1
|
Block MS. Three Factors for Long-Term Dental Implant Success: Up to 40-year Follow-up. Oral Maxillofac Surg Clin North Am 2025; 37:1-15. [PMID: 39244494 DOI: 10.1016/j.coms.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This article provides clinicians with 3 main factors that relate to long-term success. Long term in this article represents the lifespan of the patient, often requiring more than 40 years of function on the implant restoration. Literature is reviewed and used to provide evidence for these recommendations. Cases are presented to demonstrate these critical factors.
Collapse
Affiliation(s)
- Michael S Block
- Private Practice, Metairie, LA, USA; Department of Oral & Maxillofacial Surgery, LSU School of Dentistry, New Orleans, LA, USA.
| |
Collapse
|
2
|
Yamada R, Xavier SP, Nakajima Y, Silva ER, Botticelli D, Teranishi Y, Baba S. Impact of Collagenated and Non-Collagenated Deproteinized Bovine Bone Mineral on Schneiderian Membrane Integrity in Rabbits. Dent J (Basel) 2025; 13:19. [PMID: 39851595 PMCID: PMC11763966 DOI: 10.3390/dj13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background: This investigation focused on the influence of collagen on the integrity of the Schneiderian membrane during maxillary sinus augmentation in a rabbit model. The aim of this study was to elucidate the relationship between membrane integrity and bone regeneration in augmented maxillary sinuses using collagenated and non-collagenated grafts, through detailed histological and histomorphometric analyses. Methods: In this forward-looking, randomized, split-mouth design, bilateral maxillary sinus augmentation was conducted on 12 rabbits. One sinus was filled with deproteinized bovine bone material (DBBM) as the grafting material (non-collagenated; control), while a combination of DBBM particles integrated with 10% porcine-derived type I collagen was used in the contralateral sinus (collagenated; test). Histological analyses were carried out following healing periods of 2 and 12 weeks. Results: At the 2-week time point, six sites of thinned mucosa (<40 µm) and no perforations were observed in the collagenated group, while twenty-one thinned mucosa sites (p = 0.027 between test and control) and two perforations (p = 0.175 between test and control) were found in the non-collagenated group. After 12 weeks of healing, the number of sites with thinned mucosa was 20 in the collagenated group and 19 in the non-collagenated group, with four perforations observed in each group. These perforations were distributed across three sinuses in the collagenated group and two sinuses in the non-collagenated group. No statistically significant differences were found between the groups. Conclusions: The addition of 10% collagen to deproteinized bovine bone mineral initially provided protection against mucosal thinning and perforation after 2 weeks of healing. However, by week 12, this protective effect diminished, resulting in similar rates of mucosal thinning and perforations in both groups.
Collapse
Affiliation(s)
- Rihito Yamada
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Y.); (Y.N.); (Y.T.); (S.B.)
| | - Samuel Porfirio Xavier
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (S.P.X.); (E.R.S.)
| | - Yasushi Nakajima
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Y.); (Y.N.); (Y.T.); (S.B.)
- ARDEC Academy, 47923 Rimini, Italy
| | - Erick Ricardo Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (S.P.X.); (E.R.S.)
| | - Daniele Botticelli
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Y.); (Y.N.); (Y.T.); (S.B.)
- ARDEC Academy, 47923 Rimini, Italy
| | - Yuki Teranishi
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Y.); (Y.N.); (Y.T.); (S.B.)
| | - Shunsuke Baba
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Y.); (Y.N.); (Y.T.); (S.B.)
| |
Collapse
|
3
|
Maniwa N, Xavier SP, Scombatti de Souza SL, Silva ER, Botticelli D, Morinaga K, Baba S. Sequential Bone Repair in Rabbit Sinus Lifts Using Bio-Oss and Hyaluronic Acid-Polynucleotide Gel (Regenfast). J Funct Biomater 2024; 15:361. [PMID: 39728161 DOI: 10.3390/jfb15120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND A comprehensive investigation to associate the use of polynucleotides and hyaluronic acid with bovine bone in maxillary sinus lift procedures in rabbits has not been performed yet. The aim was to evaluate the influence of this novel association on the processes of bone regeneration in maxillary sinus augmentation. METHODS In this prospective, randomized, within-animal model, maxillary sinus augmentation was performed bilaterally in 12 rabbits. Deproteinized bovine bone material (DBBM) was used as filler material. A hyaluronic acid-polynucleotide gel was aggregated at the test site. Histological evaluations were performed after 2 and 10 weeks of healing. RESULTS After 2 weeks of healing, similar amounts of new bone were observed at both the control (7.7 ± 4.3%) and test sites (8.1 ± 3.8%; p = 0.697). Bone formation was observed predominantly along the osteotomy margins and adjacent sinus walls. After 10 weeks of healing, the total new bone fraction reached 28.0 ± 10.1% at the control sites and 27.3 ± 10.5% at the test sites (p = 0.563). Multiple perforations of the sinus mucosa were observed in both groups when in contact with the biomaterial granules. CONCLUSION The present study failed to demonstrate a positive effect on bone formation when incorporating hyaluronic acid-polynucleotide gel (Regenfast) into a xenograft for maxillary sinus augmentation. Additionally, the use of this gel did not mitigate the occurrence of thinned mucosa or reduce the risk of subsequent sinus mucosa perforation.
Collapse
Affiliation(s)
- Nozomi Maniwa
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Samuel Porfirio Xavier
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil
| | - Sergio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil
| | - Erick Ricardo Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil
| | - Daniele Botticelli
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
- ARDEC Academy, 47923 Rimini, Italy
| | - Kenzo Morinaga
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Shunsuke Baba
- Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| |
Collapse
|
4
|
Garcia VG, Dall´Agnol GDS, Campista CCC, Bury LL, Ervolino E, Longo M, Mulinari-Santos G, Levin L, Theodoro LH. Evaluation of Two Anorganic Bovine Xenogenous Grafts in Bone Healing of Critical Defect in Rats Calvaria. Braz Dent J 2024; 35:e246119. [PMID: 39476115 PMCID: PMC11506241 DOI: 10.1590/0103-6440202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/01/2024] [Indexed: 11/03/2024] Open
Abstract
The purpose of this study was to provide an evaluation of two different xenogeneic bone substitutes in bone healing of critical-sized bone defects (Ø =5mm) created in rats calvaria. Thirty animals were randomized into 3 groups with one of the following treatments. In the control group (n=10), the defects were filled with blood clots; BO group (n=10), the defects were filled with bovine medullary bone substitute (Bio-Oss®); BF group (n=10), the defects were filled with bovine cortical bone substitute (Bonefill®). All defects were covered with an absorbable membrane. Five animals from each group were euthanized at 30 and 45 days, subsequently histomorphometrical and immunohistochemical analyses were performed. The histomorphometry was used to measure the percentage of new bone formation in the total area of the defect while the immunohistochemistry evaluated the expression of bone immunomarkers for bone morphogenetic protein 2/4 (BMP2/4), osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP). Data was statistically analyzed with a 5% significance level. The results demonstrated that the BO group showed greater bone formation compared to the BF group at 30 days (P<0.05). However, there was no statistically significant difference between the control and BO groups at 30 days (P>0.05). The expression of BMP2/4 and OCN were higher in the BO group at 45 days compared to the BF at 30 and 45 days respectively (P<0.05). In conclusion, even with the higher expression of proteins related to bone formation, there was no difference in new bone formation at 45 days when both anorganic bovine xenogenous grafts were evaluated.
Collapse
Affiliation(s)
- Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Teaching, Ilapeo College, Curitiba, Paraná, Brazil
| | | | | | - Luiz Lordêlo Bury
- Graduate Program in Dentistry, Faculty of Dentistry of Barretos, Barretos, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Mariéllen Longo
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Gabriel Mulinari-Santos
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Liran Levin
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Letícia Helena Theodoro
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| |
Collapse
|
5
|
Pabst A, Becker P, Götz W, Heimes D, Thiem DGE, Blatt S, Kämmerer PW. A comparative analysis of particulate bovine bone substitutes for oral regeneration: a narrative review. Int J Implant Dent 2024; 10:26. [PMID: 38801622 PMCID: PMC11130110 DOI: 10.1186/s40729-024-00544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE Particulate bovine bone substitutes (BS) are commonly used in oral regeneration. However, more literature is needed focusing on comparative analyses among various particulate bovine BS. This study evaluates pre-clinical and clinical data of different particulate bovine BS in oral regeneration. METHODS A narrative review was conducted by screening the PubMed database Included in the review were pre-clinical and clinical studies until 2024 comparing a minimum of two distinct particulate bovine BS. In addition to examining general data concerning manufacturing and treatment processes, biological safety, physical and chemical characteristics, and graft resorption, particular emphasis was placed on assessing pre-clinical and clinical data related to ridge preservation, sinus floor elevation, peri-implant defects, and various forms of alveolar ridge augmentation utilizing particulate bovine BS. RESULTS Various treatment temperatures ranging from 300 to 1,250 °C and the employment of chemical cleaning steps were identified for the manufacturing process of particulate bovine BS deemed to possess biosecurity. A notable heterogeneity was observed in the physical and chemical characteristics of particulate bovine BS, with minimal or negligible graft resorption. Variations were evident in particle and pore sizes and the porosity of particulate bovine BS. Pre-clinical assessments noted a marginal inclination towards favorable outcomes for particulate bovine BS subjected to higher treatment temperatures. However, clinical data are insufficient. No distinctions were observed regarding ridge preservation, while slight advantages were noted for high-temperature treated particulate bovine BS in sinus floor elevation. CONCLUSIONS Subtle variances in both pre-clinical and clinical outcomes were observed in across various particulate bovine BS. Due to inadequate data, numerous considerations related to diverse particulate bovine BS, including peri-implant defects, must be more conclusive. Additional clinical studies are imperative to address these knowledge gaps effectively.
Collapse
Affiliation(s)
- Andreas Pabst
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstraße 170, 56072, Koblenz, Germany
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstraße 170, 56072, Koblenz, Germany
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Vigliar MFR, Marega LF, Duarte MAH, Alcalde MP, Rosso MPDO, Ferreira Junior RS, Barraviera B, Reis CHB, Buchaim DV, Buchaim RL. Photobiomodulation Therapy Improves Repair of Bone Defects Filled by Inorganic Bone Matrix and Fibrin Heterologous Biopolymer. Bioengineering (Basel) 2024; 11:78. [PMID: 38247955 PMCID: PMC10813421 DOI: 10.3390/bioengineering11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.
Collapse
Affiliation(s)
- Maria Fernanda Rossi Vigliar
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
| | - Lais Furlaneto Marega
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| |
Collapse
|
7
|
Čandrlić M, Tomas M, Matijević M, Kačarević ŽP, Bićanić M, Udiljak Ž, Butorac Prpić I, Miškulin I, Čandrlić S, Včev A. Regeneration of Buccal Wall Defects after Tooth Extraction with Biphasic Calcium Phosphate in Injectable Form vs. Bovine Xenograft: A Randomized Controlled Clinical Trial. Dent J (Basel) 2023; 11:223. [PMID: 37754343 PMCID: PMC10528832 DOI: 10.3390/dj11090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Bone healing after tooth extraction may be affected by defects of the alveolus buccal wall, such as fenestrations and dehiscences. Therefore, to minimize dimensional changes it is advisable to perform alveolar ridge preservation after tooth extractions. Different biomaterials are used for this purpose. The aim of this study was to investigate the qualitative and quantitative histological changes in human biopsies taken after 6 months of healing of extraction sockets with buccal wall defects. For this purpose, the defects of 36 patients (18 per group) were treated with injectable biphasic calcium phosphate (I-BCP) or bovine xenograft (BX) after extraction. After six months of healing, biopsies were taken and proceeded to the histology laboratory. No evidence of an inflammatory response of the tissue was observed in the biopsies of either group, and the newly formed bone (NB) was in close contact with the remaining biomaterial (BM). The histomorphometric results showed that there was no statistically significant difference between the groups in the mean percentage of NB (p = 0.854), BM (p = 0.129), and soft tissue (p = 0.094). To conclude, both biomaterials exhibited osteoconductivity and biocompatibility and achieved satisfactory bone regeneration of buccal wall defects after tooth extraction.
Collapse
Affiliation(s)
- Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Marko Matijević
- Community Healthcare Center of Osijek-Baranja County, 31 000 Osijek, Croatia;
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia;
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| | - Marijana Bićanić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Žarko Udiljak
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Ivan Miškulin
- Department of Public Health, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Slavko Čandrlić
- Department of Interdisciplinary Areas, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia;
| | - Aleksandar Včev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia
| |
Collapse
|
8
|
de Souza Santos AM, dos Santos Pereira R, Montemezzi P, Mello-Machado RC, Okamoto R, Sacco R, Noronha Lisboa-Filho P, Messora MR, Mourão CF, Hochuli-Vieira E. The Interplay of Raloxifene and Sonochemical Bio-Oss in Early Maxillary Sinus Bone Regeneration: A Histological and Immunohistochemical Analysis in Rabbits. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1521. [PMID: 37763640 PMCID: PMC10534759 DOI: 10.3390/medicina59091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The study aimed to assess the efficacy of using Raloxifene with ultrasonic processing to enhance Bio-Oss®, a bone graft substitute, for maxillary sinus bone height reconstruction. A total of 24 rabbit maxillary sinuses were distributed into three groups, each receiving different treatments: Bio-Oss® only, sonicated Bio-Oss, and sonicated Bio-Oss® with Raloxifene. Surgical procedures and subsequent histomorphometric and immunohistochemistry analyses were conducted to evaluate the bone formation, connective tissue, and remaining biomaterial, as well as the osteoblastic differentiation and maturation of collagen fibers. Results indicated that the sonicated Bio-Oss® and Bio-Oss® groups showed similar histological behavior and bone formation, but the Raloxifene group displayed inflammatory infiltrate, low bone formation, and disorganized connective tissue. The statistical analysis confirmed significant differences between the groups in terms of bone formation, connective tissue, and remaining biomaterial. In conclusion, the study found that while sonicated Bio-Oss® performed comparably to Bio-Oss® alone, the addition of Raloxifene led to an unexpected delay in bone repair. The findings stress the importance of histological evaluation for accurate bone repair assessment and the necessity for further investigation into the local application of Raloxifene. Future research may focus on optimizing bone substitutes with growth factors to improve bone repair.
Collapse
Affiliation(s)
- Anderson Maikon de Souza Santos
- Department of Diagnostic and Surgery, Araçatuba School of Dentistry, Sao Paulo State University, Sao Paulo 16066-840, Brazil
| | - Rodrigo dos Santos Pereira
- Department of Oral & Maxillofacial Surgery, University of Grande Rio—UNIGRANRIO, Rio de Janeiro 25071-202, Brazil
| | | | | | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, Sao Paulo State University, Sao Paulo 16066-805, Brazil
| | - Roberto Sacco
- Department of Oral Surgery, Division of Dentistry, School of Medical Science, The University of Manchester, Manchester M13 9PL, UK
| | | | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Eduardo Hochuli-Vieira
- Department of Diagnostic and Surgery, Araraquara School of Dentistry, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| |
Collapse
|
9
|
Pomini KT, Buchaim DV, Bighetti ACC, Andreo JC, Rosso MPDO, Escudero JSB, Della Coletta BB, Alcalde MP, Duarte MAH, Pitol DL, Issa JPM, Ervolino E, Moscatel MBM, Bellini MZ, de Souza AT, Soares WC, Buchaim RL. Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers (Basel) 2022; 14:4170. [PMID: 36236116 PMCID: PMC9572221 DOI: 10.3390/polym14194170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this preclinical protocol, an adjunct method is used in an attempt to overcome the limitations of conventional therapeutic approaches applied to bone repair of large bone defects filled with scaffolds. Thus, we evaluate the effects of photobiomodulation therapy (PBMT) on the bone repair process on defects filled with demineralized bovine bone (B) and fibrin sealant (T). The groups were BC (blood clot), BT (B + T), BCP (BC + PBMT), and BTP (B + T + PBMT). Microtomographically, BC and BCP presented a hypodense cavity with hyperdense regions adjacent to the border of the wound, with a slight increase at 42 days. BT and BTP presented discrete hyperdensing areas at the border and around the B particles. Quantitatively, BCP and BTP (16.96 ± 4.38; 17.37 ± 4.38) showed higher mean bone density volume in relation to BC and BT (14.42 ± 3.66; 13.44 ± 3.88). Histologically, BC and BCP presented deposition of immature bone at the periphery and at 42 days new bone tissue became lamellar with organized total collagen fibers. BT and BTP showed inflammatory infiltrate along the particles, but at 42 days, it was resolved, mainly in BTP. In the birefringence analysis, BT and BTP, the percentage of red birefringence increased (9.14% to 20.98% and 7.21% to 27.57%, respectively), but green birefringence was similar in relation to 14 days (3.3% to 3.5% and 3.5% to 4.2%, respectively). The number of osteocytes in the neoformed bone matrix proportionally reduced in all evaluated groups. Immunostaining of bone morphogenetic protein (BMP—2/4), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) were higher in BCP and BTP when compared to the BC and BT groups (p < 0.05). An increased number of TRAP positive cells (tartrate resistant acid phosphatase) was observed in BT and BTP. We conclude that PBMT positively influenced the repair of bone defects filled with B and T.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | - José Stalin Bayas Escudero
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16066-840, Brazil
| | | | - Márcia Zilioli Bellini
- Pro-Rectory of Research and Graduate Studies, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
10
|
Valencia-Llano CH, López-Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022; 27:5745. [PMID: 36144483 PMCID: PMC9506155 DOI: 10.3390/molecules27185745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.
Collapse
Affiliation(s)
| | - Diego López-Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
11
|
Nogueira DMB, Figadoli ALDF, Alcantara PL, Pomini KT, Santos German IJ, Reis CHB, Rosa Júnior GM, Rosso MPDO, Santos PSDS, Zangrando MSR, Pereira EDSBM, de Marchi MÂ, Trazzi BFDM, Rossi JDO, Salmeron S, Pastori CM, Buchaim DV, Buchaim RL. Biological Behavior of Xenogenic Scaffolds in Alcohol-Induced Rats: Histomorphometric and Picrosirius Red Staining Analysis. Polymers (Basel) 2022; 14:584. [PMID: 35160573 PMCID: PMC8839833 DOI: 10.3390/polym14030584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
In this experimental protocol, the objective was to evaluate the biological behavior of two xenogenic scaffolds in alcohol-induced rats through histomorphometric and Picrosirius Red staining analysis of non-critical defects in the tibia of rats submitted or not to alcohol ingestion at 25% v/v. Eighty male rats were randomly divided into four groups (n = 20 each): CG/B (water diet + Bio-Oss® graft, Geistlich Pharma AG, Wolhusen, Switzerland), CG/O (water diet + OrthoGen® graft, Baumer, Mogi Mirim, Brazil), AG/B (25% v/v alcohol diet + Bio-Oss® graft), and AG/O (25% v/v alcohol diet + OrthoGen® graft). After 90 days of liquid diet, the rats were surgically obtained, with a defect in the tibia proximal epiphysis; filled in according to their respective groups; and euthanized at 10, 20, 40 and 60 days. In two initial periods (10 and 20 days), all groups presented biomaterial particles surrounded by disorganized collagen fibrils. Alcoholic animals (AG/B and AG/O) presented, in the cortical and medullary regions, a reactive tissue with inflammatory infiltrate. In 60 days, in the superficial area of the surgical cavities, particles of biomaterials were observed in all groups, with new compact bone tissue around them, without complete closure of the lesion, except in non-alcoholic animals treated with Bio-Oss® xenograft (CG/B), where the new cortical interconnected the edges of the defect. Birefringence transition was observed in the histochemical analysis of collagen fibers by Picrosirius Red, in which all groups in periods of 10 and 20 days showed red-orange birefringence, and from 40 days onwards greenish-yellow birefringence, which demonstrates the characteristic transition from the formation of thin and disorganized collagen fibers initially to more organized and thicker later. In histomorphometric analysis, at 60 days, CG/B had the highest volume density of new bone (32.9 ± 1.15) and AG/O the lowest volume density of new bone (15.32 ± 1.71). It can be concluded that the bone neoformation occurred in the defects that received the two biomaterials, in all periods, but the Bio-Oss® was superior in the results, with its groups CG/B and AG/B displaying greater bone formation (32.9 ± 1.15 and 22.74 ± 1.15, respectively) compared to the OrthoGen® CG/O and AG/O groups (20.66 ± 2.12 and 15.32 ± 1.71, respectively), and that the alcoholic diet interfered negatively in the repair process and in the percentage of new bone formed.
Collapse
Affiliation(s)
- Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | - André Luiz de Faria Figadoli
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Patrícia Lopes Alcantara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; (P.L.A.); (P.S.d.S.S.)
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
| | - Iris Jasmin Santos German
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Technical Board, UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Geraldo Marco Rosa Júnior
- Anatomy Discipline, School of Dentistry, Health Sciences Center, Sacred Heart University Center (UNISAGRADO), Bauru 17011-160, Brazil;
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; (P.L.A.); (P.S.d.S.S.)
| | - Mariana Schutzer Ragghianti Zangrando
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
| | - Miguel Ângelo de Marchi
- Coordination of the Medical School, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
| | | | - Jéssica de Oliveira Rossi
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Samira Salmeron
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
- Teaching and Research Coordination, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| |
Collapse
|
12
|
Collagen matrices are preserved following decellularization of a bovine bone scaffold. Cell Tissue Bank 2022; 23:531-540. [DOI: 10.1007/s10561-021-09987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
|
13
|
Jerbić Radetić AT, Zoričić Cvek S, Tomas M, Erjavec I, Oguić M, Perić Kačarević Ž, Cvijanović Peloza O. CSBD Healing in Rats after Application of Bovine Xenogeneic Biomaterial Enriched with Magnesium Alloy. Int J Mol Sci 2021; 22:ijms22169089. [PMID: 34445794 PMCID: PMC8396602 DOI: 10.3390/ijms22169089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Xenogeneic biomaterials Cerbone® and OsteoBiol® are widely used in oral implantology. In dental practice, xenogeneic biomaterial is usually combined with autologous bone to provide bone volume stability needed for long-term dental implants. Magnesium alloy implants dissolve and form mineral corrosion layer that is directly in contact with bone tissue, allowing deposition of the newly formed bone. CSBD heals by intramembranous ossification and therefore is a convenient model for analyses of ostoconductive and osteoinductive properties of different type of biomaterials. Magnesium alloy-enriched biomaterials have not yet been applied in oral implantology. Therefore, the aim of the current study was to investigate biological properties of potentially new bovine xenogeneic biomaterial enriched with magnesium alloy in a 5 mm CSBD model. Osteoconductive properties of Cerabone®, Cerabone® + Al. bone, and OsteoBiol® were also analyzed. Dynamics of bone healing was followed up on the days 3, 7, 15, 21, and 30. Calvary bone samples were analyzed by micro-CT, and values of the bone morphometric parameters were assessed. Bone samples were further processed for histological and immunohistochemical analyses. Histological observation revealed CSBD closure at day 30 of the given xenogeneic biomaterial groups, with the exception of the control group. TNF-α showed high intensity of expression at the sites of MSC clusters that underwent ossification. Osx was expressed in pre-osteoblasts, which were differentiated into mature osteoblasts and osteocytes. Results of the micro-CT analyses showed linear increase in bone volume of all xenogeneic biomaterial groups and also in the control. The highest average values of bone volume were found for the Cerabone® + Mg group. In addition, less residual biomaterial was estimated in the Cerabone® + Mg group than in the Cerabone® group, indicating its better biodegradation during CSBD healing. Overall, the magnesium alloy xenogeneic biomaterial demonstrated key properties of osteoinduction and biodegradidibility during CSBD healing, which is the reason why it should be recommended for application in clinical practice of oral implantology.
Collapse
Affiliation(s)
| | - Sanja Zoričić Cvek
- Department of Anatomy, Medical Faculty, University of Rijeka, 51 000 Rijeka, Croatia; (A.T.J.R.); (S.Z.C.)
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia;
| | - Igor Erjavec
- Medical Faculty, University of Zagreb, 10 000 Zagreb, Croatia;
| | | | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia;
| | - Olga Cvijanović Peloza
- Department of Anatomy, Medical Faculty, University of Rijeka, 51 000 Rijeka, Croatia; (A.T.J.R.); (S.Z.C.)
- Correspondence: ; Tel.: +385-91-8998-421
| |
Collapse
|
14
|
Brito MA, Mecca LEA, Sedoski TDS, Mroczek T, Claudino M, Araujo MRD. Histological Comparison between Biphasic Calcium Phosphate and Deproteinized Bovine Bone on Critical-Size Bone Defects. Braz Dent J 2021; 32:26-33. [PMID: 33913998 DOI: 10.1590/0103-6440202103583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The limited options for bone repair have led to an extensive research of the field and the development of alloplastic and xenogeneic grafts. The purpose of this study was to evaluate bone repair with two bone substitutes: deproteinized bovine bone (DBB) and biphasic calcium phosphate ceramic (BCP) in critical-size defect. A total of 8-mm defects were made in the parietal bones of rabbits (n=12). The animals were divided into three experimental groups: sham (defect filled with a blood clot), DBB (defect filled with DBB), and BCP (defect filled with BCP). After the experimental periods of 15 and 45 days, the animals were euthanized and submitted to histomorphometric analysis. The total defect area, mineralized tissue area, biomaterial area, and soft tissue area were evaluated. A greater amount of immature bone tissue and biomaterial particles were observed in the BCP group compared to DBB and sham at 45 days (p<0.05). There was no difference in the qualitative pattern of bone deposition between DBB and BCP. However, the sham group did not show osteoid islands along with the defect, presenting a greater amount of collagen fibers as well in relation to the DBB and BCP groups. There was a greater number of inflammatory cells in the DBB at 45 days compared to BCP and sham groups. In conclusion, BCP and DBB are options for optimizing the use of bone grafts for maxillofacial rehabilitation. Bone defects treated with BCP showed greater deposition of bone tissue at 45 days.
Collapse
Affiliation(s)
| | | | | | - Tayline Mroczek
- Departament of Pharmaceutical Sciences, UEPG - Universidade Estadual de Ponta Grossa, PR, Brazil
| | - Marcela Claudino
- Departament of Dentistry, UEPG - Universidade Estadual de Ponta Grossa, PR, Brazil
| | | |
Collapse
|
15
|
Block MS. Does the Use of High-Temperature-Processed Xenografts for Ridge Augmentation Result in Ridge Width Stability Over Time? J Oral Maxillofac Surg 2020; 78:1717-1725. [PMID: 32649891 DOI: 10.1016/j.joms.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Alveolar ridge augmentation is often required before implant placement. The purpose of the present study was to determine whether maxillary and mandibular ridge augmentation with a high-temperature xenograft remains stable over time. MATERIALS AND METHODS A retrospective case series was performed of subjects who had undergone maxillary anterior or posterior ridge augmentation with a high-temperature xenograft (HTX). The primary predictor variable was the HTX. The primary outcome variable was the ridge width, measured T0 (before augmentation), T1 (immediately after augmentation), T2 (4 to 6 months after augmentation), and T3 (>4 years after augmentation). The secondary outcome variable was implant success. Analysis of variance and linear regression analysis were used to determine significance. A P value < .05 was considered statistically significant. RESULTS A total of 31 patients (age, 52.4 ± 18 years; 61.3% women) were identified who had undergone ridge width augmentation performed using HTX. Of these, 23 had cone-beam computed tomography scans available 4 to 10 years after augmentation had been performed. At the anterior maxilla, the initial ridge augmentation (T1) was 4.7 ± 1.3 mm, which had decreased to 3.7 ± 1.0 mm within 6 months of augmentation (T2) and to 3.3 ± 1.1 mm after an average of 7 years (T3) of follow-up (P < .05). At the posterior mandible, the initial ridge augmentation was 5.4 ± 0.9 mm, which had decreased to 4.1 ± 0.7 mm within 6 months of augmentation and to 3.5 ± 1.0 mm at an average of 7 years of follow-up. A total of 61 implants had been placed in these 23 patients, 3 (4.9%) of which had failed to integrate. CONCLUSIONS The use of HTX does result in long-term stability for ridge augmentation.
Collapse
Affiliation(s)
- Michael S Block
- Private Practice, Metairie; and Clinical Professor, Department of Oral and Maxillofacial Surgery, Louisiana State University School of Dentistry, New Orleans, LA.
| |
Collapse
|
16
|
Artas G, Gul M, Acikan I, Kirtay M, Bozoglan A, Simsek S, Yaman F, Dundar S. A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz Oral Res 2018; 32:e59. [PMID: 29995064 DOI: 10.1590/1807-3107bor-2018.vol32.0059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/16/2018] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to compare the effects of hydroxyapatite (HA), deproteinized bovine bone (DPB), human-derived allogenic bone (HALG), and calcium sulfate (CAP) graft biomaterials used with titanium barriers for bone augmentation to treat peri-implant defects in rat calvarium treated by guided bone regeneration (GBR). Thirty-two female Sprague-Dawley rats were divided into four groups: DPB, HALG, HA, and CAP. One titanium barrier was fixed to each rat's calvarium after the titanium implants had been fixed. In total, 32 titanium implants and barriers were used. Ninety days after the surgical procedure, all the barriers were removed. After decalcification of bone tissue, the titanium implants were removed gently, and new bone regeneration in the peri-implant area was analyzed histologically. Immunohistochemical staining of vascular endothelial growth factor (VEGF) was also performed. There were no statistically significant between-group differences in new bone regeneration or VEGF expression after 3 months. According to the results of the histological and immunohistochemical analyses, none of the grafts used in this study showed superiority with respect to new bone formation.
Collapse
Affiliation(s)
- Gokhan Artas
- Firat University, Faculty of Medicine, Department of Medical Pathology, Elazig, Turkey
| | - Mehmet Gul
- Harran University, Faculty of Dentistry, Department of Periodontology, Sanliurfa, Turkey
| | - Izzet Acikan
- Sütcü Imam University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kahramanmaras, Turkey
| | - Mustafa Kirtay
- Private Practice, Oral and Maxillofacial Surgery, Toronto, Canada
| | - Alihan Bozoglan
- Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Turkey
| | - Sercan Simsek
- Ministry of Health, Tunceli State Hospital, Department of Medical Pathology, Tunceli, Turkey
| | - Ferhan Yaman
- Private Practice, Oral and Maxillofacial Surgery, Diyarbakir, Turkey
| | - Serkan Dundar
- Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Turkey
| |
Collapse
|
17
|
Perić Kačarević Z, Kavehei F, Houshmand A, Franke J, Smeets R, Rimashevskiy D, Wenisch S, Schnettler R, Jung O, Barbeck M. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int J Artif Organs 2018; 41:789-800. [PMID: 29707988 DOI: 10.1177/0391398818771530] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone®) and non-sintered (Bio-Oss®) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
Collapse
Affiliation(s)
- Zeljka Perić Kačarević
- 1 Department of Anatomy, Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Faraz Kavehei
- 2 Department of Chemical Engineering, Imperial College London, London, UK
| | - Alireza Houshmand
- 3 Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Berlin, Germany
| | - Jörg Franke
- 4 Department of Traumatology and Orthopedics, Elbe Kliniken Stade-Buxtehude, Stade, Germany
| | - Ralf Smeets
- 5 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denis Rimashevskiy
- 6 Department of Traumatology and Orthopedics, Peoples' Friendship University of Russia, Moscow, Russia
| | - Sabine Wenisch
- 7 Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | | | - Ole Jung
- 5 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mike Barbeck
- 5 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
de Freitas Silva L, de Carvalho Reis ENR, Barbara TA, Bonardi JP, Garcia IR, de Carvalho PSP, Ponzoni D. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochem 2017; 119:624-631. [PMID: 28732677 DOI: 10.1016/j.acthis.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/23/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Evaluating the osteoconductive property of tricalcium phosphate beta (β-TCP) in comparison to that of inorganic bovine bone for repair in a critical-size defect in the rat calvarium. MATERIALS AND METHODS Critical-size defects of 7mm were made with a trephine in the calvaria of 48 Wistar rats. The animals were divided into four groups, and the defects in each group were filled with tricalcium phosphate beta (β-TCP), inorganic bovine bone (Bio-Oss), autogenous bone, or left empty. The animals were euthanized at two different time points (30 and 60days post-operation). All defects were recovered with a absorbable membrane of bovine cortical bone. Histological, histometric, and immunohistochemical (osteocalcin) assessments were carried out at 30 and 60days post-operation. RESULTS At 30days post-operation, all groups showed areas of bone formation, predominantly when autogenous grafts were used. However, there were no statistically significant differences between the treatment groups (p>0.05). After 60days, there were similarities in the bone formation patterns between the β-TCP (26.32±) and Bio-Oss (17.35±) groups (p=0.549). In terms of the immunohistochemical assessment of osteocalcin, the clot group showed light to moderate staining at 30 and 60days. The autogenous group showed moderate staining at 30days and moderate to intense staining after 60days. The Bio-Oss group showed light to moderate staining after 30days and intense staining at 60days. The β-TCP group showed moderate staining at 30 and 60days post-operation. CONCLUSION β-TCP is a good osteoconductive material with similar effects to those of inorganic bovine bone graft and is suitable for utilization in the repair of bone defects.
Collapse
|
19
|
SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures. MATERIALS 2017; 10:ma10050542. [PMID: 28772900 PMCID: PMC5459008 DOI: 10.3390/ma10050542] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/24/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022]
Abstract
Some studies have demonstrated that in vivo degradation processes are influenced by the material’s physico-chemical properties. The present study compares two hydroxyapatites manufactured on an industrial scale, deproteinized at low and high temperatures, and how physico-chemical properties can influence the mineral degradation process of material performance in bone biopsies retrieved six months after maxillary sinus augmentation. Residual biomaterial particles were examined by field scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to determine the composition and degree of degradation of the bone graft substitute material. According to the EDX analysis, the Ca/P ratio significantly lowered in the residual biomaterial (1.08 ± 0.32) compared to the initial composition (2.22 ± 0.08) for the low-temperature sintered group, which also presented high porosity, low crystallinity, low density, a large surface area, poor stability, and a high resorption rate compared to the high-temperature sintered material. This demonstrates that variations in the physico-chemical properties of bone substitute material clearly influence the degradation process. Further studies are needed to determine whether the resorption of deproteinized bone particles proceeds slowly enough to allow sufficient time for bone maturation to occur.
Collapse
|
20
|
Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery. Stem Cells Int 2017; 2017:4585401. [PMID: 28337223 PMCID: PMC5346390 DOI: 10.1155/2017/4585401] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023] Open
Abstract
Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.
Collapse
|
21
|
Tissue reaction of deproteinized bovine bone matrix grafting in ectopic site: histological study on sheep. Cell Tissue Bank 2016; 17:689-697. [PMID: 27718130 DOI: 10.1007/s10561-016-9588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
The aim of this paper was to evaluate through histological analysis of the tissue reaction of deproteinized bovine bone matrix (DBBM) when inserted into the site of intramuscular ectopic sheep. In this study, 16 sheep received 3 groups and these were divided into 2 experimental times: Group 1-sham group, Group 2-particulate autogenous bone and Group 3-DBBM granules. All animals underwent surgical procedures for insertion of materials in an ectopic site (muscles of the lower back and after 3 and 6 months postoperatively, the samples were evaluated by histological analysis. The results indicated that the Sham group showed dense collagen fibers and thin, characterizing fibrosis at 3 and 6 months. In the autograft group there was a significant amount of collagen deposition and decreased inflammation at 6 months postoperatively. Group of DBBM, it was noted the presence of dense connective tissue and surrounding remaining particles was observed the formation of with osteoid characteristic tissue. The DBBM demonstrated biocompatibility, osteoconductivity and small osteogenesis capacity on ectopic site.
Collapse
|
22
|
Bohner LOL, Mukai E, Mukai S, Tortamano P, Sesma N. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model. Contemp Clin Dent 2016; 7:398-400. [PMID: 27630509 PMCID: PMC5004558 DOI: 10.4103/0976-237x.188578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Bone grafting provides ideal conditions to the patient's rehabilitation with dental implants. In addition, prototyped tridimensional models allow the surgical procedure to be simulated and enable important anatomic structures to be visualized. To present a bone defect rehabilitated with xenogenic bone preshaped on a stereolithographic model and the follow-up after 7 years of treatment. The present case report describes a bone defect rehabilitated with a lyophilized bone block preshaped on a stereolithographic model. The patient, a 56-year-old woman, was referred to the dental office presenting a bone defect in the anterior maxilla. Bone regeneration intervention was performed with xenogenic grafting and barrier membrane. The follow-up of the postoperative period and after 7 years is presented. After 7 years, the tomographic exam showed the maintenance of bone at the grafted site, representing the long-term success of the treatment.
Collapse
Affiliation(s)
| | | | - Sueli Mukai
- Department of Implantology, School of Dentistry, University of Guarulhos, SP, Brazil
| | - Pedro Tortamano
- Department of Prosthodontics, School of Dentistry, University of São Paulo, SP, Brazil
| | - Newton Sesma
- Department of Prosthodontics, School of Dentistry, University of São Paulo, SP, Brazil
| |
Collapse
|