive, Durham, NC, 27704, USA
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Matthew D Hirschey
- Duke University Medical Center, Sarah W. Stedman Nutrition and Metabolism Center, 4321 Medical Park Drive, Durham, NC, 27704, USA
| | - Clemens Steegborn
- Universität Bayreuth, Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| |
Collapse
|
37
|
Liang F, Hwang JH, Tang NW, Hunziker W. Juxtanodin in retinal pigment epithelial cells: Expression and biological activities in regulating cell morphology and actin cytoskeleton organization. J Comp Neurol 2017; 526:205-215. [PMID: 28815590 DOI: 10.1002/cne.24301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/16/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Juxtanodin (JN, also known as ermin) was initially identified as an actin cytoskeleton-related oligodendroglial protein in the rat central nervous system. It was subsequently also found in the rat olfactory neuroepithelium, especially at the apical junctional belt of the sustentacular cells. We further examined JN expression and functional roles in the retina using fluorescence histochemistry, confocal microscopy, immuno-electron microscopy, molecular biology, and cell culture. Prominent JN expression was found in the photoreceptor-supporting retinal pigment epithelium (RPE), especially in a zone corresponding to the apices of RPE cells, at the roots of the RPE microvilli, and at the base of RPE cells next to the Bruch's membrane. Partial co-localization of JN immunoreactivity with F-actin (labeled with phalloidin) was observed at the apices and bases of RPE cells. No JN was detected in other cell types of the retina. In cultured human RPE cell line ARPE-19, expression of extrinsic JN up-regulated formation of actin cytoskeleton stress fibers, caused redistribution of more F-actin fibers to the cell periphery, and promoted spreading/enlargement of transfected cells. These findings suggest possible roles of JN in RPE molecular transport, phagocytosis and formation of outer blood-retinal barrier, or possible involvement of JN expression perturbations in pathogenesis of such retinal disorders as proliferative vitreoretinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ji Hyun Hwang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Weiwei Tang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| |
Collapse
|
38
|
She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017; 8:10.1007/s12975-017-0544-4. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is one of the leading causes of death worldwide. It is characterized by a sudden disruption of blood flow to the brain causing cell death and damage, which will lead to neurological impairments. In the current state, only one drug is approved to be used in clinical setting and new therapies that confer ischemic neuroprotection are desperately needed. Several targets and pathways have been indicated to be neuroprotective in ischemic stroke, among which the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases has emerged as important modulators of several processes in the normal physiology and pathological conditions such as stroke. Recent studies have identified some members of the sirtuin family are able to ameliorate the devastating consequences of ischemic stroke by conferring neuroprotection by means of reducing neuronal cell death, oxidative stress, and neuroinflammation whereas some sirtuins are found to be detrimental in the pathophysiology of ischemic stroke. This review summarizes implications of sirtuins in ischemic stroke and the experimental evidences that demonstrate the potential of sirtuin modulators as neuroprotective therapy for ischemic stroke.
Collapse
Affiliation(s)
- David T She
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|