1
|
Shi Z, Li S, Chen W, Yan H. The effect of blue and green light on human umbilical cord mesenchymal stem cells for promoting proliferation and wound healing. Sci Rep 2025; 15:14787. [PMID: 40295587 PMCID: PMC12037727 DOI: 10.1038/s41598-025-99083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Photobiomodulation (PBM) has been widely utilized in regenerative medicine, including dermatology, dentistry, and neurology. However, the optimal energy density of PBM for human umbilical cord mesenchymal stem cells (hUC-MSCs) remains underexplored, hindering its development and potential clinical application. This study aims to identify the optimal wavelength and irradiation fluence for promoting the proliferation of hUC-MSCs by comparing the effects of different wavelengths and irradiation fluences. Our results show that green light enhances the anti-inflammatory properties of hUC-MSCs, with the 76s being the most effective in inhibiting IL-6 and GM-CSF. Blue light with 38 s is more effective in promoting angiogenesis, significantly increasing the mRNA and protein secretion of VEGF, HGF, and FGF2 compared to the non-irradiated group. The peak secretion times varied, with VEGF and FGF2 peaking at 72 h and HGF at 24 h. RNA-Seq confirms the significant roles of blue and green light in inhibiting epithelial-mesenchymal transition and inflammation. In vitro co-culture models and conditioned media experiments validate these anti-inflammatory effects. These findings have important implications for accelerating the clinical application of stem cell therapies and provide new references for PBM use in hUC-MSCs.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hong Yan
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Plastic, Aesthetic, Reparative and Reconstructive Surgery/Wound Repair Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Kaokaen P, Pangjantuk A, Kunhorm P, Promjantuek W, Chaicharoenaudomrung N, Noisa P. Conditioned medium of human umbilical cord-mesenchymal stem cells cultivated with human cord blood serum enhances stem cell stemness and secretome profiles. Toxicol In Vitro 2025; 103:105973. [PMID: 39561911 DOI: 10.1016/j.tiv.2024.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The proteins secreted by human umbilical cord mesenchymal stem cells (hUC-MSCs) may enhance tissue regeneration and wound healing. Traditional hUC-MSC cultures may not be enough since they undergo recurrent cellular senescence during large-scale production. This decreases the therapeutic ability of hUC-MSCs by altering genes and proteins that control stemness, proliferation, and protein release. Human cord blood serum (CBS) and the middle-density technique were used to evaluate hUC-MSC regeneration ability. To evaluate early-passage hMSCs for secretome-based therapies, they were expanded and secreted in vitro. After 4 days, hUC-MSCs cultivated at 3000 cells/cm2 and supplemented with 1 ng/ml CBS showed increased growth, cell proliferation, and a much lower population doubling time. CBS treatment reduced CD34, CD45, and HLA-DR levels in human umbilical cord mesenchymal stem cells (hUC-MSCs) by less than 2 %. Positive markers such CD73, CD90, and CD105 were found at >97 %, like control hUC-MSCs. Over extended culture, this combination culture can increase survival, proliferation, and stemness and postpone cell death and hUC-MSC senescence. The protein profile and hUC-MSC secretion were improved to make MSC secretion protein therapeutic. This improves cell-free treatment, proliferation, and wound healing in human skin cells. To improve cell-based transplantation or cosmeceutical manufacturing, this technique can boost hUC-MSC regeneration capacity.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Merlo B, Iacono E. Beyond Canine Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Transplantation: An Update on Their Secretome Characterization and Applications. Animals (Basel) 2023; 13:3571. [PMID: 38003188 PMCID: PMC10668816 DOI: 10.3390/ani13223571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
A dog is a valuable animal model and concomitantly a pet for which advanced therapies are increasingly in demand. The characteristics of mesenchymal stem/stromal cells (MSCs) have made cell therapy more clinically attractive. During the last decade, research on the MSC therapeutic effectiveness has demonstrated that tissue regeneration is primarily mediated by paracrine factors, which are included under the name of secretome. Secretome is a mixture of soluble factors and a variety of extracellular vesicles. The use of secretome for therapeutic purposes could have some advantages compared to cell-based therapies, such as lower immunogenicity and easy manufacturing, manipulation, and storage. The conditioned medium and extracellular vesicles derived from MSCs have the potential to be employed as new treatments in veterinary medicine. This review provides an update on the state-of-the-art characterization and applications of canine adipose tissue-derived MSC secretome.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|
5
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
6
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hua Y, Han A, Yu T, Hou Y, Ding Y, Nie H. Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS. Int J Mol Sci 2022; 23:ijms23095196. [PMID: 35563590 PMCID: PMC9101277 DOI: 10.3390/ijms23095196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.
Collapse
|
8
|
Chen H, Xue R, Huang P, Wu Y, Fan W, He X, Dong Y, Liu C. Modified Exosomes: a Good Transporter for miRNAs within Stem Cells to Treat Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:514-523. [PMID: 35229250 DOI: 10.1007/s12265-022-10216-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy for ischemic heart disease (IHD) has become a promising but controversial strategy during the past two decades. The fate and effects of stem cells engrafted into ischemia myocardium are still not fully understood. Stem cell-derived exosomes, a subcategory of extracellular vesicles with nano size, have been considered as an efficient and safe transporter for microRNAs (miRNAs) and a central mediator of the cardioprotective potentials of the parental cells. Hypoxia, pharmacological intervention, and gene manipulation could alter the exosomal miRNAs cargos from stem cells and promote therapeutic potential. Furthermore, several bioengineering methods were also successfully applied to modify miRNAs content and components of exosomal membrane proteins recently. In this review, we outline relevant results about exosomal miRNAs from stem cells and focus on the current strategies to promote their therapeutic efficiency in IHD.
Collapse
Affiliation(s)
- Hao Chen
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruicong Xue
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peisen Huang
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuzhong Wu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wendong Fan
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin He
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yugang Dong
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Liu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 2022; 19:35. [PMID: 35130907 PMCID: PMC8822863 DOI: 10.1186/s12974-022-02393-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability. Exosomes derived from bone-marrow mesenchymal stem cells (BMSC-exos) are extracellular vesicles that can execute the function of bone-marrow mesenchymal stem cells (BMSCs). Given the versatile therapeutic potential of BMSC and BMSC-exos, especially their neuroprotective effect, the aim of this study was to investigate the potential effect of BMSC-exos on AD-like behavioral dysfunction in mice and explore the possible molecular mechanism. METHODS BMSC-exos were extracted from the supernatant of cultured mouse BMSCs, which were isolated from the femur and tibia of adult C57BL/6 mice, purified and sorted via flow cytometry, and cultured in vitro. BMSC-exos were identified via transmission electron microscopy, and typical marker proteins of exosomes were also detected via Western blot. A sporadic AD mouse model was established by intracerebroventricular injection of streptozotocin (STZ). Six weeks later, BMSC-exos were administered via lateral ventricle injection or caudal vein injection lasting five consecutive days, and the control mice were intracerebroventricularly administered an equal volume of solvent. Behavioral performance was observed via the open field test (OFT), elevated plus maze test (EPM), novel object recognition test (NOR), Y maze test (Y-maze), and tail suspension test (TST). The mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in the hippocampus were measured via quantitative polymerase chain reaction (qPCR) and Western blot, respectively. Moreover, the protein expression of Aβ1-42, BACE, IL-1β, IL-6, TNF-α, GFAP, p-Tau (Ser396), Tau5, synaptotagmin-1 (Syt-1), synapsin-1, and brain-derived neurotrophic factor (BDNF) in the hippocampus was detected using Western blot, and the expression of GFAP, IBA1, Aβ1-42 and DCX in the hippocampus was measured via immunofluorescence staining. RESULTS Lateral ventricle administration, but not caudal vein injection of BMSC-exos improved AD-like behaviors in the STZ-injected mouse model, as indicated by the increased number of rearing, increased frequency to the central area, and increased duration and distance traveled in the central area in the OFT, and improved preference index of the novel object in the NOR. Moreover, the hyperactivation of microglia and astrocytes in the hippocampus of the model mice was inhibited after treatment with BMSC-exos via lateral ventricle administration, accompanied by the reduced expression of IL-1β, IL-6, TNF-α, Aβ1-42, and p-Tau and upregulated protein expression of synapse-related proteins and BDNF. Furthermore, the results of the Pearson test showed that the preference index of the novel object in the NOR was positively correlated with the hippocampal expression of BDNF, but negatively correlated with the expression of GFAP, IBA1, and IL-1β. Apart from a positive correlation between the hippocampal expression of BDNF and Syt-1, BDNF abundance was found to be negatively correlated with markers of glial activation and the expression of the inflammatory cytokines, Aβ1-42, and p-Tau, which are characteristic neuropathological features of AD. CONCLUSIONS Lateral ventricle administration, but not caudal vein injection of BMSC-exos, can improve AD-like behavioral performance in STZ-injected mice, the mechanism of which might be involved in the regulation of glial activation and its associated neuroinflammation and BDNF-related neuropathological changes in the hippocampus.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Long-Jun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cong-Cong Qi
- Neurodevelopmental Laboratory, Fudan University, Shanghai, China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
10
|
Application of Mesenchymal Stem Cells Derived Artificial Microvesicles for the Treatment of Canine Skin Wound. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Discovery of Lactoferrin as a Stimulant for hADSC-Derived EV Secretion and Proof of Enhancement of Resulting EVs through Skin Model. Int J Mol Sci 2021; 22:ijms222010993. [PMID: 34681650 PMCID: PMC8541114 DOI: 10.3390/ijms222010993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted from hADSCs in low concentrations, which makes it difficult to utilize them for the development of therapeutic products. To overcome the problem associated with low concentration, we proposed human lactoferrin (hLF) as a stimulant for the secretion of hADSC-derived EVs. hLF has been reported to upregulate intracellular Ca2+, which is known to be capable of increasing EV secretion. We cultured hADSCs in hLF-supplemented media and analyzed the changes in intracellular Ca2+ concentration. The characteristics of hADSC-derived EVs secreted by hLF stimulation were analyzed through their number, membrane protein markers, and the presence of hLFs to EVs. The function of hADSC-derived EVs was investigated through their effects on dermal fibroblasts. We found that hLF helped hADSCs effectively uptake Ca2+, resulting in an increase of EVs secretion by more than a factor of 4. The resulting EVs had enhanced proliferation and collagen synthesis effect on dermal fibroblasts when compared to the same number of hADSC-derived EVs secreted without hLF stimulation. The enhanced secretion of hADSC-derived EVs increased collagen synthesis through enhanced epidermal penetration, which resulted from increased EV numbers. In summary, we propose hLF to be a useful stimulant in increasing the secretion rate of hADSC-derived EVs.
Collapse
|
12
|
da Costa VR, Araldi RP, Vigerelli H, D’Ámelio F, Mendes TB, Gonzaga V, Policíquio B, Colozza-Gama GA, Valverde CW, Kerkis I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021; 10:2617. [PMID: 34685596 PMCID: PMC8533895 DOI: 10.3390/cells10102617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.
Collapse
Affiliation(s)
- Vitor Rodrigues da Costa
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Rodrigo Pinheiro Araldi
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Fernanda D’Ámelio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Thais Biude Mendes
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Vivian Gonzaga
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Bruna Policíquio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Gabriel Avelar Colozza-Gama
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Irina Kerkis
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| |
Collapse
|
13
|
Wen J, Moloney EB, Canning A, Donohoe E, Ritter T, Wang J, Xiang D, Wu J, Li Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol Res 2021; 172:105833. [PMID: 34418563 DOI: 10.1016/j.phrs.2021.105833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
An emerging strategy is needed to treat autoimmune diseases, many of which are chronic with no definitive cure. Current treatments only alleviate symptoms and have many side effects affecting patient quality of life. Recently, nanoparticle drug delivery systems, an emerging method in medicine, has been used to target cells or organs, without damaging normal tissue. This approach has led to fewer side effects, along with a strong immunosuppressive capacity. Therefore, a nanotechnology approach may help to improve the treatment of autoimmune diseases. In this review, we separated nanoparticles into three categories: synthesized nanoparticles, biomimetic nanoparticles, and extracellular vesicles. This review firstly compares the typical mechanism of action of these three nanoparticle categories respectively in terms of active targeting, camouflage effect, and similarity to parent cells. Then their immunomodulation properties are discussed. Finally, the challenges faced by all these nanoparticles are described.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, China
| | - Elizabeth B Moloney
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Daxiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140:111709. [PMID: 34020250 DOI: 10.1016/j.biopha.2021.111709] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Gomzikova MO, James V, Rizvanov AA. Mitochondria Donation by Mesenchymal Stem Cells: Current Understanding and Mitochondria Transplantation Strategies. Front Cell Dev Biol 2021; 9:653322. [PMID: 33898449 PMCID: PMC8058353 DOI: 10.3389/fcell.2021.653322] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of mitochondria donation is found in various tissues of humans and animals and is attracting increasing attention. To date, numerous studies have described the transfer of mitochondria from stem cells to injured cells, leading to increased ATP production, restoration of mitochondria function, and rescue of recipient cells from apoptosis. Mitochondria transplantation is considered as a novel therapeutic approach for the treatment of mitochondrial diseases and mitochondrial function deficiency. Mitochondrial dysfunction affects cells with high energy needs such as neural, skeletal muscle, heart, and liver cells and plays a crucial role in type 2 diabetes, as well as Parkinson's, Alzheimer's diseases, ischemia, stroke, cancer, and age-related disorders. In this review, we summarize recent findings in the field of mitochondria donation and mechanism of mitochondria transfer between cells. We review the existing clinical trials and discuss advantages and disadvantages of mitochondrial transplantation strategies based on the injection of stem cells, isolated functional mitochondria, or EVs containing mitochondria.
Collapse
Affiliation(s)
- Marina O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021; 274:119336. [PMID: 33716061 DOI: 10.1016/j.lfs.2021.119336] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to explore the therapeutic effects of amniotic fluid-derived extracellular vesicles including exosomes (AF-Exos) on the recovery of sperm production capacity in a rat model of azoospermia. MAIN METHODS The non-obstructive azoospermia (NOA) was induced in rats using intratesticular administration of Busulfan. Azoospermia was confirmed by testis histology. AF-Exos samples containing 10 or 40 μg exosomal proteins were injected into testicular tissue of NOA rats. After two months, the recovery of spermatogenesis was monitored via histopathological staining, spermiogram, and hormonal analysis. Immunohistochemistry staining for OCT-3/4 was used to identify of spermatogonial progenitors. The expression of DAZL and VASA, was also measured. KEY FINDINGS AF-Exos exhibited sphere-shaped morphology with the mean diameter and zeta potential of 50 ± 7.521 nm and -7.16 mV. Immunoblots revealed that isolated nanoparticles were CD63, CD9, and CD81 positive. Histopathological evaluation revealed that spermatogenesis was improved significantly in NOA rats after AF-Exos injection. Data showed that the sperm parameters and spermatogenesis index were significantly improved after AF-Exos injection compared to azoospermic groups. OCT-3/4+ cells were increased in NOA rats after AF-Exos injection, showing the restoration of spermatogenesis. In the present study, both doses of exosome (10 and 40 μg) restored the testicular function of NOA rats. DAZL and VASA were increased significantly in animals who received 40 μg exosomal protein compared to azoospermic rats. Except in a high dose of AF-Exos (40 μg) for Testosterone and FSH, no statistically significant differences were found regarding hormones post-exosome injection. SIGNIFICANCE Our study demonstrated that AF-Exos regenerated spermatogenesis and improved sperm quality in NOA rats.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran.
| | - Reza Rahbarghazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran.
| |
Collapse
|
17
|
Potency of Mesenchymal Stem Cell and Its Secretome in Treating COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:43-54. [PMID: 33723519 PMCID: PMC7945610 DOI: 10.1007/s40883-021-00202-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Abstract The COVID-19 disease, which is caused by the novel coronavirus, SARS-CoV-2, has affected the world by increasing the mortality rate in 2020. Currently, there is no definite treatment for COVID-19 patients. Several clinical trials have been proposed to overcome this disease and many are still under investigation. In this review, we will be focusing on the potency of mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. Fever, cough, headache, dizziness, and fatigue are the common clinical manifestations in COVID-19 patients. In mild and severe cases, cytokines are released hyper-actively which causes a cytokine storm leading to acute respiratory distress syndrome (ARDS). In order to maintain the lung microenvironment in COVID-19 patients, MSCs are used as cell-based therapy approaches as they can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote endogenous repair. Besides, MSCs have shown minimal expression of ACE2 or TMPRSS2, and hence, MSCs are free from SARS-CoV-2 infection. Numerous clinical studies have started worldwide and demonstrated that MSCs have great potential for ARDS treatment in COVID-19 patients. Preliminary data have shown that MSCs and MSC-derived secretome appear to be promising in the treatment of COVID-19. Lay Summary The COVID-19 disease is an infection disease which affects the world in 2020. Currently, there is no definite treatment for COVID-19 patients. However, several clinical trials have been proposed to overcome this disease and one of them is using mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. During the infection, cytokines are released hyper-actively which causes a cytokine storm. MSCs play an important role in maintaining the lung microenvironment in COVID-19 patients. They can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote the endogenous repair. Therefore, it is important to explore the clinical trial in the world for treating the COVID-19 disease using MSCs and MSC-derived secretome.
Collapse
|
18
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Chulpanova DS, Gilazieva ZE, Kletukhina SK, Aimaletdinov AM, Garanina EE, James V, Rizvanov AA, Solovyeva VV. Cytochalasin B-Induced Membrane Vesicles from Human Mesenchymal Stem Cells Overexpressing IL2 Are Able to Stimulate CD8 + T-Killers to Kill Human Triple Negative Breast Cancer Cells. BIOLOGY 2021; 10:biology10020141. [PMID: 33579033 PMCID: PMC7916789 DOI: 10.3390/biology10020141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Almost all human cells release extracellular vesicles participating in intercellular communication. Extracellular vesicles are rounded structures surrounded by the cytoplasmic membrane, which embody cytoplasmic contents of the parental cells, which makes extracellular vesicles a promising therapeutic tool for cell-free cancer therapy. In this study, human mesenchymal stem cells were genetically modified to overexpress human interleukin-2 (IL2), a cytokine which regulates the proliferation and activation of immune cells. Membrane vesicle release from native and genetically modified stem cells was induced by cytochalasin B treatment to increase the yield of membrane vesicles. To evaluate the immunomodulating properties of isolated membrane vesicles, immune cells were isolated from human peripheral blood and co-cultured with membrane vesicles from native or IL2 overexpressing stem cells. To analyze the anti-tumor activity of immune cells after interaction with IL2-enriched membrane vesicles, immune cells were co-cultured with triple negative breast cancer cells. As a result, IL2-enriched membrane vesicles were able to activate and stimulate the proliferation of immune cells, which in turn were able to induce apoptosis in breast cancer cells. Therefore, the production of IL2-enriched membrane vesicles represents a unique opportunity to meet the potential of extracellular vesicles to be used in clinical applications for cancer therapy. Abstract Interleukin 2 (IL2) was one of the first cytokines used for cancer treatment due to its ability to stimulate anti-cancer immunity. However, recombinant IL2-based therapy is associated with high systemic toxicity and activation of regulatory T-cells, which are associated with the pro-tumor immune response. One of the current trends for the delivery of anticancer agents is the use of extracellular vesicles (EVs), which can carry and transfer biologically active cargos into cells. The use of EVs can increase the efficacy of IL2-based anti-tumor therapy whilst reducing systemic toxicity. In this study, human adipose tissue-derived mesenchymal stem cells (hADSCs) were transduced with lentivirus encoding IL2 (hADSCs-IL2). Membrane vesicles were isolated from hADSCs-IL2 using cytochalasin B (CIMVs-IL2). The effect of hADSCs-IL2 and CIMVs-IL2 on the activation and proliferation of human peripheral blood mononuclear cells (PBMCs) as well as the cytotoxicity of activated PBMCs against human triple negative cancer MDA-MB-231 and MDA-MB-436 cells were evaluated. The effect of CIMVs-IL2 on murine PBMCs was also evaluated in vivo. CIMVs-IL2 failed to suppress the proliferation of human PBMCs as opposed to hADSCs-IL2. However, CIMVs-IL2 were able to activate human CD8+ T-killers, which in turn, killed MDA-MB-231 cells more effectively than hADSCs-IL2-activated CD8+ T-killers. This immunomodulating effect of CIMVs-IL2 appears specific to human CD8+ T-killer cells, as the same effect was not observed on murine CD8+ T-cells. In conclusion, the use of CIMVs-IL2 has the potential to provide a more effective anti-cancer therapy. This compelling evidence supports further studies to evaluate CIMVs-IL2 effectiveness, using cancer mouse models with a reconstituted human immune system.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Sevindzh K. Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Aleksandr M. Aimaletdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Victoria James
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
- Correspondence: ; Tel.: +7-919-649-9343
| |
Collapse
|
20
|
Kahmini FR, Shahgaldi S. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp Mol Pathol 2021; 118:104566. [PMID: 33160961 DOI: 10.1016/j.yexmp.2020.104566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Over the past decades, new light has been shed on the efficiency of Mesenchymal Stem Cells (MSCs) in the treatment of autoimmune diseases. The therapeutic functions of MSCs partly stem from their well-recognized ability to efficiently modulate immune responses and it is well substantiated that MSC secretory components, in particular extracellular vesicles (EVs), play a critical role in this immunomodulation. In fact, almost any cell type can generate and release EVs under both pathological and physiological conditions and these nano-sized particles are believed to greatly contribute to homeostasis and cell-cell communication through transportation of a wide variety of biomolecules including nucleic acid, signaling lipids, regulatory proteins, transcription factors, cytokines, and growth factors. Lamentably, despite exhibiting promising results in both animal experiments and clinical trials, MSC therapy is still largely restricted to the experimental stage due to its critical pitfalls and drawbacks such as safety issues, poor cell survival, immune rejection and high cost. On the other hand, MSC-derived EVs, which ideally reflect the exact biophysical features of MSCs, are considered to be much safer and more effective than MSCs themselves. Therefore, introducing alternative approaches based on MSC-derived EVs can offer appreciable promise in overcoming the limitations and practical challenges observed in cell-based therapy and thus the extracellular vesicles of MSCs may also provide a far more potent therapeutic strategy for immune-related disorders. In this review, we first focus on the properties of MSC-derived EVs and then we shall provide valuable insight regarding their beneficial therapeutic opportunities to further compare this alternative approach with conventional MSC therapy. Finally, we will attempt to summarize the current findings on the influences of MSC-derived EVs on autoimmune disorders, offering a potential alternative avenue towards treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Mesenchymal Stem Cell Therapy for Osteoarthritis: Practice and Possible Promises. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:107-125. [DOI: 10.1007/5584_2021_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Araldi RP, D’Amelio F, Vigerelli H, de Melo TC, Kerkis I. Stem Cell-Derived Exosomes as Therapeutic Approach for Neurodegenerative Disorders: From Biology to Biotechnology. Cells 2020; 9:E2663. [PMID: 33322404 PMCID: PMC7763259 DOI: 10.3390/cells9122663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
The aging population has contributed to the rapid rise in the global incidence of neurodegenerative diseases. Despite the medical advances, there are no effective treatments for these disorders. Therefore, there is an urgent need for new treatments for these diseases. In this sense, cell therapy has been recognized as the best candidate for treating incurable diseases, such as neurodegenerative disorders. However, the therapeutic use of these cells can be limited by several factors. Thus, there has been a rediscovery that extracellular vesicles, including exosomes, can be alternatively explored in the treatment of these diseases, overcoming the limits of cell-based therapy. In this sense, this review aims to revisit all areas from biology, including biogenesis and the content of exosomes, to biotechnology, proposing the minimal information required to isolate, characterize, and study the content of these vesicles for scientific and/or clinical purposes.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
- Programa de Pós-graduação em Endocrinologia e Metabologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Pauloa (UNIFESP), Sao Paulo SP 04021-001, Brazil
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo SP 04021-001, Brazil
| | - Fernanda D’Amelio
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Thatiana Correa de Melo
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo SP 04021-001, Brazil
| |
Collapse
|
23
|
Lobov AA, Yudintceva NM, Mittenberg AG, Shabelnikov SV, Mikhailova NA, Malashicheva AB, Khotin MG. Proteomic Profiling of the Human Fetal Multipotent Mesenchymal Stromal Cells Secretome. Molecules 2020; 25:E5283. [PMID: 33198321 PMCID: PMC7716221 DOI: 10.3390/molecules25225283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
Abstract
Secretome of multipotent mesenchymal stromal cells (MSCs) is actively used in biomedical applications such as alveolar bone regeneration, treatment of cardiovascular disease, and neurodegenerative disorders. Nevertheless, hMSCs have low proliferative potential and production of the industrial quantity of their secretome might be challenging. Human fetal multipotent mesenchymal stromal cells (FetMSCs) isolated from early human embryo bone marrow are easy to expand and might be a potential source for pharmaceutical substances production based on their secretome. However, the secretome of FetMSCs was not previously analyzed. Here, we describe the secretome of FetMSCs using LC-MALDI shotgun proteomics. We identified 236 proteins. Functional annotation of the identified proteins revealed their involvement in angiogenesis, ossification, regulation of apoptosis, and immune response processes, which made it promising for biomedical applications. The proteins identified in the FetMSCs secretome are involved in the same biological processes as proteins from previously described adult hMSCs secretomes. Nevertheless, many of the common hMSCs secretome components (such as VEGF, FGF, Wnt and TGF-β) have not been identified in the FetMSCs secretome.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna B. Malashicheva
- Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia; (A.A.L.); (N.M.Y.); (A.G.M.); (S.V.S.); (N.A.M.); (M.G.K.)
| | | |
Collapse
|
24
|
Yan HC, Yu TT, Li J, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:1015. [PMID: 32974327 PMCID: PMC7466762 DOI: 10.3389/fbioe.2020.01015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous nanoparticles actively released by cells that comprise highly conserved and efficient systems of intercellular communication. In recent years, numerous studies have proven that EVs play an important role in the field of bone tissue engineering (BTE) due to several advantages, such as good biosafety, stability and efficient delivery. However, the application of EVs therapies in bone regeneration has not been widely used. One of the major challenges for the application of EVs is the lack of sufficient scaffolds to load and control the release of EVs. Thus, in this review, we describe the most advanced current strategies for delivering EVs with various biomaterials for the use in bone regeneration, the role of EVs in bone regeneration, the distribution of EVs mediated by biomaterials and common methods of promoting EVs delivery efficacy with a focus on biomaterial properties.
Collapse
Affiliation(s)
- Hui-Chun Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yi-Qiang Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Chuan Wang
- Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Da-Wei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
25
|
Gomzikova MO, Kletukhina SK, Kurbangaleeva SV, Neustroeva OA, Vasileva OS, Garanina EE, Khaiboullina SF, Rizvanov AA. Mesenchymal Stem Cell Derived Biocompatible Membrane Vesicles Demonstrate Immunomodulatory Activity Inhibiting Activation and proliferation of Human Mononuclear Cells. Pharmaceutics 2020; 12:pharmaceutics12060577. [PMID: 32585863 PMCID: PMC7356506 DOI: 10.3390/pharmaceutics12060577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
Immune-mediated diseases are characterized by abnormal activity of the immune system. The cytochalasin B-induced membrane vesicles (CIMVs) are innovative therapeutic instruments. However, the immunomodulating activity of human mesenchymal stem cell (MSC)-derived CIMVs (CIMVs-MSCs) remains unknown. Therefore, we sought to investigate the immunological properties of CIMVs-MSCs and evaluate their effect on human peripheral blood mononuclear cells (PBMCs). We found that CIMVs-MSCs are primarily uptaken by monocytes and B-cells. Additionally, we demonstrated that CIMVs-MSCs inhibit phytohemagglutinin (PHA)-induced proliferation of PBMCs, with more pronounced effect on T-lymphocytes expansion as compared to that of B-cells. In addition, activation of T-helpers (CD4+CD25+), B-cells (CD19+CD25+), and T-cytotoxic lymphocytes (CD8+CD25+) was also significantly suppressed by CIMVs-MSCs. Additionally, CIMVs-MSCs decreased secretion of epidermal growth factor (EGF) and pro-inflammatory Fractalkine in a population of PBMCs, while the releases of FGF-2, G-CSF, anti-inflammatory GM-CSF, MCP-3, anti-inflammatory MDC, anti-inflammatory IL-12p70, pro-inflammatory IL-1b, and MCP-1 were increased. We analyzed the effect of CIMVs-MSCs on an isolated population of CD4+ and CD8+ T-lymphocytes and demonstrated their different immune response and cytokine secretion. Finally, we observed that no xenogeneic nor allogeneic transplantation of CIMVs induced an immune response in mice. Our data suggest that CIMVs-MSCs have immunosuppressive properties, are potential agents for immunomodulating treatment, and are worthy of further investigation.
Collapse
Affiliation(s)
- Marina O. Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
- M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Correspondence: ; Tel.: +7-9178572269
| | - Sevindzh K. Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
| | - Sirina V. Kurbangaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
| | - Olga A. Neustroeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
| | - Olga S. Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (S.K.K.); (S.V.K.); (O.A.N.); (O.S.V.); (E.E.G.); (S.F.K.); (A.A.R.)
- M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
26
|
Yang HC, Zhang M, Wu R, Zheng HQ, Zhang LY, Luo J, Li LL, Hu XQ. C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells 2020; 12:152-167. [PMID: 32184939 PMCID: PMC7062036 DOI: 10.4252/wjsc.v12.i2.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human-derived mesenchymal stromal cells have been shown to improve cognitive function following experimental stroke. The activity of exosomes has been verified to be comparable to the therapeutic effects of mesenchymal stromal cells. However, the effects of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) (ExoCtrl) on post-stroke cognitive impairment (PSCI) have rarely been reported. Moreover, whether exosomes derived from C-C chemokine receptor type 2 (CCR2)-overexpressing HUC-MSCs (ExoCCR2) can enhance the therapeutic effects on PSCI and the possible underlying mechanisms have not been studied.
AIM To investigate the effects of ExoCtrl on PSCI and whether ExoCCR2 can enhance therapeutic effects on PSCI.
METHODS Transmission electron microscopy, qNano® particles analyzer, and Western blotting were employed to determine the morphology and CCR2 expression of ExoCtrl or ExoCCR2. ELISA was used to study the binding capacity of exosomes to CC chemokine ligand 2 (CCL2) in vivo. After the intravenous injection of ExoCtrl or ExoCCR2 into experimental rats, the effect of ExoCtrl and ExoCCR2 on PSCI was assessed by Morris water maze. Remyelination and oligodendrogenesis were analyzed by Western blotting and immunofluorescence microscopy. QRT-PCR and immunofluorescence microscopy were conducted to compare the microglia/macrophage polarization. The infiltration and activation of hematogenous macrophages were analyzed by Western blotting and transwell migration analysis.
RESULTS CCR2-overexpressing HUC-MSCs loaded the CCR2 receptor into their exosomes. The morphology and diameter distribution between ExoCtrl and ExoCCR2 showed no significant difference. ExoCCR2 bound significantly to CCL2 but ExoCtrl showed little CCL2 binding. Although both ExoCCR2 and ExoCtrl showed beneficial effects on PSCI, oligodendrogenesis, remyelination, and microglia/macrophage polarization, ExoCCR2 exhibited a significantly superior beneficial effect. We also found that ExoCCR2 could suppress the CCL2-induced macrophage migration and activation in vivo and in vitro, compared with ExoCtrl treated group.
CONCLUSION CCR2 over-expression enhanced the therapeutic effects of exosomes on the experimental PSCI by promoting M2 microglia/macrophage polarization, enhancing oligodendrogenesis and remyelination. These therapeutic effects are likely through suppressing the CCL2-induced hematogenous macrophage migration and activation.
Collapse
Affiliation(s)
- Huai-Chun Yang
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Min Zhang
- Department of Andrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Rui Wu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Jing Luo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Li Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
27
|
Perspectives for Future Use of Extracellular Vesicles from Umbilical Cord- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells in Regenerative Therapies-Synthetic Review. Int J Mol Sci 2020; 21:ijms21030799. [PMID: 31991836 PMCID: PMC7036930 DOI: 10.3390/ijms21030799] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/ stromal cells (MSCs) represent progenitor cells of various origin with multiple differentiation potential, representing the most studied population of stem cells in both in vivo pre-clinical and clinical studies. MSCs may be found in many tissue sources including extensively studied adipose tissue (ADSCs) and umbilical cord Wharton’s jelly (UC-MSCs). Most of sanative effects of MSCs are due to their paracrine activity, which includes also release of extracellular vesicles (EVs). EVs are small, round cellular derivatives carrying lipids, proteins, and nucleic acids including various classes of RNAs. Due to several advantages of EVs when compare to their parental cells, MSC-derived EVs are currently drawing attention of several laboratories as potential new tools in tissue repair. This review focuses on pro-regenerative properties of EVs derived from ADSCs and UC-MSCs. We provide a synthetic summary of research conducted in vitro and in vivo by employing animal models and within initial clinical trials focusing on neurological, cardiovascular, liver, kidney, and skin diseases. The summarized studies provide encouraging evidence about MSC-EVs pro-regenerative capacity in various models of diseases, mediated by several mechanisms. Although, direct molecular mechanisms of MSC-EV action are still under investigation, the current growing data strongly indicates their potential future usefulness for tissue repair.
Collapse
|
28
|
Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci 2020; 21:ijms21030727. [PMID: 31979113 PMCID: PMC7036914 DOI: 10.3390/ijms21030727] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are on the cusp of regenerative medicine due to their differentiation capacity, favorable culture conditions, ability to be manipulated in vitro, and strong immunomodulatory activity. Recent studies indicate that the pleiotropic effects of MSCs, especially their immunomodulatory potential, can be largely attributed to paracrine factors. Exosomes, vesicles that are 30-150 nanometers in diameter that function in cell-cell communication, are one of the key paracrine effectors. MSC-derived exosomes are enriched with therapeutic miRNAs, mRNAs, cytokines, lipids, and growth factors. Emerging evidences support the compelling possibility of using MSC-derived exosomes as a new form of therapy for treating several different kinds of disease such as heart, kidney, immune diseases, neural injuries, and neurodegenerative disease. This review provides a summary of current knowledge and discusses engineering of MSC-derived exosomes for their use in translational medicine.
Collapse
|
29
|
Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells. Cells 2019; 9:cells9010095. [PMID: 31906012 PMCID: PMC7016674 DOI: 10.3390/cells9010095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
: The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. OBJECTIVES The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs. METHODS The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix. RESULTS Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-α, TNF-β, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90+, CD29+, CD44+, CD73+). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats. CONCLUSIONS Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases.
Collapse
|
30
|
Gomzikova MO, James V, Rizvanov AA. Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Front Immunol 2019; 10:2663. [PMID: 31849929 PMCID: PMC6889906 DOI: 10.3389/fimmu.2019.02663] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive potential of mesenchymal stem cells has been extensively investigated in many studies in vivo and in vitro. In recent years, a variety preclinical and clinical studies have demonstrated that mesenchymal stem cells ameliorate immune-mediated disorders, including autoimmune diseases. However, to date mesenchymal stem cells have not become a widely used therapeutic agent due to safety challenges, high cost and difficulties in providing long term production. A key mechanism underpinning the immunomodulatory effect of MSCs is the production of paracrine factors including growth factors, cytokines, chemokines, and extracellular vesicles (EVs). MSCs derived EVs have become an attractive therapeutic agent for immunomodulation and treatment of immune-mediated disorders. In addition to many preclinical studies of MSCs derived EVs, their beneficial effects have been observed in patients with both acute graft-vs.-host disease and chronic kidney disease. In this review, we discuss the current findings in the field of MSCs derived EVs-based therapies in immune-mediated disorders and approaches to scale EV production for clinical use.
Collapse
Affiliation(s)
- Marina O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Hassan R, Rabea AA, Ragae A, Sabry D. The prospective role of mesenchymal stem cells exosomes on circumvallate taste buds in induced Alzheimer's disease of ovariectomized albino rats: (Light and transmission electron microscopic study). Arch Oral Biol 2019; 110:104596. [PMID: 31734542 DOI: 10.1016/j.archoralbio.2019.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the effect of Alzheimer's disease on the structure of circumvallate papilla taste buds and the possible role of exosomes on the taste buds in Alzheimer's disease. DESIGN Forty two ovariectomized female adult albino rats were utilized and divided into: Group I: received vehicle. Group II: received aluminum chloride to induce Alzheimer's disease. Group III: after the induction of Alzheimer's disease, each rat received single dose of exosomes then left for 4 weeks. The circumvallate papillae were prepared for examination by light and transmission electron microscope. STATISTICAL ANALYSIS histomorphometric data were statistically analyzed. RESULTS Histological examination of circumvallate papilla in Group I showed normal histological features. Group II revealed distorted features. Group III illustrated nearly normal histological features of circumvallate. Silver impregnation results showed apparently great number of heavily impregnated glossopharyngeal nerve fibers in both Groups I & III but markedly decreased in Group II. Synaptophysin-immunoreactivity was strong in Group I, mild in Group II and moderate in Group III. The ultra-structural examination of taste bud cells revealed normal features in Group I, distorted features in Group II and almost normal features in Group III. Statistically highest mean of Synaptophysin-immunoreactivity area% was for Group I, followed by Group III, and the least value was for Group II. CONCLUSIONS Alzheimer's disease has degenerative effects. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes have the ability to improve the destructive changes induced by Alzheimer's disease.
Collapse
Affiliation(s)
- Rabab Hassan
- Lecturer of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Amany A Rabea
- Associate Professor of Oral Biology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Alyaa Ragae
- Professor of General Histology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Dina Sabry
- Professor of Medical biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Galieva LR, James V, Mukhamedshina YO, Rizvanov AA. Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Front Neurosci 2019; 13:163. [PMID: 30890911 PMCID: PMC6411850 DOI: 10.3389/fnins.2019.00163] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The use of extracellular vesicles (EVs) as cell free therapy is a promising approach to stimulate tissue regeneration including that of the nervous system. EVs transfer bioactive proteins and lipids, RNA and microRNAs, which play a relevant role in EV-mediated intercellular communication. The immunomodulatory, anti-inflammatory, and neuroprotective effects of mesenchymal stem cells-derived EVs have been well studied, knowledge of this paracrine mechanism and the availability of these cells, positions mesenchymal stem cells as a potential source of EVs for cell free therapy for a variety of regenerative and nervous system disorders. In this review, we focus on the immunomodulatory and neuroprotective effects of stem cells-derived EVs within in vitro and in vivo models of nerve disorders.
Collapse
Affiliation(s)
- Luisa R Galieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
33
|
Chu C, Wei S, Wang Y, Wang Y, Man Y, Qu Y. Extracellular vesicle and mesenchymal stem cells in bone regeneration: recent progress and perspectives. J Biomed Mater Res A 2018; 107:243-250. [PMID: 30378760 DOI: 10.1002/jbm.a.36518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 02/05/2023]
Abstract
Transplanting mesenchymal stem cells (MSCs) has been widely perceived as an ideal treatment for bone repair and regeneration, owing to their differential potential. However, researchers found that very few intravenous MSCs could stay in the target tissue, whereas the majority of them are trapped in liver, spleen, and lung, largely reducing its therapeutic effects. Recently, extracellular vesicles (EVs) have attracted increased attention due to their function in bone repair and advantages over traditional cell therapy. Also, MSCs-derived EVs are likely to achieve the osteogenic goal via modulating the cells and cytokines involved in bone metabolism. This review aims at summarizing the function of EVs and MSCs in bone metabolism and regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 243-250, 2019.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shimin Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanjing Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer's Disease. Front Cell Neurosci 2018; 12:317. [PMID: 30319358 PMCID: PMC6165870 DOI: 10.3389/fncel.2018.00317] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from bone marrow and adipose tissue, have the potential to decrease cognitive deficits, possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis, synaptogenesis and angiogenesis. These processes are mediated primarily by the secretion of many growth factors, anti-inflammatory proteins, membrane receptors, microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several functional molecules like proteins, lipids and regulatory RNA which can modify cell metabolism. In the proteomic characterization of the content of MSC-derived exosomes, more than 730 proteins have been identified, some of which are specific cell type markers and others are involved in the regulation of binding and fusion of exosomes with adjacent cells. Furthermore, some factors were found that promote the recruitment, proliferation and differentiation of other cells like neural stem cells. Moreover, within exosomal cargo, a wide range of miRNAs were found, which can control functions related to neural remodeling as well as angiogenic and neurogenic processes. Taking this into consideration, the use of exosomes could be part of a strategy to promote neuroplasticity, improve cognitive impairment and neural replacement in AD. In this review, we describe how exosomes are involved in AD pathology and discuss the therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo.
Collapse
Affiliation(s)
- Edwin E Reza-Zaldivar
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Mercedes A Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Benito Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| | - Yanet K Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico.,Profesor del programa de Maestría en Ciencias de la Salud Ambiental, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
35
|
Chulpanova DS, Kitaeva KV, James V, Rizvanov AA, Solovyeva VV. Therapeutic Prospects of Extracellular Vesicles in Cancer Treatment. Front Immunol 2018; 9:1534. [PMID: 30018618 PMCID: PMC6037714 DOI: 10.3389/fimmu.2018.01534] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example, promoting angiogenesis, tumor cell invasion, and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor-derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry major histocompatibility complex class I and class II/peptide complexes and are able to prime other immune system cell types and activate an antitumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood–brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
36
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Samoylova EM, Kalsin VA, Bespalova VA, Devichensky VM, Baklaushev VP. Exosomes: from biology to clinics. GENES & CELLS 2017; 12:7-19. [DOI: 10.23868/201707024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Exosomes are extracellular vesicles with the diameter of 30-120 nm, originating from early endosomes. Exosomes have been actively studied in the last decade, and a great amount of data has appeared on their nature and role in the intercellular transport and signaling both in the normal and pathological conditions. A particular interest to exosomes in the clinical practice emerged after the separation of their circulating fraction from the blood and the study of tumor genetic markers in them became possible (so called “liquid biopsy”). The objective of this review is to familiarize clinical specialists with the fundamentals of exosomes' biology and physiology and with the main achievements on their practical application in the medicine, as a natural drug delivery system, as well as for high-precision, early non-invasive differential diagnostics of diseases.
Collapse
|
38
|
Gomzikova MO, Zhuravleva MN, Miftakhova RR, Arkhipova SS, Evtugin VG, Khaiboullina SF, Kiyasov AP, Persson JL, Mongan NP, Pestell RG, Rizvanov AA. Cytochalasin B-induced membrane vesicles convey angiogenic activity of parental cells. Oncotarget 2017; 8:70496-70507. [PMID: 29050297 PMCID: PMC5642572 DOI: 10.18632/oncotarget.19723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022] Open
Abstract
Naturally occurring extracellular vesicles (EVs) play essential roles in intracellular communication and delivery of bioactive molecules. Therefore it has been suggested that EVs could be used for delivery of therapeutics. However, to date the therapeutic application of EVs has been limited by number of factors, including limited yield and full understanding of their biological activities. To address these issues, we analyzed the morphology, molecular composition, fusion capacity and biological activity of Cytochalasin B-induced membrane vesicles (CIMVs). The size of these vesicles was comparable to that of naturally occurring EVs. In addition, we have shown that CIMVs from human SH-SY5Y cells contain elevated levels of VEGF as compared to the parental cells, and stimulate angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Svetlana F Khaiboullina
- Kazan Federal University, Kazan, 420008, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, Nevada, 89557, USA
| | | | - Jenny L Persson
- Department of Translational Medicine, Lund University, 205 02 Malmö, and Department of Molecular Biology, 901 87 Umeå, Umeå University
| | - Nigel P Mongan
- Cancer Biology and Translational Research, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, UK.,Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave., New York, NY, 10065, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA 19096. USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|