1
|
Boudiar R, Mekhlouf A, Bekkar Y, Yessaadi M, Bachir A, Karkour L, Casas AM, Igartua E. Enhancing drought resilience in durum wheat: effect of root architecture and genotypic performance in semi-arid rainfed regions. PeerJ 2025; 13:e19096. [PMID: 40161347 PMCID: PMC11955194 DOI: 10.7717/peerj.19096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Background Developing drought-adapted genotypes is a primary goal for achieving resilient agriculture in the Mediterranean region. Durum wheat, a widely grown crop in the drylands of the Mediterranean basin, would significantly benefit from increased drought resistance. Methods We investigated a diverse set of 30 durum wheat varieties, including both local landraces and modern cultivars that have proven successful in Algeria. These varieties were evaluated in field trials over two consecutive years with contrasting rainfall patterns (one very dry, the other quite wet). Grain yield (PGY), yield components, and flag leaf characteristics such as area, canopy temperature, or rolling index were evaluated. Data from previous studies of root traits recorded on the same set of genotypes at seedling and adult growth stages were used to search for possible associations with grain yield and other agronomic traits measured in the current work. Results Genotypic variation was found for all traits measured under both conditions. Grain yield and aerial biomass were reduced by 76% (from 5.28 to 1.97 Mg ha-1) and 66% (from 15.94 to 3.80 Mg ha-1), respectively in the dry year, whereas the harvest index increased by 32%. The breeding history of the germplasm (cultivar vs. landrace) had a significant effect on the traits studied. Landraces showed higher biomass only under drought (4.27 vs. 3.63 Mg ha-1), whereas modern cultivars out-yielded landraces only under non-drought conditions (5.56 vs. 4.49 Mg ha-1). Promising associations were found between root and agronomic traits, especially with grain yield, indicating that a profuse (large root length) and shallow (wide root angle) root system was related to increased yield of modern cultivars only in the dry year, without penalizing yield in the wet year. Conclusion Breeding programs could improve grain yield under Algerian, semi-arid conditions, by making crosses between selected landraces with good growth potential under drought and modern cultivars, with high efficiency of biomass conversion into grain, and searching for lines with acceptable agronomic performance, which combine these desirable traits from landraces and modern cultivars, with the presence of shallow and profuse root systems.
Collapse
Affiliation(s)
- Ridha Boudiar
- Department of Biotechnology & Agriculture, Biotechnology Research Center-C.R.Bt-Constantine, El Khroub, Algeria
| | - Abdelhamid Mekhlouf
- Laboratoire d’Amélioration et de Développement de la Production Végétale et Animale (LADPVA), University of Ferhat ABBAS (UFAS-Sétif1), Sétif, Algeria
| | - Yacine Bekkar
- Laboratoire d’Amélioration et de Développement de la Production Végétale et Animale (LADPVA), University of Ferhat ABBAS (UFAS-Sétif1), Sétif, Algeria
| | - Meriem Yessaadi
- Laboratoire d’Amélioration et de Développement de la Production Végétale et Animale (LADPVA), University of Ferhat ABBAS (UFAS-Sétif1), Sétif, Algeria
| | - Adel Bachir
- Agricultural Experimental Station, Field Crop Institute (ITGC), Sétif, Algeria
- Laboratoire de Phytopathologie et Biologie Moléculaire, Ecole Nationale Supérieure d’Agronomie, Algiers, Algeria
| | - Larbi Karkour
- Department of Biotechnology & Agriculture, Biotechnology Research Center-C.R.Bt-Constantine, El Khroub, Algeria
| | - Ana Maria Casas
- Estación Experimental de Aula Dei, EEAD-CSIC, Zaragoza, Spain
| | - Ernesto Igartua
- Estación Experimental de Aula Dei, EEAD-CSIC, Zaragoza, Spain
| |
Collapse
|
2
|
Silva JNB, Bueno RD, de Sousa TDJF, Xavier YPM, Silva LCC, Piovesan ND, Ribeiro C, Dal-Bianco M. Exploring SoySNP50K and USDA Germplasm Collection Data to Find New QTLs Associated with Protein and Oil Content in Brazilian Genotypes. Biochem Genet 2024; 62:4791-4803. [PMID: 38358588 DOI: 10.1007/s10528-024-10698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Genetic diversity within a germplasm collection plays a vital role in the success of breeding programs. However, comprehending this diversity and identifying accessions with desirable traits pose significant challenges. This study utilized publicly available data to investigate SNP markers associated with protein and oil content in Brazilian soybeans. Through this research, twenty-two new QTLs (Quantitative Trait Loci) were identified, and we highlighted the substantial influence of Roanoke, Lee and Bragg ancestor on the genetic makeup of Brazilian soybean varieties. Our findings demonstrate that certain markers are being lost in modern cultivars, while others maintain or even increase their frequency. These observations indicate genomic regions that have undergone selection during soybean introduction in Brazil and could be valuable in breeding programs aimed at enhancing protein or oil content.
Collapse
Affiliation(s)
- Jessica Nayara Basílio Silva
- Laboratório de Bioquímica Genética de Plantas, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 21236570-900, Brazil
| | - Rafael Delmond Bueno
- Laboratório de Bioquímica Genética de Plantas, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 21236570-900, Brazil
| | | | - Yan Pablo Moreira Xavier
- Laboratório de Bioquímica Genética de Plantas, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 21236570-900, Brazil
| | - Luiz Claudio Costa Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | - Newton Deniz Piovesan
- Laboratório de Bioquímica Genética de Plantas, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 21236570-900, Brazil
| | - Cleberson Ribeiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 21236570-900, Brazil.
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
3
|
Hylander K, Nemomissa S, Fischer J, Zewdie B, Ayalew B, Tack AJM. Lessons from Ethiopian coffee landscapes for global conservation in a post-wild world. Commun Biol 2024; 7:714. [PMID: 38858451 PMCID: PMC11164958 DOI: 10.1038/s42003-024-06381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
The reality for conservation of biodiversity across our planet is that all ecosystems are modified by humans in some way or another. Thus, biodiversity conservation needs to be implemented in multifunctional landscapes. In this paper we use a fascinating coffee-dominated landscape in southwest Ethiopia as our lens to derive general lessons for biodiversity conservation in a post-wild world. Considering a hierarchy of scales from genes to multi-species interactions and social-ecological system contexts, we focus on (i) threats to the genetic diversity of crop wild relatives, (ii) the mechanisms behind trade-offs between biodiversity and agricultural yields, (iii) underexplored species interactions suppressing pest and disease levels, (iv) how the interactions of climate change and land-use change sometimes provide opportunities for restoration, and finally, (v) how to work closely with stakeholders to identify scenarios for sustainable development. The story on how the ecology and evolution of coffee within its indigenous distribution shape biodiversity conservation from genes to social-ecological systems can inspire us to view other landscapes with fresh eyes. The ubiquitous presence of human-nature interactions demands proactive, creative solutions to foster biodiversity conservation not only in remote protected areas but across entire landscapes inhabited by people.
Collapse
Affiliation(s)
- Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Joern Fischer
- Leuphana University, Faculty of Sustainability, Scharnhorststrasse 1, 21335, Lueneburg, Germany
| | - Beyene Zewdie
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Biruk Ayalew
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
4
|
Salgotra RK, Chauhan BS. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes (Basel) 2023; 14:174. [PMID: 36672915 PMCID: PMC9859222 DOI: 10.3390/genes14010174] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Plant genetic resources (PGRs) are the total hereditary material, which includes all the alleles of various genes, present in a crop species and its wild relatives. They are a major resource that humans depend on to increase farming resilience and profit. Hence, the demand for genetic resources will increase as the world population increases. There is a need to conserve and maintain the genetic diversity of these valuable resources for sustainable food security. Due to environmental changes and genetic erosion, some valuable genetic resources have already become extinct. The landraces, wild relatives, wild species, genetic stock, advanced breeding material, and modern varieties are some of the important plant genetic resources. These diverse resources have contributed to maintaining sustainable biodiversity. New crop varieties with desirable traits have been developed using these resources. Novel genes/alleles linked to the trait of interest are transferred into the commercially cultivated varieties using biotechnological tools. Diversity should be maintained as a genetic resource for the sustainable development of new crop varieties. Additionally, advances in biotechnological tools, such as next-generation sequencing, molecular markers, in vitro culture technology, cryopreservation, and gene banks, help in the precise characterization and conservation of rare and endangered species. Genomic tools help in the identification of quantitative trait loci (QTLs) and novel genes in plants that can be transferred through marker-assisted selection and marker-assisted backcrossing breeding approaches. This article focuses on the recent development in maintaining the diversity of genetic resources, their conservation, and their sustainable utilization to secure global food security.
Collapse
Affiliation(s)
- Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, India
| | - Bhagirath Singh Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
5
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|