1
|
Wu C, Zhao L, Li X, Xu Y, Guo H, Huang Z, Wang Q, Liu H, Chen D, Zhu M. Integrated Bioinformatics Analysis of Potential mRNA and miRNA Regulatory Networks in Mice With Ischemic Stroke Treated by Electroacupuncture. Front Neurol 2021; 12:719354. [PMID: 34566862 PMCID: PMC8461332 DOI: 10.3389/fneur.2021.719354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)–mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA–mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein–protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA–mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA–mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA–mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yingshan Xu
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongji Guo
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dongfeng Chen
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
2
|
Adly Sadik N, Ahmed Rashed L, Ahmed Abd-El Mawla M. Circulating miR-155 and JAK2/STAT3 Axis in Acute Ischemic Stroke Patients and Its Relation to Post-Ischemic Inflammation and Associated Ischemic Stroke Risk Factors. Int J Gen Med 2021; 14:1469-1484. [PMID: 33911894 PMCID: PMC8071708 DOI: 10.2147/ijgm.s295939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background “Micro RNAs and their target genes recently have been identified to play a crucial role in the molecular pathogenesis of post-stroke ischemic cellular injury, which elucidates their new role in ischemic stroke diagnosis and therapy”. Thus, we evaluated the relative serum expression of miR-155, an inflammatory micro RNA, and the mRNAs (JAK2/STAT3) in acute ischemic stroke patients and its associations with the inflammatory cytokine TNF-α and different stroke risk factors. Subjects and Methods The relative expression of serum miR-155 and mRNAs (JAK2/STAT3) was assessed using RT-PCR, serum TNF-α was measured using ELIZA in 46 acute ischemic stroke patients and 50 control subjects. Receiver operating characteristic (ROC) curve was constructed to assess the specificity and sensitivity of circulating miR-155, JAK2/STAT3 as biomarkers for acute ischemic stroke. Results Circulating miR-155, JAK2/STAT3 were significantly up-regulated among stroke patients (8.5, 2.9, 4.2 fold respectively, P<0.001) with significant increase in TNF-α (263.8 ± 10.7 pg/mL, P <0.001). MiR-155, JAK2/STAT3 were positively correlated with TNF-α. MiR-155, JAK2/STAT3 were significantly increased in stroke patients and associated with risk factors such as hypertension, carotid atherosclerosis, and atrial fibrillation. Our study revealed that miR-155 has diagnostic accuracy for acute ischemic stroke where AUC=0.9, (P<0.001). Conclusion The elevated expressions of circulating miR-155, JAK2/STAT3, and TNF-α in acute ischemic stroke patients could trigger post-stroke cellular inflammation. MiR-155 could be used as potential inflammatory biomarker for acute ischemic stroke. However, further clinical studies are still needed to determine the exact role of miRNAs and different signal transduction expressions in the stage of acute ischemic stroke.
Collapse
Affiliation(s)
- Noha Adly Sadik
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
3
|
Fei S, Cao L, Li S. RETRACTED: microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation. Brain Res Bull 2021; 169:73-80. [PMID: 33400954 DOI: 10.1016/j.brainresbull.2020.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as there are concerns about the reliability of the results. Concerns have been raised about the western blot bands in Figs. 5A, 6D having the same eyebrow shaped phenotype as found in many other publications as tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author to comment on these concerns and send the raw data, however the author was not able to provide uncropped images of the original gels. The Editor-in-Chief therefore no longer has confidence in the data and conclusions of this study.
Collapse
Affiliation(s)
- Shinuan Fei
- Department of Pediatrics, Edong Healthcare Group, Huangshi Maternity and Children's Health Hospital, Huangshi, 435000, Hubei, PR China
| | - Lichun Cao
- Department of Medical Customer Service, Huangshi Central Hospital•Affiliated Hospital of Hubei Polytechnic University, No. 293, Yiyuan Street, XiSaiShan District, Huangshi, 435000, Hubei, PR China.
| | - Sheng Li
- Department of Laboratory Medicine, Edong Healthcare Group, Huangshi Maternity and Children's Health Hospital, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, Hubei, PR China
| |
Collapse
|
4
|
Liu X, Wang X, Zhang L, Zhou Y, Yang L, Yang M. By targeting apoptosis facilitator BCL2L13, microRNA miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice. Bioengineered 2021; 12:948-959. [PMID: 33724167 PMCID: PMC8806345 DOI: 10.1080/21655979.2021.1898134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neuronal apoptosis was considered as one of the main factors of cerebral ischemia/reperfusion injury. Understanding the molecular regulatory mechanism of neuronal apoptosis under the cerebral ischemia/reperfusion injury may provide the novel therapeutic targets for cerebral ischemia/reperfusion injury. However, the molecular regulatory mechanism of neurons fate determination under the cerebral ischemia/reperfusion injury remains poorly understood. This study was aimed to delve into the related molecular mechanism of miR-484 on the regulation of cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice. In this study, quantitative real-time polymerase chain reaction assays revealed that the expression level of miR-484 was down-regulated in neurons following OGD. Then, CCK8 assay western blot assay, and flow cytometry assay verified that upregulation of miR-484 increased viability and inhibited apoptosis of neurons following OGD. Further bioinformatics methods and dual-luciferase reporter assay were applied together to anticipate and certify the interaction between miR-484 and BCL2L13. Finally, cerebral infarct size assessment and TUNEL staining confirmed that overexpression of miR-484 alleviated cerebral ischemia/reperfusion injury in mice, and overexpression of BCL2L13 could abolish the effect of miR-484-suppressed cell apoptosis. All these results suggested that miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice by targeting apoptosis facilitator BCL2L13.
Collapse
Affiliation(s)
- Xindong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Lijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Le Yang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Minghao Yang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death. Neurotox Res 2020; 38:564-578. [DOI: 10.1007/s12640-020-00236-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
|
6
|
Gui Y, Xu Z, Jin T, Zhang L, Chen L, Hong B, Xie F, Lv W, Hu X. Using Extracellular Circulating microRNAs to Classify the Etiological Subtypes of Ischemic Stroke. Transl Stroke Res 2018; 10:352-361. [PMID: 30178428 DOI: 10.1007/s12975-018-0659-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
There is no effective biological method to classify ischemic stroke subtypes. In this study, we first performed a systematical gene array study on serum microRNAs with different ischemic stroke subtypes including 13 normal control subjects (NCs) and 87 ischemic stroke (IS) patients including 23 cardioembolism (CARD), 26 large artery atherosclerosis (LAA), 27 lacunar infarct (LAC), and 11 stroke of undetermined etiology (SUE). Validation was performed by using an independent cohort of 20 NCs and 85 IS patients including 28 CARD, 23 LAA, 18 LAC, and 16 SUE. In the pilot discovery gene array study, we found specific serum microRNA signatures between different ischemic stroke subtypes (CARD, LAA, LAC, and SUE). We further validated 6 microRNAs [miR-125b, miR-125a, let-7b, let-7e, miR-7-2-3p, miR-1908] in a different group of ischemic stroke subtypes by using an independent cohort of 20 NCs, 28 CARD, 23 LAA, 18 LAC, and 16 SUE. Moreover, these circulating miRNAs were further detected to be differentially expressed between pre- vs. post-stroke in different ischemic stroke subtypes. The ROC analysis showed that miR-125b, miR-125a, let-7b, and let-7e could discriminate CARD patients from normal controls and other subtypes. Furthermore, ROC curves shown that miR-7-2-3p and miR-1908 showed significant area-under-the-curve values in both LAA and LAC patients. In conclusion, these results demonstrated that circulating miRNAs in sera could be potentially novel risk factors that involve in the pathogenesis of ischemic stroke subtypes.
Collapse
Affiliation(s)
- YaXing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China.
| | - ZhongPing Xu
- Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - LiSan Zhang
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - LiLi Chen
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Bin Hong
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Wen Lv
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - XingYue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| |
Collapse
|
7
|
Abstract
Stroke-induced endothelial cell injury leads to destruction of cerebral microvasculature and significant damage to the brain tissue. A subacute phase of cerebral ischemia is associated with regeneration involving the activation of vascular remodeling, neuroplasticity, neurogenesis, and neuroinflammation processes. Effective restoration and improvement of blood supply to the damaged brain tissue offers a potential therapy for stroke. microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with brain repair following stroke. A number of specific miRNAs are implicated in regulating the development and propagation of the ischemic tissue damage as well as in mediating post-stroke regeneration. In this review, I discuss the functions of the miRNA miR-155 and the effect of its in vivo inhibition on brain recovery following experimental cerebral ischemia. The article introduces new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosurgery, Health Sciences Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
8
|
Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z, Nowrangi D, Flores J, Filippov V, Zhang JH, Tang J. IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 2018; 15:32. [PMID: 29394934 PMCID: PMC5797348 DOI: 10.1186/s12974-018-1077-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background The endoplasmic reticulum (ER) is responsible for the control of correct protein folding and protein function which is crucial for cell survival. However, under pathological conditions, such as hypoxia–ischemia (HI), there is an accumulation of unfolded proteins thereby triggering the unfolded protein response (UPR) and causing ER stress which is associated with activation of several stress sensor signaling pathways, one of them being the inositol requiring enzyme-1 alpha (IRE1α) signaling pathway. The UPR is regarded as a potential contributor to neuronal cell death and inflammation after HI. In the present study, we sought to investigate whether microRNA-17 (miR-17), a potential IRE1α ribonuclease (RNase) substrate, arbitrates downregulation of thioredoxin-interacting protein (TXNIP) and consequent NLRP3 inflammasome activation in the immature brain after HI injury and whether inhibition of IRE1α may attenuate inflammation via miR-17/TXNIP regulation. Methods Postnatal day 10 rat pups (n = 287) were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2). STF-083010, an IRE1α RNase inhibitor, was intranasally delivered at 1 h post-HI or followed by an additional one administration per day for 2 days. MiR-17-5p mimic or anti-miR-17-5p inhibitor was injected intracerebroventricularly at 48 h before HI. Infarct volume and body weight were used to evaluate the short-term effects while brain weight, gross and microscopic brain tissue morphologies, and neurobehavioral tests were conducted for the long-term evaluation. Western blots, immunofluorescence staining, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (Co-IP) were used for mechanism studies. Results Endogenous phosphorylated IRE1α expression was significantly increased after HI. Intranasal administration of STF-083010 alleviated brain injury and improved neurological behavior. MiR-17-5p expression was reduced after HI, and this decrease was attenuated by STF-083010 treatment. MiR-17-5p mimic administration ameliorated TXNIP expression, NLRP3 inflammasome activation, caspase-1 cleavage, and IL-1β production, as well as brain infarct volume. Conversely, anti-miR-17-5p inhibitor reversed IRE1α inhibition-induced decrease in TXNIP expression and inflammasome activation, as well as exacerbated brain injury after HI. Conclusions IRE1a-induced UPR pathway may contribute to inflammatory activation and brain injury following neonatal HI. IRE1a activation, through decay of miR-17-5p, elevated TXNIP expression to activate NLRP3 inflammasome and aggravated brain damage. Electronic supplementary material The online version of this article (10.1186/s12974-018-1077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Brandon J Dixon
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Desislava M Doycheva
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yang Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Qin Hu
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yue He
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Zongduo Guo
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Derek Nowrangi
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jerry Flores
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Valery Filippov
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
9
|
Wang J, Li D, Hou J, Lei H. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA‑155‑5p inhibition. Mol Med Rep 2017; 17:3186-3193. [PMID: 29257264 DOI: 10.3892/mmr.2017.8221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Geniposide, an active component of Gardenia, has been reported to protect against cerebral ischemia in animals. Ginsenoside Rg1, a component of Panax notoginseng, is usually administered in combination with Gardenia for the treatment of acute ischemic stroke; however, there are unknown effects of ginsenoside Rg1 that require further investigation. In the present study, the effects of geniposide and ginsensoide Rg1 combination treatment on focal cerebral ischemic stroke were investigated. For in vivo analysis, male rats were separated into three groups, including the (control), model and geniposide + ginsenoside Rg1 groups (n=8 per group). A middle cerebral artery occlusion model was established as the model group. The treatment group was treated with geniposide (30 mg/kg, tail vein injection) + ginsenoside Rg1 (6 mg/kg, tail vein injection), and the model group received saline instead. Neurobehavioral deficits, infarct volume, brain edema, and the expression of microRNA (miR)‑155‑5p and CD11b by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry, were assessed following 24 h of ischemia. For in vitro analysis, BV2 mouse microglial cells were cultured and exposed to geniposide (40 µg/ml) + ginsenoside Rg1 (8 µg/ml) during various durations of oxygen‑glucose deprivation (OGD). The expression levels of miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 were detected by RT‑qPCR. The results demonstrated that increases in brain infarct volume, edema volume, CD11b‑positive cells and miR‑155‑5p levels were alleviated following geniposide + ginsenoside administration in rats exposed to ischemia. Furthermore, geniposide + ginsenoside Rg1 treatment suppressed the miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 expression levels in OGD‑injured BV2 microglial cells. The results of the present study demonstrated that tail vein administration of geniposide in combination with ginsenoside Rg1 protected against focal cerebral ischemia in rats through inhibition of microglial miR‑155‑5p following ischemic injury, which may serve as a novel therapeutic agent for the treatment of strokes.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Dan Li
- Jingjinji United Innovation Pharmaceutical Research Company, Beijing 100083, P.R. China
| | - Jincai Hou
- Jingjinji United Innovation Pharmaceutical Research Company, Beijing 100083, P.R. China
| | - Hongtao Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
10
|
Mao L, Zuo ML, Hu GH, Duan XM, Yang ZB. mir-193 targets ALDH2 and contributes to toxic aldehyde accumulation and tyrosine hydroxylase dysfunction in cerebral ischemia/reperfusion injury. Oncotarget 2017; 8:99681-99692. [PMID: 29245933 PMCID: PMC5725124 DOI: 10.18632/oncotarget.21129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/04/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs, miR) play a fundamental role in cerebral ischemia/reperfusion (I/R) injury. However, the role of miRNAs in toxic aldehyde and tyrosine accumulation is not fully elucidated. We constructed a cerebral I/R rat model and found that overexpression of miR-193 was associated with the accumulation of 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), and tyrosine, and with the decrease of aldehyde dehydrogenase (ALDH2), tyrosine hydroxylase (TH), and dopamine. To unveil the molecular mechanism of the miR-193-mediated phenotype in I/R injury as described above, we performed bioinformatic analysis and found that ALDH2 was a potential target of miR-193. Through in vitro experiments (such as miR-193 mimic/inhibitor transfection, luciferase reporter gene plasmid transfection, and 4-HNE exposure) and in vivo infusion of miR-193 agomir, we demonstrated that miR-193 directly suppressed the expression of ALDH2 and led to toxic aldehyde accumulation, resulting in dysfunction of tyrosine hydroxylase. The present study suggests that the overexpression of miR-193 in a rat model exacerbated brain injury due to the following sequential process: targeted suppression of ALDH2, aldehyde accumulation, and tyrosine hydroxylase dysfunction, leading to tyrosine accumulation and insufficiency of dopamine synthesis.
Collapse
Affiliation(s)
- Li Mao
- ChangSha Health Vocational College, Changsha 410100, China
| | - Mei-Ling Zuo
- The Affiliated ChangSha Hospital of HuNan Normal University, Changsha 410006, China
| | - Guo-Huang Hu
- The Affiliated ChangSha Hospital of HuNan Normal University, Changsha 410006, China
| | - Xiao-Ming Duan
- The Affiliated ChangSha Hospital of HuNan Normal University, Changsha 410006, China
| | - Zhong-Bao Yang
- The Affiliated ChangSha Hospital of HuNan Normal University, Changsha 410006, China
| |
Collapse
|
11
|
MicroRNA in glutamate receptor-dependent neurological diseases. Clin Sci (Lond) 2017; 131:1591-1604. [PMID: 28667061 DOI: 10.1042/cs20170964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023]
Abstract
Glutamate-mediated excitotoxicity is the major neuropathological process contributing to numerous neurological diseases. Recently, emerging evidence indicates that microRNAs (miRNAs) play essential roles in the pathophysiology of a wide range of neurological diseases. Notably, there have been significant developments in understanding the biogenesis of miRNAs, their regulatory mechanisms, and their potential as effective biomarkers and therapies. In the present review, we summarize the recent literature that highlights the versatile roles played by miRNAs in glutamate receptor (GluR)-dependent neurological diseases. Based on the reported studies to date, modulation of miRNAs could emerge as a promising therapeutic target for a variety of neurological diseases that were discussed in this review.
Collapse
|
12
|
Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Endothelial nitric oxide synthase inhibition triggers inflammatory responses in the brain of male rats exposed to ischemia-reperfusion injury. J Neurosci Res 2017; 96:151-159. [PMID: 28609584 DOI: 10.1002/jnr.24101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) plays a role in preserving and maintaining the brain's microcirculation, inhibiting platelet aggregation, leukocyte adhesion, and migration. Inhibition of eNOS activity results in exacerbation of neuronal injury after ischemia by triggering diverse cellular mechanisms, including inflammatory responses. To examine the relative contribution of eNOS in stroke-induced neuroinflammation, we analyzed the effects of systemic treatment with l-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, on the expression of MiR-155-5p, a key mediator of innate immunity regulation and endothelial dysfunction, in the cortex of male rats subjected to transient middle cerebral artery occlusion (tMCAo) followed by 24 hr of reperfusion. Inducible NO synthase (iNOS) and interleukin-10 (IL-10) mRNA expression were evaluated by real-time polymerase chain reaction in cortical homogenates and in resident and infiltrating immune cells isolated from ischemic cortex. These latter cells were also analyzed for their expression of CD40, a marker of M1 polarization of microglia/macrophages.tMCAo produced a significant elevation of miR155-5p and iNOS expression in the ischemic cortex as compared with sham surgery. eNOS inhibition by L-NIO treatment further elevated the cortical expression of these inflammatory mediators, while not affecting IL-10 mRNA levels. Interestingly, modulation of iNOS occurred in resident and infiltrating immune cells of the ischemic hemisphere. Accordingly, L-NIO induced a significant increase in the percentage of CD40+ events in CD68+ microglia/macrophages of the ischemic cortex as compared with vehicle-injected animals. These findings demonstrate that inflammatory responses may underlie the detrimental effects due to pharmacological inhibition of eNOS in cerebral ischemia.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19:166-187. [PMID: 28480877 PMCID: PMC5466283 DOI: 10.5853/jos.2016.01368] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Napoli, Italia.,Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Fathi Moghaddam
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Martinez B, Peplow PV. Immunomodulators and microRNAs as neurorestorative therapy for ischemic stroke. Neural Regen Res 2017; 12:865-874. [PMID: 28761412 PMCID: PMC5514854 DOI: 10.4103/1673-5374.208540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most of all strokes are ischemic due to occlusion of a vessel, and comprise two main types, thrombotic and embolic. Inflammation and immune response play an important role in the outcome of ischemic stroke. Pharmaceutical and cell-based therapies with immunomodulatory properties could be of benefit in treating ischemic stroke. Possible changes in microRNAs brought about by immunomodulatory treatments may be important. The pharmaceutical studies described in this review have identified several differentially regulated miRNAs associated with disregulation of mRNA targets or the upregulation of several neuroprotective genes, thereby highlighting the potential neuroprotective roles of specific miRNAs such as miR-762, -1892, -200a, -145. MiR-124, -711, -145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and microglia/macrophage M2-like activation phenotype. The cell-based therapy studies reviewed have mainly utilized mesenchymal stem cells or human umbilical cord blood cells and shown to improve functional and neurological outcomes in stroke animals. MiR-145 and miR-133b were implicated in nerve cell remodeling and functional recovery after stroke. Human umbilical cord blood cells decreased proinflammatory factors and promoted M2 macrophage polarization in stroke diabetic animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, CA, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 2016; 13:287. [PMID: 27829437 PMCID: PMC5103429 DOI: 10.1186/s12974-016-0753-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA miR-155 is implicated in modulation of the inflammatory processes in various pathological conditions. In our previous studies, we demonstrated that in vivo inhibition of miR-155 promotes functional recovery after mouse experimental stroke. In the present study, we explored if this beneficial effect is associated with miR-155 inhibition-induced alterations in post-stroke inflammatory response. Methods Intravenous injections of a specific miR-155 inhibitor were initiated at 48 h after mouse distal middle cerebral artery occlusion (dMCAO). Temporal changes in the expression of cytokines and key molecules associated with cytokine signaling were assessed at 7, 14, and 21 days after dMCAO, using mouse cytokine gene and protein arrays and Western blot analyses. Electron and immunofluorescence confocal microscopy techniques were used to evaluate the ultrastructural changes, as well as altered expression of specific phenotypic markers, at different time points after dMCAO. Results In the inhibitor-injected mice (inhibitor group), there was a significant decrease in CCL12 and CXCL3 cytokine expression at 7 days and significantly increased levels of major cytokines IL-10, IL-4, IL-6, MIP-1α, IL-5, and IL-17 at 14 days after dMCAO. These temporal changes correlated with altered expression of miR-155 target proteins SOCS-1, SHIP-1, and C/EBP-β and phosphorylation levels of cytokine signaling regulator STAT-3. Electron microscopy showed decreased number of phagocytically active peri-vascular microglia/macrophages in the inhibitor samples. Immunofluorescence and Western blot of these samples demonstrated that expression of leukocyte/ macrophage marker CD45 and phagocytosis marker CD68 was reduced at 7 days, and in contrast, significantly increased at 14 days after dMCAO, as compared to controls. Conclusions Based on our findings, we propose that in vivo miR-155 inhibition following mouse stroke significantly alters the time course of the expression of major cytokines and inflammation-associated molecules, which could influence inflammation process and tissue repair after experimental cerebral ischemia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0753-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Carlos Pena-Philippides
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA
| | - Ernesto Caballero-Garrido
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA
| | | | - Tamara Roitbak
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA.
| |
Collapse
|
16
|
Zhang N, Zhong J, Han S, Li Y, Yin Y, Li J. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3. Int J Mol Sci 2016; 17:1427. [PMID: 27598143 PMCID: PMC5037706 DOI: 10.3390/ijms17091427] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023] Open
Abstract
miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3'-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3'-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jie Zhong
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yun Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yanling Yin
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY. Lentivirus-Mediated Overexpression of MicroRNA-210 Improves Long-Term Outcomes after Focal Cerebral Ischemia in Mice. CNS Neurosci Ther 2016; 22:961-969. [PMID: 27390218 DOI: 10.1111/cns.12589] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/04/2023] Open
Abstract
AIMS MicroRNAs play an important role in the pathogenesis of ischemic brain injury and in the repair process during postischemic condition. However, the key miRNAs and their function in these processes remain unclear. METHODS Circulating blood MicroRNAs profiles were examined in the ischemic stroke patients. The predicted network of difference was analyzed by ingenuity pathway analysis. The key MicroRNAs were selected, and the function was further studied in a mouse ischemia model. The predicted downstream target was confirmed. RESULTS We found that 24 MicroRNAs were differently expressed in stroke patients compared to the control (P < 0.05). Bioinformatic analysis showed a MicroRNAs regulated network with the highest score in the stroke cascade, which was consisted of 10 MicroRNAs including key hypoxia-related miR-210 and its predicted downstream target brain derived neurotrophic factor (BDNF). Lentivirus-mediated miR-210 overexpression enhanced the microvessel density and the number of neural progenitor cells in the ischemic mouse brain (P < 0.05) and improved neurobehavioral outcomes in the ischemic mouse (P < 0.05). MiR-210 upregulation increased mBDNF/proBDNF protein expression in the normal and ischemic mouse brain. The dual-luciferase reporter assay identified that BDNF was the direct target of miR-210. CONCLUSION MiR-210 is a crucial ischemic stroke-associated MicroRNAs and a potential target for the stroke therapy.
Collapse
Affiliation(s)
- Li-Li Zeng
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Song He
- Department of human anatomy, Guangzhou medical university, Guangzhou, China
| | - Jian-Rong Liu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Bo Zheng
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Majdi A, Mahmoudi J, Sadigh-Eteghad S, Farhoudi M, Shotorbani SS. The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine. Neurol Sci 2016; 37:1765-1771. [PMID: 27350638 DOI: 10.1007/s10072-016-2643-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Stroke is the second leading cause of death and the most common cause of adult disabilities among elderlies. It involves a complex series of mechanisms among which, excitotoxicity is of great importance. Also, miRNAs appear to play role in post-stroke excitotoxicity, and changes in their transcriptome occur right after cerebral ischemia. Recent data indicate that specific miRNAs such as miRNA-223, miRNA-181, miRNA-125a, miRNA-125b, miRNA-1000, miRNA-132 and miRNA-124a regulate glutamate neurotransmission and excitotoxicity during stroke. However, limitations such as poor in vivo stability, side effects and inappropriate biodistribution in miRNA-based therapies still exist and should be overcome before clinical application. Thence, investigation of the effect of application of these miRNAs after the onset of ischemia is a pivotal step for manipulating these miRNAs in clinical use. Given this, present review concentrates on miRNAs roles in post-ischemic stroke excitotoxicity.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran.
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | | |
Collapse
|
19
|
Min XL, Wang TY, Cao Y, Liu J, Li JT, Wang TH. MicroRNAs: a novel promising therapeutic target for cerebral ischemia/reperfusion injury? Neural Regen Res 2016; 10:1799-808. [PMID: 26807114 PMCID: PMC4705791 DOI: 10.4103/1673-5374.170302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the microRNA (miRNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using miRNA microarrays and bioinformatic tools to systematically analyze Gene Ontology (GO) function classifications, as well as the signaling pathways of genes targeted by these differentially expressed miRNAs. Our results show significantly changed miRNA expression profiles in the reperfusion period after focal cerebral ischemia, with a total of 15 miRNAs up-regulated and 44 miRNAs down-regulated. Target genes of these differentially expressed miRNAs were mainly involved in metabolic and cellular processes, which were identified as hub nodes of a miRNA-GO-network. The most correlated pathways included D-glutamine and D-glutamate metabolism, the renin-angiotensin system, peroxisomes, the PPAR signaling pathway, SNARE interactions in vesicular transport, and the calcium signaling pathway. Our study suggests that miRNAs play an important role in the pathological process of cerebral ischemia/reperfusion injury. Understanding miRNA expression and function may shed light on the molecular mechanism of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Li Min
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China; Faculty of Clinical Medicine, Yunnan University of Traditional Chinese Medicine; the First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Ting-Yong Wang
- School of Economics of Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Cao
- Department of Neurosurgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin-Tao Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
20
|
miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 2014; 5:711-8. [PMID: 25127724 DOI: 10.1007/s12975-014-0364-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
The aims of the study were (1) to determine whether miRNAs (microRNAs) can be detected in the cerebrospinal fluid (CSF) and blood of patients with ischemic stroke and (2) to compare these miRNA profiles with corresponding profiles from other neurological patients to address whether the miRNA profiles of CSF or blood have potential usefulness as diagnostic biomarkers of ischemic stroke. CSF from patients with acute ischemic stroke (n = 10) and patients with other neurological diseases (n = 10) was collected by lumbar puncture. Blood samples were taken immediately after. Expression profiles in the cell-free fractions of CSF and blood were analyzed by a microarray technique (miRCURY LNA™ microRNA Array, Exiqon A/S, Denmark) using a quantitative PCR (qPCR) platform containing 378 miRNA primers. In total, 183 different miRNAs were detected in the CSF, of which two miRNAs (let-7c and miR-221-3p) were found upregulated in relation to stroke. In the blood, 287 different miRNAs were detected of which two miRNAs (miR-151a-3p and miR-140-5p) were found upregulated and one miRNA (miR-18b-5p) was found downregulated in the stroke group. Some miRNAs occurred exclusively in the CSF including miR-523-3p which was detected in 50 % of the stroke patients, whereas it was completely absent in controls. Our preliminary results demonstrate that it is possible to detect and profile miRNAs in CSF and blood from patients with neurological diseases. Some miRNAs appear differentially expressed in the CSF and others in the blood of stroke patients. Currently, we are validating our results in larger groups of patients.
Collapse
|
21
|
Kaur P, Karolina DS, Sepramaniam S, Armugam A, Jeyaseelan K. Expression profiling of RNA transcripts during neuronal maturation and ischemic injury. PLoS One 2014; 9:e103525. [PMID: 25061880 PMCID: PMC4111601 DOI: 10.1371/journal.pone.0103525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Neuronal development is a pro-survival process that involves neurite growth, synaptogenesis, synaptic and neuronal pruning. During development, these processes can be controlled by temporal gene expression that is orchestrated by both long non-coding RNAs and microRNAs. To examine the interplay between these different components of the transcriptome during neuronal differentiation, we carried out mRNA, long non-coding RNA and microRNA expression profiling on maturing primary neurons. Subsequent gene ontology analysis revealed regulation of axonogenesis and dendritogenesis processes by these differentially expressed mRNAs and non-coding RNAs. Temporally regulated mRNAs and their associated long non-coding RNAs were significantly over-represented in proliferation and differentiation associated signalling, cell adhesion and neurotrophin signalling pathways. Verification of expression of the Axin2, Prkcb, Cntn1, Ncam1, Negr1, Nrxn1 and Sh2b3 mRNAs and their respective long non-coding RNAs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile to the maturation process, thus suggesting their role(s) in maintaining neuronal structure and function. Furthermore, we propose that expression of the cell adhesion molecules, Ncam1 and Negr1 might be tightly regulated by both long non-coding RNAs and microRNAs.
Collapse
Affiliation(s)
- Prameet Kaur
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dwi Setyowati Karolina
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sugunavathi Sepramaniam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunmozhiarasi Armugam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kandiah Jeyaseelan
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center and Neuroprotection, Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
24
|
microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model. PLoS One 2013; 8:e66393. [PMID: 23823624 PMCID: PMC3688919 DOI: 10.1371/journal.pone.0066393] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/05/2013] [Indexed: 12/31/2022] Open
Abstract
To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0–168 hrs after middle cerebral artery occlusion using homologous emboli. MiRNA and mRNA expression profiles were investigated by microarray followed by multiple statistical analysis. Candidate transcripts were also validated by quantitative RT-PCR. Three specific groups of miRNAs were observed among a total of 346 differentially expressed miRNAs. miRNAs, miR-21, -142-3p, -142-5p, and -146a displayed significant upregulation during stroke recovery (48 hrs to 168 hrs) compared with those during acute phases (0 hrs to 24 hrs). On the other hand, an opposite trend was observed in the expression of miR-196a/b/c, -224 and -324-3p. Interestingly, miR-206, -290, -291a-5p and -30c-1*, positively correlated with the infarct sizes, with an initial increase up to 24hrs followed by a gradual decrease from 48 hrs to 168 hrs (R = 0.95). Taken together with the expression levels of corresponding mRNA targets, we have also found that Hedgehog, Notch, Wnt and TGF-β signaling pathways could play significant roles in stroke recovery and especially in neuronal repair.
Collapse
|
25
|
Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in Neurotoxicity. J Toxicol 2012; 2012:870150. [PMID: 22523492 PMCID: PMC3317171 DOI: 10.1155/2012/870150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/16/2011] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs are gaining importance as regulators of gene expression with the capability to fine-tune and modulate cellular events. The complex network with their selective targets (mRNAs/genes) pave way for regulation of many physiological processes. Dysregulation of normal neuronal activities could result in accumulation of substances that are detrimental to neuronal functions and subsequently result in neurotoxicity. Neurotoxicity-mediated pathophysiological conditions could then manifest as diseases or disabilities like Parkinson's and Alzheimer's which have debilitating implications. Such toxicity can be a result of individuals predisposed due to genetic inheritance or from other sources such as brain tumours. Neurotoxicity can also be brought about by external agents like drugs and alcohol as well as brain injury with miRNAs playing a pivotal role in diseases. It is therefore vital to understand the expression of these microRNAs and their impact on neuronal activities. In this paper, we discuss some of the neuronal pathophysiological conditions that could be caused by dysregulated microRNAs.
Collapse
Affiliation(s)
- Prameet Kaur
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Kandiah Jeyaseelan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| |
Collapse
|
26
|
Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K. MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem 2012; 287:12006-15. [PMID: 22334710 DOI: 10.1074/jbc.m111.280701] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane water channels ubiquitously expressed in mammalian tissues. They play prominent roles in maintaining cellular fluid balance. Although expression of AQP1, -3, -4, -5, -8, -9, and -11 has been reported in the central nervous system, it is AQP4 that is predominately expressed. Its importance in fluid regulation in cerebral edema conditions has been highlighted in several studies, and we have also shown that translational regulation of AQP4 by miR-320a could prove to be useful in infarct volume reduction in middle cerebral artery occluded rat brain. There is evidence for the existence of two AQP4 transcripts (M1 and M23) in the brain arising from two alternative promoters. Because the AQP4 M1 isoform exhibits greater water permeability, in this study, we explored the possibility of microRNA-based transcriptional regulation of the AQP4 M1 promoter. Using RegRNA software, we identified 34 microRNAs predicted to target the AQP4 M1 promoter region. MicroRNA profiling, quantitative stem-loop PCR, and luciferase reporter assays revealed that miR-130a, -152, -668, -939, and -1280, which were highly expressed in astrocytes, could regulate the promoter activity. Of these, miR-130a was identified as a strong transcriptional repressor of the AQP4 M1 isoform. In vivo studies revealed that LNA(TM) anti-miR-130a could up-regulate the AQP4 M1 transcript and its protein to bring about a reduction in cerebral infarct and promote recovery.
Collapse
Affiliation(s)
- Sugunavathi Sepramaniam
- Department of Biochemistry and Neuroscience Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|