1
|
Yan J, Ton H, Yan J, Dong Y, Xie Z, Jiang H. Anesthetic Sevoflurane Induces Enlargement of Dendritic Spine Heads in Mouse Neurons via Tau-Dependent Mechanisms. Anesth Analg 2025; 140:697-709. [PMID: 38507523 DOI: 10.1213/ane.0000000000006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Sevoflurane induces neuronal dysfunction and cognitive impairment. However, the underlying mechanism remains largely to be determined. Tau, cyclophilin D, and dendritic spine contribute to cognitive function. But whether changes in dendritic spines are involved in the effects of sevoflurane and the potential association with tau and cyclophilin D is not clear. METHODS We harvested hippocampal neurons from wild-type mice, tau knockout mice, and cyclophilin D knockout mice. We treated these neurons with sevoflurane at day in vitro 7 and measured the diameter of dendritic spine head and the number of dendritic spines. Moreover, we determined the effects of sevoflurane on the expression of excitatory amino acid transporter 3 (EAAT3), extracellular glutamate levels, and miniature excitatory postsynaptic currents (mEPSCs). Finally, we used lithium, cyclosporine A, and overexpression of EAAT3 in the interaction studies. RESULTS Sevoflurane-induced tau phosphgorylation increased the diameter of dendritic spine head and decreased the number of dendritic spines in neurons harvested from wild-type and cyclophilin D knockout mice, but not tau knockout mice. Sevoflurane decreased the expression of EAAT3, increased extracellular glutamate levels, and decreased the frequency of mEPSCs in the neurons. Overexpression of EAAT3 mitigated the effects of sevoflurane on dendritic spines. Lithium, but not cyclosporine A, attenuated the effects of sevoflurane on dendritic spines. Lithium also inhibited the effects of sevoflurane on EAAT3 expression and mEPSCs. CONCLUSIONS These data suggest that sevoflurane induces a tau phosphorylation-dependent demtrimental effect on dendritic spine via decreasing EAAT3 expression and increasing extracellular glutamate levels, leading to neuronal dysfunction.
Collapse
Affiliation(s)
- Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jing Yan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen X, Zhang Y, Hu N, Pan Q, Wang K, Yin Y. Regulatory mechanism of LncRNA GAS5 in cognitive dysfunction induced by sevoflurane anesthesia in neonatal rats. Brain Dev 2025; 47:104295. [PMID: 39550980 DOI: 10.1016/j.braindev.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Sevoflurane (Sev) exposure may provoke deleterious effects on cognitive function. This study explores the mechanism of long non-coding RNA growth arrest specific transcript 5 (LncRNA GAS5) in Sev-induced cognitive dysfunction in neonatal rats. METHODS Cognitive dysfunction was induced by Sev anesthesia in 7-day-old Sprague-Dawley rats, followed by open field test, novel object recognition, radial arm maze, and Morris water maze to evaluate cognitive function of rats. The subcellular localization of LncRNA GAS5 was detected by nucleocytoplasmic isolation assay, and the binding of miR-137 to LncRNA GAS5 and NKCC1 was detected by RNA pull down and dual-luciferase reporter assay, respectively. Adenovirus-packaged sh-LncRNA GAS5 was injected into the hippocampus of Sev rats. qRT-PCR and Western blot were performed to detect the expressions of LncRNA GAS5, miR-137 and NKCC1 in the hippocampus of rats. RESULTS Sev anesthesia led to cognitive dysfunction in neonatal rats. LncRNA GAS5 was highly expressed in Sev rats, and inhibition of LncRNA GAS5 alleviated Sev-induced cognitive dysfunction in rats. LncRNA GAS5 targeted miR-137, and miR-137 inhibited NKCC1 expression. Knockdown of miR-137 or overexpression of NKCC1 reversed the effect of LncRNA GAS5 inhibition on cognitive dysfunction in sev rats. CONCLUSION LncRNA GAS5 promotes Sev-induced cognitive dysfunction in neonatal rats via the miR-137/NKCC1 axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yu Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nan Hu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qian Pan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
3
|
Yang M, Zhou L, Long G, Liu X, Ouyang W, Xie C, He X. Intranasal Insulin Diminishes Postoperative Delirium and Elevated Osteocalcin and Brain Derived Neurotrophic Factor in Older Patients Undergoing Joint Replacement: A Randomized, Double-Blind, Placebo-Controlled Trial. Drug Des Devel Ther 2025; 19:759-769. [PMID: 39911448 PMCID: PMC11797340 DOI: 10.2147/dddt.s491300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Background Brain energy metabolism disorders, including glucose utilization disorders and abnormal insulin sensitivity, are linked to the pathogenesis of postoperative delirium. Intranasal insulin has shown significant benefits in improving glucose metabolism, insulin sensitivity and cognitive function. However, its impact on postoperative delirium and insulin sensitivity biomarkers remains unknown. Aim This randomized, double-blind, placebo-controlled trial was to evaluate whether intranasal insulin reduces the incidence and severity of postoperative delirium (POD) in older patients undergoing joint replacement, and its effect on insulin sensitivity-related biomarkers. Methods 212 older patients (≥65 years) were randomly assigned to receive either 40 IU of intranasal insulin (n=106) or a placebo (n=106) for 8 days. The primary objective was to determine the incidence and severity of POD within 5 days after surgery, estimated using the Confusion Assessment Method (CAM) and the Delirium Rating Scale (DRS)-98. The secondary objective was insulin sensitivity, which was assessed using the homeostasis model Assessment of Insulin Resistance (HOMA-IR) and biomarkers, including total osteocalcin (tOC), uncarboxylated osteocalcin (ucOC), and brain-derived neurotrophic factor (BDNF). Main Results Compared to placebo, intranasal insulin significantly reduced the incidence of delirium within 5 days after surgery (8 [8.33%] vs 23 [23.23%], P = 0.004, odds ratio [OR] = 3.33 [95% CI 1.41-7.88]) and the severity of delirium (P<0.001). Intranasal insulin elevated the levels of tOC, ucOC, and BDNF in the CSF on D0 (all P<0.001) and tOC levels in the plasma on D0, D1 and D3 (all P<0.001). It elevated ucOC levels in the plasma of the insulin group on D0 but not on D1 and D3 (all P<0.001). Intranasal insulin administration reduced the HOMA-IR on D3 (P=0.002). Conclusion Intranasal insulin notably reduced the incidence and severity of POD in older patients undergoing joint replacement, which may be related to the elevation in osteocalcin and BDNF levels. Trial Registry Numbers Chinese Clinical Trial Registry (ChiCTR2300068073).
Collapse
Affiliation(s)
- Mi Yang
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Lei Zhou
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ge Long
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xing Liu
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Wen Ouyang
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Chang Xie
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xi He
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
4
|
Zhang Q, Li Y, Zhang J, Cui Y, Sun S, Chen W, Shi L, Zhang Y, Hou Z. IL-17A is a key regulator of neuroinflammation and neurodevelopment in cognitive impairment induced by sevoflurane. Free Radic Biol Med 2025; 227:12-26. [PMID: 39581388 DOI: 10.1016/j.freeradbiomed.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Increasing numbers of animal studies have shown that repeat sevoflurane exposure during developmental stage may lead to long-term cognitive impairment. Nevertheless, the exact pathogenesis remains unclear. Interleukin 17A (IL-17A) has been associated with cognitive decline in various neurological disorders. Here we found that the expression of IL-17A was up-regulated in hippocampus of sevoflurane exposed neonatal mice. Genetic deletion of IL-17A or inhibition of IL-17A improved behavioral function and down-regulated neuroinflammation related genes, interleukin 1β (IL-1β), interleukin 6 (IL-6), Nicotinamide adenine dinucleotide phosphate(NADPH) oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) in hippocampus of sevoflurane exposed neonatal mice. Moreover, negative regulation of IL-17A/Interleukin 17A receptor(IL-17RA) promoted the extracellular signal-regulated protein kinase (ERK) signaling pathway and nucleation of cyclic adenosine monophosphate (cAMP) response element-binding (CREB) in neurons of cognitive impaired mice. Knockdown of IL-17A in vivo identified neurons-localized IL-17A as a major factor in neuroinflammation and neurodevelopment. Collectively, our results suggested that IL-17A was required for the pathogenesis of neuroinflammatory response and identify IL-17A as a potential therapeutic target for cognitive impairment exposed by general anesthetics during infancy.
Collapse
Affiliation(s)
- Qi Zhang
- Postdoctoral Mobile Station of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, PR China; Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China; Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei, PR China
| | - Jiajie Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Suzhen Sun
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China; Department of Neurology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lei Shi
- Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
5
|
Hou Q, Yuan J, Li S, Ma J, Li W, Zhang B, Zhao X, Zhang F, Ma Y, Zheng H, Wang H. Autophagic degradation of DHCR7 activates AKT3 and promotes sevoflurane-induced hippocampal neuroinflammation in neonatal mice. Free Radic Biol Med 2024; 222:304-316. [PMID: 38901498 DOI: 10.1016/j.freeradbiomed.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice triggers neuroinflammation with detrimental effects on cognitive function. Yet, the mechanism of the sevoflurane-induced cytokine response is largely unknown. In this study, we reveal that 3-MA, an autophagy inhibitor, attenuated the sevoflurane-induced neuroinflammation and cognitive dysfunction, including the decreased freezing time and fewer platform crossings, in the neonate mice. 3-Methyladenine (3-MA) suppressed sevoflurane-induced expression of interleukin-6 and tumor necrosis factor-alpha in vitro. Moreover, sevoflurane activates IRF3, facilitating cytokine transcription in an AKT3-dependent manner. Mechanistically, sevoflurane-induced autophagic degradation of dehydrocholesterol-reductase-7 (DHCR7) resulted in accumulations of its substrate 7-dehydrocholesterol (7-DHC), mimicking the effect of sevoflurane on AKT3 activation and IRF3-driven cytokine expression. 3-MA significantly reversed sevoflurane-induced DHCR7 degradation, AKT phosphorylation, IRF3 activation, and the accumulation of 7-DHC in the hippocampal CA1 region. These findings pave the way for additional investigations aimed at developing novel strategies to mitigate postoperative cognitive impairment in pediatric patients.
Collapse
Affiliation(s)
- Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weiwei Li
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bo Zhang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
7
|
Cheng J, Wang Z, Yu H, Chen Y, Wang Z, Zhang L, Peng X. The duration-dependent and sex-specific effects of neonatal sevoflurane exposure on cognitive function in rats. Braz J Med Biol Res 2024; 57:e13437. [PMID: 38808889 PMCID: PMC11136479 DOI: 10.1590/1414-431x2024e13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.
Collapse
Affiliation(s)
- Jiangxia Cheng
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhuo Wang
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| | - Hui Yu
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| | - Ye Chen
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhengchao Wang
- Department of Orthopedics, Wuhan Fourth Hospital, Wuhan, China
| | - Liangcheng Zhang
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohong Peng
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
8
|
Wang Z, Zhang J, Tang Q, Tan Y. Epigenetic Mechanism of SETD1B-mediated Histone Methylation in Cognitive Impairment Induced by Sevoflurane Anesthesia in Neonatal Mice. Neuroscience 2024; 545:1-15. [PMID: 38447691 DOI: 10.1016/j.neuroscience.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
Sevoflurane (Sev) anesthesia is associated with cognitive deficits and neurotoxicity. This study explores the epigenetic mechanism of SET domain containing 1B (SETD1B) in Sev-induced cognitive impairment in neonatal mice. Neonatal mice (C57BL/6, n = 72) were exposed to 3% Sev for 2 h per day at P6, 7, and 8, and the control neonatal mice were only separated from the mother for 2 h. The mice were divided into groups of 12 individuals, with an equal number of male and female mice in each group. Mice were intraperitoneally injected with adenovirus-packaged SETD1B overexpression vector. Behavioral tests (Morris water maze, open field test, T-maze, novel object recognition, etc.) were performed at P30. Mouse hippocampal neuronal cells were cultured in vitro. SETD1B, C-X-C motif chemokine receptor 4 (CXCR4), NLR family pyrin domain containing 1 (NLRP1), Cleaved Caspase1, and GSDMD-N expressions in hippocampal tissues or cells were determined by quantitative real-time polymerase chain reaction and Western blot. SETD1B and histone H3 lysine 4 methylation (H3K4me1, H3K4me2, and H3K4me3) enrichment on the CXCR4 promoter was analyzed by ChIP. Sev insulted cognitive impairment and diminished SETD1B expression in mouse hippocampal tissues. SETD1B overexpression mitigated cognitive impairment, enhanced H3K4me3 levels in hippocampal tissues, and restrained hippocampal neuronal pyroptosis. SETD1B increased CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby curbing NLRP1/Caspase1-mediated hippocampal neuronal pyroptosis. To conclude, SETD1B enhances CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby suppressing NLRP1/Caspase1-triggered hippocampal neuronal pyroptosis and alleviating Sev-induced cognitive impairment in neonatal mice.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jing Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qian Tang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Yujie Tan
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
9
|
Zuo Y, Xie J, Zhang X, Thirupathi A, Liu X, Zhang D, Zhang J, Shi Z. Sevoflurane causes cognitive impairment by inducing iron deficiency and inhibiting the proliferation of neural precursor cells in infant mice. CNS Neurosci Ther 2024; 30:e14612. [PMID: 38334030 PMCID: PMC10853893 DOI: 10.1111/cns.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.
Collapse
Affiliation(s)
- Yong Zuo
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jinhong Xie
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Xue Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | | | - Xiaopeng Liu
- The Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Di Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jianhua Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| |
Collapse
|
10
|
Liu Z, Pan X, Guo J, Li L, Tang Y, Wu G, Li M, Wang H. Long-term sevoflurane exposure resulted in temporary rather than lasting cognitive impairment in Drosophila. Behav Brain Res 2023; 442:114327. [PMID: 36738841 DOI: 10.1016/j.bbr.2023.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Sevoflurane is the primary inhaled anesthetic used in pediatric surgery. It has been the focus of research since animal models studies found that it was neurotoxic to the developing brain two decades ago. However, whether pediatric general anesthesia can lead to permanent cognitive deficits remained a subject of heated debate. Therefore, our study aims to determine the lifetime neurotoxicity of early long-time sevoflurane exposure using a short-life-cycle animal model, Drosophila melanogaster. To investigate this question, we measured the lifetime changes of two-day-old flies' learning and memory abilities after anesthesia with 3 % sevoflurane for 6 h by the T-maze memory assay. We evaluated the apoptosis, levels of ATP and ROS, and related genes in the fly head. Our results suggest that 6 h 3 % sevoflurane exposure at a young age can only induce transient neuroapoptosis and cognitive deficits around the first week after anesthesia. But this brain damage recedes with time and vanishes in late life. We also found that the mRNA level of caspases and Bcl-2, ROS level, and ATP level increased during this temporary neuroapoptosis process. And mRNA levels of antioxidants, such as SOD2 and CAT, increased and decreased simultaneously with the rise and fall of the ROS level, indicating a possible contribution to the recovery from the sevoflurane impairment. In conclusion, our results suggest that one early prolonged sevoflurane-based general anesthesia can induce neuroapoptosis and learning and memory deficit transiently but not permanently in Drosophila.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Xuanyi Pan
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Liping Li
- Institute of Materia Medical, Hebei Centers for Disease Control and Prevention, Shijiazhuang 050021, Hebei, China
| | - Yuxin Tang
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China.
| | - Hongjie Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China.
| |
Collapse
|
11
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
12
|
Cao Y, Sun Y, Liu X, Yu K, Gao D, Yang J, Miao H, Li T. A bibliometric analysis of the neurotoxicity of anesthesia in the developing brain from 2002 to 2021. Front Neurol 2023; 14:1185900. [PMID: 37181567 PMCID: PMC10172642 DOI: 10.3389/fneur.2023.1185900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Background The neurotoxicity effects of anesthetic exposure on the developing brain have been one of the current research hotspots and numerous articles were published in the past decades. However, the quality and comparative information of these articles have not been reported. This research aimed to provide a comprehensive overview of the current state of the field by investigating research hotspots and publication trends concerning the neurotoxicity of anesthesia in the developing brain. Materials and methods On 15 June 2022, we searched articles on the neurotoxicity of anesthesia in the developing brain through the Science Citation Index databases from 2002 to 2021. Data of the author, title, publication, funding agency, date of publication, abstract, type of literature, country, journal, keywords, number of citations, and research direction were collected for further analysis. Results We searched and analyzed 414 articles in English on the field of neurotoxicity of anesthesia in the developing brain from 2002 to 2021. The country with the largest number of publications was The United States (US) (n = 226), which also had the largest total number of citations (10,419). Research in this field reached a small peak in 2017. Furthermore, the largest number of articles were published in three journals, Anesthesiology, Anesthesia and Analgesia, and Pediatric Anesthesia. The top 20 articles that were cited most often were studied. In addition, the top hotspots of this area in clinical investigations and basic research were analyzed separately. Conclusion This study provided an overview of the development in the neurotoxicity of anesthesia in the developing brain using bibliometric analysis. Current clinical studies in this area were mainly retrospective; in the future, we should place more emphasis on prospective, multicenter, long-term monitoring clinical studies. More basic research was also needed on the mechanisms of neurotoxicity of anesthesia in the developing brain.
Collapse
|
13
|
Niu Y, Yan J, Jiang H. Anesthesia and developing brain: What have we learned from recent studies. Front Mol Neurosci 2022; 15:1017578. [PMID: 36479527 PMCID: PMC9720124 DOI: 10.3389/fnmol.2022.1017578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2023] Open
Abstract
Anesthesia is unavoidable in surgical procedures. However, whether the general anesthetics are neurotoxic to immature brains remains undefined. Neurodevelopmental impairment induced by anesthesia has been a critical health issue and topic of concern. This review summarizes recent progress made in clinical and preclinical studies to provide useful suggestions and potential therapeutic targets for the protection of the immature brain. On the one hand, clinical researchers continue the debate about the effect of single and multiple exposures to anesthesia on developing brains. On the other hand, preclinical researchers focus on exploring the mechanisms of neurotoxic effects of general anesthesia on immature brains and seeking novel solutions. Rodent models have always been used in preclinical studies, but it is still unclear whether the mechanisms observed in rodent models have clinical relevance. Compared with these models, non-human primates (NHPs) are more genetically similar to humans. However, few research institutions in this area can afford to use NHP models in their studies. One way to address both problems is by combining single-cell sequencing technologies to screen differential gene expression in NHPs and perform in vivo validation in rodents. The mechanism of anesthesia-induced neurotoxicity still requires further elucidation in primates.
Collapse
Affiliation(s)
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
MicroRNA-17-5p Protects against Propofol Anesthesia-Induced Neurotoxicity and Autophagy Impairment via Targeting BCL2L11. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6018037. [PMID: 35799645 PMCID: PMC9256336 DOI: 10.1155/2022/6018037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Background. Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods. After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results. In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion. Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).
Collapse
|
15
|
Ma LH, Wan J, Yan J, Wang N, Liu YP, Wang HB, Zhou CH, Wu YQ. Hippocampal SIRT1-Mediated Synaptic Plasticity and Glutamatergic Neuronal Excitability Are Involved in Prolonged Cognitive Dysfunction of Neonatal Rats Exposed to Propofol. Mol Neurobiol 2022; 59:1938-1953. [PMID: 35034265 DOI: 10.1007/s12035-021-02684-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023]
Abstract
Neonates who receive repeated or prolonged general anesthesia before the age of 4 are at a significantly higher risk of developing cognitive dysfunction later in life. In this study, we investigated the effects of repeated neonatal propofol exposure on hippocampal synaptic plasticity, neuronal excitability, and cognitive function. Adeno-associated SIRT1 virus with CaMKIIɑ promotor and a viral vector carrying the photosensitive gene ChR2 with the CaMKIIɑ promotor, as well as their control vectors, were stereotaxically injected into the hippocampal CA1 region of postnatal day 5 (PND-5) rats. PND-7 rats were given intraperitoneal injection of 60 mg/kg propofol or fat emulsion for three consecutive days. Western blotting, Golgi staining, and double immunofluorescence staining were used to evaluate the SIRT1 expression, synaptic plasticity, and the excitability of neurons in the hippocampal CA1 region. The Morris water maze (MWM) test was conducted on PND-30 to assess the learning and memory abilities of rats. Repeated neonatal propofol exposure reduced SIRT1 expression, suppressed synaptic plasticity, decreased glutamatergic neuron excitability in the hippocampus, and damaged learning and memory abilities. Overexpression of SIRT1 attenuated propofol-induced cognitive dysfunction, excitation-inhibition imbalance, and synaptic plasticity damage. After optogenetic stimulation of glutamatergic neurons in the hippocampal CA1 region, the learning and memory abilities of rats exposed to propofol were improved on PND-30. Our findings demonstrate that SIRT1 plays an important role in cognitive dysfunction induced by repeated neonatal propofol exposure by suppressing synaptic plasticity and neuronal excitability.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ning Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yan-Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
16
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
17
|
Liu Y, Yang H, Fu Y, Pan Z, Qiu F, Xu Y, Yang X, Chen Q, Ma D, Liu Z. TRPV1 Antagonist Prevents Neonatal Sevoflurane-Induced Synaptic Abnormality and Cognitive Impairment in Mice Through Regulating the Src/Cofilin Signaling Pathway. Front Cell Dev Biol 2021; 9:684516. [PMID: 34307363 PMCID: PMC8293754 DOI: 10.3389/fcell.2021.684516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term neurodevelopmental disorders following neonatal anesthesia have been reported both in young animals and in children. The activation of transient receptor potential vanilloid 1 (TRPV1) channels in hippocampus adversely affects neurodevelopment. The current study explored the underlying mechanism of TRPV1 channels on long-lasting cognitive dysfunction induced by anesthetic exposure to the developing brain. we demonstrated that TRPV1 expression was increased after sevoflurane exposure both in vitro and in vivo. Sevoflurane exposure to hippocampal neurons decreased the synaptic density and the surface GluA1 expression, as well as increased co-localization of internalized AMPAR in early and recycling endosomes. Sevoflurane exposure to newborn mice impaired learning and memory in adulthood, and reduced AMPAR subunit GluA1, 2 and 3 expressions in the crude synaptosomal fractions from mouse hippocampus. The inhibition of TRPV1 reversed the phenotypic changes induced by sevoflurane. Moreover, sevoflurane exposure increased Src phosphorylation at tyrosine 416 site thereby reducing cofilin phosphorylation. TRPV1 blockade reversed these suppressive effects of sevoflurane. Our data suggested that TRPV1 antagonist may protect against synaptic damage and cognitive dysfunction induced by sevoflurane exposure during the brain developing stage.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yanwen Xu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qian Chen
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Demirgan S, Akyol O, Temel Z, Şengelen A, Pekmez M, Ulaş O, Sevdi MS, Erkalp K, Selcan A. Intranasal levosimendan prevents cognitive dysfunction and apoptotic response induced by repeated isoflurane exposure in newborn rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1553-1567. [PMID: 33772342 DOI: 10.1007/s00210-021-02077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Anesthetic-induced toxicity in early life may lead to risk of cognitive decline at later ages. Notably, multiple exposures to isoflurane (ISO) cause acute apoptotic cell death in the developing brain and long-term cognitive dysfunction. This study is the first to investigate whether levosimendan (LVS), known for its protective myocardial properties, can prevent anesthesia-induced apoptotic response in brain cells and learning and memory impairment. Postnatal day (P)7 Wistar albino pups were randomly assigned to groups consisting of an equal number of males and females in this laboratory investigation. We treated rats with LVS (0.8 mg/kg/day) intranasally 30 min before each ISO exposure (1.5%, 3 h) at P7+9+11. We selected DMSO as the drug vehicle. Also, the control group at P7+9+11 received 50% O2 for 3 h instead of ISO. Neuroprotective activity of LVS against ISO-induced cognitive dysfunction was evaluated by Morris water maze. Expression of apoptotic-related proteins was detected in the whole brain using western blot. LVS pretreatment significantly prevented anesthesia-induced deficit in spatial learning (at P28-32) and memory (at P33, P60, and P90). No sex-dependent difference occurred on any day of the training and probe trial. Intranasal LVS was also found to significantly prevent the ISO-induced apoptosis by reducing Bax and cleaved caspase-3, and by increasing Bcl-2 and Bcl-xL. Our findings support pretreatment with intranasal LVS application as a simple strategy in daily clinical practice in pediatric anesthesia to protect infants and children from the risk of general anesthesia-induced cell death and cognitive declines.
Collapse
Affiliation(s)
- Serdar Demirgan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Onat Akyol
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Zeynep Temel
- Department of Neuroscience Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey.
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ozancan Ulaş
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Mehmet Salih Sevdi
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Kerem Erkalp
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Ayşin Selcan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Gong H, Wan X, Zhang Y, Liang S. Downregulation of HOTAIR reduces neuronal pyroptosis by targeting miR-455-3p/NLRP1 axis in propofol-treated neurons in vitro. Neurochem Res 2021; 46:1141-1150. [PMID: 33534059 DOI: 10.1007/s11064-021-03249-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Propofol is one of the most common intravenous anesthetics which may cause neuronal cell death in young mice. HOX transcript antisense RNA (HOTAIR) was abnormally expressed in neurodegenerative diseases. However, the effect of HOTAIR on propofol-induced pyroptosis of neurons and related mechanisms are still unknown. In this study, propofol treatment significantly reduced neuronal the viability of neurons, and promoted the expression of inflammation-related factors. Propofol treatment also promoted neuron death and neuronal pyroptosis. All the above effects might be related to the propofol-induced overexpression of HOTAIR. Interestingly, knockdown of HOTAIR by shRNA (sh-HOTAIR) significantly inhibited neuronal pyroptosis, but increased neuronal viability. Further analysis showed that HOTAIR and Nod-like receptor protein1 (NLRP1) were the targets of miR-455-3p, respectively. Notably, propofol treatment decreased the level of miR-455-3p, while increased the level of NLRP1. In addition, sh-HOTAIR increased the level of miR-455-3p, which further inhibited the expression of NLRP1 and the activation of NLRP1 inflammasome, thereby inhibiting neuronal pyroptosis. More importantly, NLRP1 overexpression decreased neuronal viability, and reactivated NLRP1 inflammasome, thus reversing the inhibitory effect of sh-HOTAIR on pyroptosis. Our findings indicated that HOTAIR inhibited propofol-induced pyroptosis of neurons by regulating miR-455-3p/NLRP1 axis, indicating that HOTAIR may be a potential therapeutic target for propofol-induced neurotoxicity.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| | - Xianwen Wan
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China.
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| | - Sisi Liang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
20
|
Intranasal Insulin Administration to Prevent Delayed Neurocognitive Recovery and Postoperative Neurocognitive Disorder: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052681. [PMID: 33799976 PMCID: PMC7967645 DOI: 10.3390/ijerph18052681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Delayed neurocognitive recovery and postoperative neurocognitive disorders are major complications of surgery, hospitalization, and anesthesia that are receiving increasing attention. Their incidence is reported to be 10–80% after cardiac surgery and 10–26% after non-cardiac surgery. Some of the risk factors include advanced age, level of education, history of diabetes mellitus, malnutrition, perioperative hyperglycemia, depth of anesthesia, blood pressure fluctuation during surgery, chronic respiratory diseases, etc. Scientific evidence suggests a causal association between anesthesia and delayed neurocognitive recovery or postoperative neurocognitive disorders, and various pathophysiological mechanisms have been proposed: mitochondrial dysfunction, neuroinflammation, increase in tau protein phosphorylation, accumulation of amyloid-β protein, etc. Insulin receptors in the central nervous system have a non-metabolic role and act through a neuromodulator-like action, while an interaction between anesthetics and central nervous system insulin receptors might contribute to anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders. Acute or chronic intranasal insulin administration, which has no influence on the blood glucose concentration, appears to improve working memory, verbal fluency, attention, recognition of objects, etc., in animal models, cognitively healthy humans, and memory-impaired patients by restoring the insulin receptor signaling pathway, attenuating anesthesia-induced tau protein hyperphosphorylation, etc. The aim of this review is to report preclinical and clinical evidence of the implication of intranasal insulin for preventing changes in the brain molecular pattern and/or neurobehavioral impairment, which influence anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders.
Collapse
|