1
|
Zhang Y, Jiang M, Wu D, Li M, Ji X. The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study. Mol Brain 2025; 18:6. [PMID: 39849587 PMCID: PMC11758733 DOI: 10.1186/s13041-025-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
It is unclear how steroid hormones contribute to stroke, and conducting randomized controlled trials to obtain related evidence is challenging. Therefore, Mendelian randomization (MR) technique was employed in this study to examine this association. Through genome-wide association meta-analysis, the genetic variants of steroid hormones, including testosterone/17β-estradiol (T/E2) ratio, aldosterone, androstenedione, progesterone, and hydroxyprogesterone, were acquired as instrumental variables. Analysis was done on the impact of these steroid hormones on the risk of stroke subtypes. The T/E2 ratio was associated to an elevated risk of small vessel stroke (SVS) according to the inverse variance weighted approach which was the main MR analytic technique (OR, 1.23, 95% CI: 1.05-1.44, p = 0.009). These findings were solid since no heterogeneity nor horizontal pleiotropy were found. The causal association between T/E2 and SVS was also confirmed in the replication study (p = 0.009). Nevertheless, there was no proof that other steroid hormones increased the risk of stroke. According to this study, T/E2 ratio and SVS are causally related. However, strong evidence for the impact of other steroid hormones on stroke subtypes is still lacking. These findings may be beneficial for developing stroke prevention strategies from steroid hormones levels.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital, China-America Institute of Neurology, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Xuanwu Hospital, China-America Institute of Neurology, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China
| | - Ming Li
- Xuanwu Hospital, China-America Institute of Neurology, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China.
| | - Xunming Ji
- Xuanwu Hospital, China-America Institute of Neurology, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China.
| |
Collapse
|
2
|
Khan MB, Alam H, Siddiqui S, Shaikh MF, Sharma A, Rehman A, Baban B, Arbab AS, Hess DC. Exercise Improves Cerebral Blood Flow and Functional Outcomes in an Experimental Mouse Model of Vascular Cognitive Impairment and Dementia (VCID). Transl Stroke Res 2024; 15:446-461. [PMID: 36689081 PMCID: PMC10363247 DOI: 10.1007/s12975-023-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.
Collapse
Affiliation(s)
- Mohammad Badruzzaman Khan
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA.
| | - Haroon Alam
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Shahneela Siddiqui
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Muhammad Fasih Shaikh
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Abhinav Sharma
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Amna Rehman
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| |
Collapse
|
3
|
Rosso M, Ramaswamy S, Kvantaliani N, Mulatu Y, Little JN, Marczak I, Brahmaroutu A, Deo R, Lewey J, Messé SR, Cucchiara BL, Levine SR, Kasner SE. Stroke-Heart Syndrome: Does Sex Matter? J Am Heart Assoc 2023; 12:e029799. [PMID: 37850436 PMCID: PMC10727394 DOI: 10.1161/jaha.123.029799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/09/2023] [Indexed: 10/19/2023]
Abstract
Background Cardiovascular complications after acute ischemic stroke (AIS) can be related to chronic/comorbid cardiac conditions or acute disruption of the brain-heart autonomic axis (stroke-heart syndrome). Women are known to be more vulnerable to certain stress-induced cardiac complications, such as Takotsubo cardiomyopathy. We investigated sex differences in cardiac troponin (cTn) elevation, cardiac events, and outcomes after AIS. Methods and Results We retrospectively analyzed consecutive patients with AIS from 5 stroke centers. Patients with AIS with elevated baseline cTn and at least 2 cTn measurements were included, while patients with acute comorbid conditions that could impact cTn levels were excluded. Poststroke acute myocardial injury was defined as the presence of a dynamic cTn pattern (rise/fall >20% in serial measurements) in the absence of acute atherosclerotic coronary disease (type 1 myocardial infarction) or cardiac death (type 3 myocardial infarction). From a total cohort of 3789 patients with AIS, 300 patients were included in the study: 160 were women (53%). Women were older, had a lower burden of cardiovascular risk factors, and more frequently had cardioembolic stroke and right insula involvement (P values all <0.05). In multivariate analysis, women were more likely to have a dynamic cTn pattern (adjusted odds ratio, 2.1 [95% CI, 1.2-3.6]) and develop poststroke acute myocardial injury (adjusted odds ratio, 2.1 [95% CI, 1.1-3.8]). Patients with poststroke acute myocardial injury had higher 7-day mortality (adjusted odds ratio, 5.5 [95% CI, 1.2-24.4]). Conclusions In patients with AIS with elevated cTn at baseline, women are twice as likely to develop poststroke acute myocardial injury, and this is associated with higher risk of short-term mortality. Translational studies are needed to clarify mechanisms underlying sex differences in cardiac events and mortality in AIS.
Collapse
Affiliation(s)
- Michela Rosso
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA
| | - Srinath Ramaswamy
- Department of NeurologySUNY Downstate Health Sciences UniversityBrooklynNY
| | | | - Yohannes Mulatu
- Department of NeurologySUNY Downstate Health Sciences UniversityBrooklynNY
| | | | - Izabela Marczak
- Department of NeurologySUNY Downstate Health Sciences UniversityBrooklynNY
| | | | - Rajat Deo
- Division of Cardiology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Jennifer Lewey
- Division of Cardiology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Steven R. Messé
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA
| | | | - Steven R. Levine
- Department of NeurologySUNY Downstate Health Sciences UniversityBrooklynNY
| | - Scott E. Kasner
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
4
|
Caputo ML, Baldi E, Krüll JD, Pongan D, Cresta R, Benvenuti C, Cianella R, Primi R, Currao A, Bendotti S, Compagnoni S, Gentile FR, Anselmi L, Savastano S, Klersy C, Auricchio A. Impact of sex and role of coronary artery disease in out-of-hospital cardiac arrest presenting with refractory ventricular arrhythmias. Front Cardiovasc Med 2023; 10:1074432. [PMID: 37113702 PMCID: PMC10126276 DOI: 10.3389/fcvm.2023.1074432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction There are limited data on sex-related differences in out-of hospital cardiac arrests (OHCAs) with refractory ventricular arrhythmias (VA) and, in particular, about their relationship with cardiovascular risk profile and severity of coronary artery disease (CAD). Purpose Aim of this study was to characterize sex-related differences in clinical presentation, cardiovascular risk profile, CAD prevalence, and outcome in OHCA victims presenting with refractory VA. Methods All OHCAs with shockable rhythm that occurred between 2015 and 2019 in the province of Pavia (Italy) and in the Canton Ticino (Switzerland) were included. Results Out of 680 OHCAs with first shockable rhythm, 216 (33%) had a refractory VA. OHCA patients with refractory VA were younger and more often male. Males with refractory VA had more often a history of CAD (37% vs. 21%, p 0.03). In females, refractory VA were less frequent (M : F ratio 5 : 1) and no significant differences in cardiovascular risk factor prevalence or clinical presentation were observed. Male patients with refractory VA had a significantly lower survival at hospital admission and at 30 days as compared to males without refractory VA (45% vs. 64%, p < 0.001 and 24% vs. 49%, p < 0.001, respectively). Whereas in females, no significant survival difference was observed. Conclusions In OHCA patients presenting with refractory VA the prognosis was significantly poorer for male patients. The refractoriness of arrhythmic events in the male population was probably due to a more complex cardiovascular profile and in particular due to a pre-existing CAD. In females, OHCA with refractory VA were less frequent and no correlation with a specific cardiovascular risk profile was observed.
Collapse
Affiliation(s)
- Maria Luce Caputo
- Cardiology Department, Cardiocentro Ticino Institute, Lugano, Switzerland
| | - Enrico Baldi
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Joel Daniel Krüll
- Cardiology Department, Cardiocentro Ticino Institute, Lugano, Switzerland
| | - Damiano Pongan
- Cardiology Department, Cardiocentro Ticino Institute, Lugano, Switzerland
| | | | | | - Roberto Cianella
- Federazione Cantonale Ticinese Servizi Autoambulanze, Bellinzona, Switzerland
| | - Roberto Primi
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessia Currao
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Bendotti
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Compagnoni
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesca Romana Gentile
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luciano Anselmi
- Federazione Cantonale Ticinese Servizi Autoambulanze, Bellinzona, Switzerland
| | - Simone Savastano
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Catherine Klersy
- Service of Clinical Epidemiology and Biostatistics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angelo Auricchio
- Cardiology Department, Cardiocentro Ticino Institute, Lugano, Switzerland
| |
Collapse
|
5
|
Archie SR, Sharma S, Burks E, Abbruscato T. Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A pharmacokinetic and pharmacodynamics perspective. Neurotoxicology 2022; 89:140-160. [PMID: 35150755 PMCID: PMC8958572 DOI: 10.1016/j.neuro.2022.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that the detrimental effect of nicotine and tobacco smoke on the central nervous system (CNS) is caused by the neurotoxic role of nicotine on blood-brain barrier (BBB) permeability, nicotinic acetylcholine receptor expression, and the dopaminergic system. The ultimate consequence of these nicotine associated neurotoxicities can lead to cerebrovascular dysfunction, altered behavioral outcomes (hyperactivity and cognitive dysfunction) as well as future drug abuse and addiction. The severity of these detrimental effects can be associated with several biological determinants. Sex and age are two important biological determinants which can affect the pharmacokinetics and pharmacodynamics of several systemically available substances, including nicotine. With regard to sex, the availability of gonadal hormone is impacted by the pregnancy status and menstrual cycle resulting in altered metabolism rate of nicotine. Additionally, the observed lower smoking cessation rate in females compared to males is a consequence of differential effects of sex on pharmacokinetics and pharmacodynamics of nicotine. Similarly, age-dependent alterations in the pharmacokinetics and pharmacodynamics of nicotine have also been observed. One such example is related to severe vulnerability of adolescence towards addiction and long-term behavioral changes which may continue through adulthood. Considering the possible neurotoxic effects of nicotine on the central nervous system and the deterministic role of sex as well as age on these neurotoxic effects of smoking, it has become important to consider sex and age to study nicotine induced neurotoxicity and development of treatment strategies for combating possible harmful effects of nicotine. In the future, understanding the role of sex and age on the neurotoxic actions of nicotine can facilitate the individualization and optimization of treatment(s) to mitigate nicotine induced neurotoxicity as well as smoking cessation therapy. Unfortunately, however, no such comprehensive study is available which has considered both the sex- and age-dependent neurotoxicity of nicotine, as of today. Hence, the overreaching goal of this review article is to analyze and summarize the impact of sex and age on pharmacokinetics and pharmacodynamics of nicotine and possible neurotoxic consequences associated with nicotine in order to emphasize the importance of including these biological factors for such studies.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
6
|
Ohtomo R, Ishikawa H, Kinoshita K, Chung KK, Hamanaka G, Ohtomo G, Takase H, Wrann CD, Katsuki H, Iwata A, Lok J, Lo EH, Arai K. Treadmill Exercise During Cerebral Hypoperfusion Has Only Limited Effects on Cognitive Function in Middle-Aged Subcortical Ischemic Vascular Dementia Mice. Front Aging Neurosci 2022; 13:756537. [PMID: 34992525 PMCID: PMC8724785 DOI: 10.3389/fnagi.2021.756537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Clinical and basic research suggests that exercise is a safe behavioral intervention and is effective for improving cognitive function in cerebrovascular diseases, including subcortical ischemic vascular dementia (SIVD). However, most of the basic research uses young animals to assess the effects of exercise, although SIVD is an age-related disease. In this study, therefore, we used middle-aged mice to examine how treadmill exercise changes the cognitive function of SIVD mice. As a mouse model of SIVD, prolonged cerebral hypoperfusion was induced in 8-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into two groups: a group that received 6-week treadmill exercise and a sedentary group for observation. After subjecting the mice to multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to only be effective in ameliorating cognitive decline in the Y-maze test. We previously demonstrated that the same regimen of treadmill exercise was effective in young hypoperfused-SIVD mice for all three cognitive tests. Therefore, our study may indicate that treadmill exercise during cerebral hypoperfusion has only limited effects on cognitive function in aging populations.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Keita Kinoshita
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Christiane D Wrann
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
7
|
Bottenfield KR, Bowley BGE, Pessina MA, Medalla M, Rosene DL, Moore TL. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biol Sex Differ 2021; 12:54. [PMID: 34627376 PMCID: PMC8502310 DOI: 10.1186/s13293-021-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. METHODS Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. RESULTS Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. CONCLUSIONS These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.
Collapse
Affiliation(s)
- Karen R Bottenfield
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Monica A Pessina
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Maria Medalla
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
8
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
9
|
Feng D, Li C, Yang X, Wang L. Gender differences and survival after an out-of-hospital cardiac arrest: a systematic review and meta-analysis. Intern Emerg Med 2021; 16:765-775. [PMID: 33174152 DOI: 10.1007/s11739-020-02552-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022]
Abstract
Patients who experience out-of-hospital cardiac arrest (OHCA) have unacceptably high mortality rates. It remains unclear whether gender has an association with survival in this regard. Hence, we aimed to investigate the association between gender and survival by conducting a systematic review and meta-analysis. The databases of PubMed, Embase, and Cochrane Database of Systematic Reviews were searched from inception to 17 March, 2020. Studies assessing the association between gender and survival to discharge or 30-day survival after OHCA were included. Two reviewers independently assessed the eligibility of the identified studies. The random-effects model was used to pool data, and the outcome was reported as odds ratios (ORs) and 95% confidence intervals, as the relative measure of association. Twenty-three eligible studies enrolling 897,805 patients were included in this systematic review. Overall, women were older and less likely to experience arrest in public places. When arrest occurred, women had less initial shockable rhythm, were less likely to be witnessed by bystanders, and were less likely provided with CPR compared with men. After admission, women underwent less coronary angiography, percutaneous coronary angiography, and targeted temperature management therapy. Eleven studies with ORs were pooled, showing a significant survival benefit in women (OR = 1.08, p < 0.05, I2 = 52.3%). In the subgroup analysis, both premenopausal women (< 50 years) (OR = 1.42, p < 0.001, I2 = 0%) and postmenopausal women (≥ 50 years) (OR = 1.07, p < 0.05, I2 = 16.4%) had higher odds of survival compared with age-matched men. Despite the unfavorable factors, the pooled results showed a significant survival benefit in women after OHCA, especially in premenopausal women.
Collapse
Affiliation(s)
- Dejing Feng
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Chuang Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Lefeng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China.
| |
Collapse
|
10
|
Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol 2021; 21:91. [PMID: 33632142 PMCID: PMC7908649 DOI: 10.1186/s12883-021-02116-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.
Collapse
|
11
|
Okada T, Uchida K, Sakakibara F, Kageyama H, Yasaka M, Toyoda K, Mori E, Hirano T, Hamasaki T, Yamagami H, Nagao T, Uchiyama S, Minematsu K, Yoshimura S. Sex Differences in Management and Outcomes of Cardioembolic Stroke: Post HOC Analyses of the RELAXED Study. J Stroke Cerebrovasc Dis 2021; 30:105613. [PMID: 33529924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Experimental models have clearly demonstrated sex differences in the pathophysiology of stroke and prognosis, however clinical evidence remains elusive. In this study, we examined sex differences as a post hoc analysis of RELAXED (Recurrent Embolism Lessened by rivaroxaban, an anti-X agent, of Early Dosing for acute IS and TIA with atrial fibrillation) Study. METHODS We stratified study participants by sex and compared baseline and clinical characteristics as well as clinical outcomes. The primary outcome measure was a good outcome defined as a modified Rankin Scale score of 0-2 at 90 days after stroke. Secondary outcomes were mortality at 90 days, intracranial hemorrhage within 90 days, and recurrence of stroke or transient ischemic attack within 90 days. We constructed a logistic regression model to estimate the adjusted odds ratio of female patients compared with male patients for the primary and secondary outcomes. RESULTS Of 1303 patients, most were male (57.7%) with a mean age of 74.5 years. Female patients were older with a mean age of 80.6 ± 8.9 years and had significantly less frequent anticoagulation therapy before onset of stroke and more severe NIHSS scores. Good outcome was observed in 51.2% and 63.3% of the females and males (p < 0.0001). The adjusted odds ratio of a good outcome in females was 1.12 (95% confidence interval, 0.44-2.87) (p = 0.81). There were no sex differences in secondary outcomes. CONCLUSION Adjusted regression analysis found no sex difference in the treatment outcomes at 90 days after stroke with non-valvular atrial fibrillation.
Collapse
Affiliation(s)
- Takashi Okada
- Department of Neurosurgery, Sanda City Hospital, Sanda, Japan
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Hiroto Kageyama
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Tokyo, Japan
| | - Toshimitsu Hamasaki
- The George Washington University Biostatistics Center, Rockville, Maryland, USA
| | - Hiroshi Yamagami
- Department of Stroke Neurology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takehiko Nagao
- Department of Neurology, Nippon Medical School, Tama-Nagayama Hospital, Tokyo, Japan
| | - Shinichiro Uchiyama
- Clinical Research Center for Medicine, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Medical Center, Tokyo, Japan
| | - Kazuo Minematsu
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan.
| | | |
Collapse
|
12
|
Pawlina-Tyszko K, Oczkowicz M, Gurgul A, Szmatoła T, Bugno-Poniewierska M. MicroRNA profiling of the pig periaqueductal grey (PAG) region reveals candidates potentially related to sex-dependent differences. Biol Sex Differ 2020; 11:67. [PMID: 33451362 PMCID: PMC7809845 DOI: 10.1186/s13293-020-00343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs indirectly orchestrate myriads of essential biological processes. A wide diversity of miRNAs of the neurodevelopmental importance characterizes the brain tissue, which, however, exhibits region-specific miRNA profile differences. One of the most conservative regions of the brain is periaqueductal grey (PAG) playing vital roles in significant functions of this organ, also those observed to be sex-influenced. The domestic pig is an important livestock species but is also believed to be an excellent human model. This is of particular importance for neurological research because of the similarity of pig and human brains as well as difficult access to human samples. However, the pig PAG profile has not been characterized so far. Moreover, molecular bases of sex differences connected with brain functioning, including miRNA expression profiles, have not been fully deciphered yet. Methods Thus, in this study, we applied next-generation sequencing to characterize pig PAG expressed microRNAs. Furthermore, we performed differential expression analysis between females and males to identify changes of the miRNA profile and reveal candidates underlying sex-related differences. Results As a result, known brain-enriched, and new miRNAs which will expand the available profile, were identified. The downstream analysis revealed 38 miRNAs being differentially expressed (DE) between female and male samples. Subsequent pathway analysis showed that they enrich processes vital for neuron growth and functioning, such as long-term depression and axon guidance. Among the identified sex-influenced miRNAs were also those associated with the PAG physiology and diseases related to this region. Conclusions The obtained results broaden the knowledge on the porcine PAG miRNAome, along with its dynamism reflected in different isomiR signatures. Moreover, they indicate possible mechanisms associated with sex-influenced differences mediated via miRNAs in the PAG functioning. They also provide candidate miRNAs for further research concerning, i.e., sex-related bases of physiological and pathological processes occurring in the nervous system. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00343-2.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.,Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.,Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
13
|
Deems NP, Leuner B. Pregnancy, postpartum and parity: Resilience and vulnerability in brain health and disease. Front Neuroendocrinol 2020; 57:100820. [PMID: 31987814 PMCID: PMC7225072 DOI: 10.1016/j.yfrne.2020.100820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Risk and resilience in brain health and disease can be influenced by a variety of factors. While there is a growing appreciation to consider sex as one of these factors, far less attention has been paid to sex-specific variables that may differentially impact females such as pregnancy and reproductive history. In this review, we focus on nervous system disorders which show a female bias and for which there is data from basic research and clinical studies pointing to modification in disease risk and progression during pregnancy, postpartum and/or as a result of parity: multiple sclerosis (MS), depression, stroke, and Alzheimer's disease (AD). In doing so, we join others (Shors, 2016; Galea et al., 2018a) in aiming to illustrate the importance of looking beyond sex in neuroscience research.
Collapse
Affiliation(s)
- Nicholas P Deems
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA.
| |
Collapse
|
14
|
Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Transl Stroke Res 2019; 11:496-502. [PMID: 31606888 DOI: 10.1007/s12975-019-00734-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence suggests that patients with subcortical ischemic vascular dementia (SIVD) perform better at cognitive tests after exercise. However, the underlying mechanism for this effect is largely unknown. Here, we examined how treadmill exercise changes the cognitive function and white matter cellular pathology in a mouse model of SIVD. Prolonged cerebral hypoperfusion was induced in 2-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into a group that received 6-week treadmill exercise and a sedentary group for observation. In multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to ameliorate cognitive decline in the hypoperfused SIVD mice. In addition, immunohistological analyses confirmed that there was a larger population of oligodendrocyte precursor cells in the subventricular zone of exercised versus sedentary mice. Although further investigations are needed to confirm a causal link between these findings, our study establishes a model and cellular foundation for investigating the mechanisms through which exercise preserves cognitive function in SIVD.
Collapse
|
15
|
Jarman AF, Mumma BE, Perman SM, Kotini-Shah P, McGregor AJ. When the Female Heart Stops: Sex and Gender Differences in Out-of-Hospital Cardiac Arrest Epidemiology and Resuscitation. Clin Ther 2019; 41:1013-1019. [PMID: 31053294 DOI: 10.1016/j.clinthera.2019.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022]
Abstract
Sex- and gender-based differences are emerging as clinically significant in the epidemiology and resuscitation of patients with out-of-hospital cardiac arrest (OHCA). Female patients tend to be older, experience arrest in private locations, and have fewer initial shockable rhythms (ventricular fibrillation/ventricular tachycardia). Despite standardized algorithms for the management of OHCA, women are less likely to receive evidence-based interventions, including advanced cardiac life support medications, percutaneous coronary intervention, and targeted temperature management. While some data suggest a protective mechanism of estrogen in the heart, brain, and kidney, its role is incompletely understood. Female patients experience higher mortality from OHCA, prompting the need for sex-specific research.
Collapse
Affiliation(s)
- Angela F Jarman
- Department of Emergency Medicine, University of California-Davis, Sacramento, CA, USA.
| | - Bryn E Mumma
- Department of Emergency Medicine, University of California-Davis, Sacramento, CA, USA
| | - Sarah M Perman
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Alyson J McGregor
- Department of Emergency Medicine, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Fels JA, Manfredi G. Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochem Res 2019; 44:2336-2345. [PMID: 30863968 DOI: 10.1007/s11064-019-02769-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Brain and heart ischemia are among the leading causes of death and disability in both men and women, but there are significant sex differences in the incidence and severity of these diseases. Ca2+ dysregulation in response to ischemia/reperfusion injury (I/RI) is a well-recognized pathogenic mechanism leading to the death of affected cells. Excess intracellular Ca2+ causes mitochondrial matrix Ca2+ overload that can result in mitochondrial permeability transition (MPT), which can have severe consequences for mitochondrial function and trigger cell death. Recent findings indicate that estrogens and their related receptors are involved in the regulation of MPT, suggesting that sex differences in I/RI could be linked to estrogen-dependent modulation of mitochondrial Ca2+. Here, we review the evidence supporting sex differences in I/RI and the role of estrogen and estrogen receptors in producing these differences, the involvement of mitochondrial Ca2+ overload in disease pathogenesis, and the estrogen-dependent modulation of MPT that may contribute to sex differences.
Collapse
Affiliation(s)
- Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
18
|
Roy-O’Reilly M, McCullough LD. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology 2018; 159:3120-3131. [PMID: 30010821 PMCID: PMC6963709 DOI: 10.1210/en.2018-00465] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a devastating brain injury resulting in high mortality and substantial loss of function. Understanding the pathophysiology of ischemic stroke risk, mortality, and functional loss is critical to the development of new therapies. Age and sex have a complex and interactive effect on ischemic stroke risk and pathophysiology. Aging is the strongest nonmodifiable risk factor for ischemic stroke, and aged stroke patients have higher mortality and morbidity and poorer functional recovery than their young counterparts. Importantly, patient age modifies the influence of patient sex in ischemic stroke. Early in life, the burden of ischemic stroke is higher in men, but stroke becomes more common and debilitating for women in elderly populations. The profound effects of sex and age on clinical ischemic stroke are mirrored in the results of experimental in vivo and in vitro studies. Here, we review current knowledge on the influence of age and sex in the incidence, mortality, and functional outcome of ischemic stroke in clinical populations. We also discuss the experimental evidence for sex and age differences in stroke pathophysiology and how a better understanding of these biological variables can improve clinical care and enhance development of novel therapies.
Collapse
Affiliation(s)
- Meaghan Roy-O’Reilly
- Department of Neurology, University of Texas Health Science Center, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, Texas
- Correspondence: Louise D. McCullough, MD, PhD, Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030. E-mail:
| |
Collapse
|
19
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: What is the status quo? Front Neuroendocrinol 2018; 50:3-17. [PMID: 29753797 DOI: 10.1016/j.yfrne.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/11/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
20
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
21
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: what is the status quo? Front Neuroendocrinol 2018:S0091-3022(18)30040-2. [PMID: 29763641 DOI: 10.1016/j.yfrne.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
22
|
Sadaie MR, Farhoudi M, Zamanlu M, Aghamohammadzadeh N, Amouzegar A, Rosenbaum RE, Thomas GA. What does the research say about androgen use and cerebrovascular events? Ther Adv Drug Saf 2018; 9:439-455. [PMID: 30364888 DOI: 10.1177/2042098618773318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the benefits of androgen therapy and neurosteroids in aging men, while concerns remain about the potential associations of exogenous steroids and incidents of cerebrovascular events and ischemic stroke (IS). Testosterone is neuroprotective, neurotrophic and a potent stimulator of neuroplasticity. These benefits are mediated primarily through conversion of a small amount of testosterone to estradiol by the catalytic activity of estrogen synthetase (aromatase cytochrome P450 enzyme). New studies suggest that abnormal serum levels of the nonaromatized potent metabolite of testosterone, either high or low dihydrotestosterone (DHT), is a risk factor for stroke. Associations between pharmacologic androgen use and the incidence of IS are questionable, because a significant portion of testosterone is converted to DHT. There is also insufficient evidence to reject a causal relationship between the pro-testosterone adrenal androgens and incidence of IS. Moreover, vascular intima-media thickness, which is a predictor of stroke and myocardial symptoms, has correlations with sex hormones. Current diagnostic and treatment criteria for androgen therapy for cerebrovascular complications are unclear. Confounding variables, including genetic and metabolic alterations of the key enzymes of steroidogenesis, ought to be considered. Information extracted from pharmacogenetic testing may aid in expounding the protective-destructive properties of neurosteroids, as well as the prognosis of androgen therapy, in particular their cerebrovascular outcomes. This investigative review article addresses relevant findings of the clinical and experimental investigations of androgen therapy, emphasizes the significance of genetic testing of androgen responsiveness towards individualized therapy in post-IS injuries as well as identifying pertinent questions.
Collapse
Affiliation(s)
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masumeh Zamanlu
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Aghamohammadzadeh
- Department of Endocrinology, Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gary A Thomas
- Penn State Hershey Neurology, Penn State University, PA, USA
| |
Collapse
|
23
|
Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 2018; 8:36973-36983. [PMID: 28445139 PMCID: PMC5514885 DOI: 10.18632/oncotarget.16937] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 01/27/2023] Open
Abstract
The membrane channel Pannexin 1 (Panx1) mediates apoptotic and inflammatory signaling cascades in injured neurons, responses previously shown to be sexually dimorphic under ischemic conditions. We tested the hypothesis that Panx1 plays an underlying role in mediating sex differences in stroke outcome responses. Middle-aged, 8-9 month old male and female wild type and Panx1 KO mice were subjected to permanent middle cerebral artery (MCA) occlusion, and infarct size and astrocyte and microglia activation were assessed 4 days later. The sexually dimorphic nature of Panx1 deletion was also explored by testing the effect of probenecid a known Panx1 blocker to alter stroke volume. Panx1 KO females displayed significantly smaller infarct volumes (~ 50 % reduction) compared to their wild-type counterparts, whereas no such KO effect occurred in males. This sex-specific effect of Panx1 KO was recapitulated by significant reductions in peri-infarct inflammation and astrocyte reactivity, as well as smaller infarct volumes in probenecid treated females, but not males. Finally, females showed overall, higher Panx1 protein levels than males under ischemic conditions. These findings unmask a deleterious role for Panx1 in response to permanent MCA occlusion, that is unique to females, and provide several new frameworks for understanding sex differences in stroke outcome.
Collapse
|
24
|
Ghouili I, Bahdoudi S, Morin F, Amri F, Hamdi Y, Coly PM, Walet-Balieu ML, Leprince J, Zekri S, Vaudry H, Vaudry D, Castel H, Amri M, Tonon MC, Masmoudi-Kouki O. Endogenous Expression of ODN-Related Peptides in Astrocytes Contributes to Cell Protection Against Oxidative Stress: Astrocyte-Neuron Crosstalk Relevance for Neuronal Survival. Mol Neurobiol 2017; 55:4596-4611. [PMID: 28698967 DOI: 10.1007/s12035-017-0630-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022]
Abstract
Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of H2O2 (50 μM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 μM H2O2 increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 μM H2O2 induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 μM H2O2-stressed astrocytes significantly reduced the neuronal death induced by H2O2; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.
Collapse
Affiliation(s)
- Ikram Ghouili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.,Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Fabrice Morin
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Fatma Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Yosra Hamdi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Pierre Michael Coly
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Marie-Laure Walet-Balieu
- Regional Proteomic Platform (Pissaro), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.,Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Sami Zekri
- Electron Microscopy Laboratory, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - David Vaudry
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.,Regional Proteomic Platform (Pissaro), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Hélène Castel
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Marie-Christine Tonon
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.
| | - Olfa Masmoudi-Kouki
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.
| |
Collapse
|
25
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
27
|
Faber JE, Moore SM, Lucitti JL, Aghajanian A, Zhang H. Sex Differences in the Cerebral Collateral Circulation. Transl Stroke Res 2016; 8:273-283. [PMID: 27844273 DOI: 10.1007/s12975-016-0508-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022]
Abstract
Premenopausal women and intact female rodents sustain smaller cerebral infarctions than males. Several sex-dependent differences have been identified as potential contributors, but many questions remain unanswered. Mice exhibit wide variation in native collateral number and diameter (collateral extent) that is dependent on differences in genetic background, aging, and other comorbidities and that contributes to their also-wide differences in infarct volume. Likewise, variation in infarct volume correlates with differences in collateral-dependent blood flow in patients with acute ischemic stroke. We examined whether extent of pial collateral arterioles and posterior communicating collateral arteries (PComAs) differ depending on sex in young, aged, obese, hypertensive, and genetically different mice. We combined new data with meta-analysis of our previously published data. Females of C57BL/6J (B6) and BALB/cByJ (BC) strains sustained smaller infarctions than males after permanent MCA occlusion. This protection was unchanged in BC mice after introgression of the B6 allele of Dce1, the major genetic determinant of variation in pial collaterals among mouse strains. Consistent with this, collateral extent in these and other strains did not differ with sex. Extent of PComAs and primary cerebral arteries also did not vary with sex. No dimorphism was evident for loss of pial collateral number and/or diameter (collateral rarefaction) caused by aging, obesity, and hypertension, nor for collateral remodeling after pMCAO. However, rarefaction was greater in females with long-standing hypertension. We conclude that smaller infarct volume in female mice is not due to greater collateral extent, greater remodeling, or less rarefaction caused by aging, obesity, or hypertension.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Scott M Moore
- Department of Surgery, University of Colorado, Denver, CO, USA
| | - Jennifer L Lucitti
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Arroja MMC, Reid E, McCabe C. Therapeutic potential of the renin angiotensin system in ischaemic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2016; 8:8. [PMID: 27761230 PMCID: PMC5054604 DOI: 10.1186/s13231-016-0022-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) consists of the systemic hormone system, critically involved in regulation and homeostasis of normal physiological functions [i.e. blood pressure (BP), blood volume regulation], and an independent brain RAS, which is involved in the regulation of many functions such as memory, central control of BP and metabolic functions. In general terms, the RAS consists of two opposing axes; the ‘classical axis’ mediated primarily by Angiotensin II (Ang II), and the ‘alternative axis’ mediated mainly by Angiotensin-(1–7) (Ang-(1–7)). An imbalance of these two opposing axes is thought to exist between genders and is thought to contribute to the pathology of cardiovascular conditions such as hypertension, a stroke co-morbidity. Ischaemic stroke pathophysiology has been shown to be influenced by components of the RAS with specific RAS receptor antagonists and agonists improving outcome in experimental models of stroke. Manipulation of the two opposing axes following acute ischaemic stroke may provide an opportunity for protection of the neurovascular unit, particularly in the presence of pre-existing co-morbidities where the balance may be shifted. In the present review we will give an overview of the experimental stroke studies that have investigated pharmacological interventions of the RAS.
Collapse
Affiliation(s)
- Mariana Moreira Coutinho Arroja
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| | - Emma Reid
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| | - Christopher McCabe
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| |
Collapse
|
29
|
Nguyen TVV, Frye JB, Zbesko JC, Stepanovic K, Hayes M, Urzua A, Serrano G, Beach TG, Doyle KP. Multiplex immunoassay characterization and species comparison of inflammation in acute and non-acute ischemic infarcts in human and mouse brain tissue. Acta Neuropathol Commun 2016; 4:100. [PMID: 27600707 PMCID: PMC5011964 DOI: 10.1186/s40478-016-0371-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
This study provides a parallel characterization of the cytokine and chemokine response to stroke in the human and mouse brain at different stages of infarct resolution. The study goal was to address the hypothesis that chronic inflammation may contribute to stroke-related dementia. We used C57BL/6 and BALB/c mice to control for strain related differences in the mouse immune response. Our data indicate that in both mouse strains, and humans, there is increased granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-12 p70 (IL-12p70), interferon gamma-induced protein-10 (IP-10), keratinocyte chemoattractant/interleukin-8 (KC/IL-8), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated on activation, normal T cell expressed and secreted (RANTES), and Tumor necrosis factor-α (TNF-α) in the infarct core during the acute time period. Nevertheless, correlation and two-way ANOVA analyses reveal that despite this substantial overlap between species, there are still significant differences, particularly in the regulation of granulocyte colony-stimulating factor (G-CSF), which is increased in mice but not in humans. In the weeks after stroke, during the stage of liquefactive necrosis, there is significant resolution of the inflammatory response to stroke within the infarct. However, CD68+ macrophages remain present, and levels of IL-6 and MCP-1 remain chronically elevated in infarcts from both mice and humans. Furthermore, there is a chronic T cell response within the infarct in both species. This response is differentially polarized towards a T helper 1 (Th1) response in C57BL/6 mice, and a T helper 2 (Th2) response in BALB/c mice, suggesting that the chronic inflammatory response to stroke may follow a different trajectory in different patients. To control for the fact that the average age of the patients used in this study was 80 years, they were of both sexes, and many had suffered from multiple strokes, we also present findings that reveal how the chronic inflammatory response to stroke is impacted by age, sex, and multiple strokes in mice. Our data indicate that the chronic cytokine and chemokine response to stroke is not substantially altered in 18-month old compared to 3-month old C57BL/6 mice, although T cell infiltration is attenuated. We found a significant correlation in the chronic cytokine response to stroke in males and females. However, the chronic cytokine response to stroke was mildly exacerbated by a recurrent stroke in both C57BL/6 and BALB/c mice.
Collapse
|
30
|
Riew TR, Shin YJ, Kim HL, Cho JM, Pak HJ, Lee MY. Spatiotemporal Progression of Microcalcification in the Hippocampal CA1 Region following Transient Forebrain Ischemia in Rats: An Ultrastructural Study. PLoS One 2016; 11:e0159229. [PMID: 27414398 PMCID: PMC4945069 DOI: 10.1371/journal.pone.0159229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Calcification in areas of neuronal degeneration is a common finding in several neuropathological disorders including ischemic insults. Here, we performed a detailed examination of the onset and spatiotemporal profile of calcification in the CA1 region of the hippocampus, where neuronal death has been observed after transient forebrain ischemia. Histopathological examinations showed very little alizarin red staining in the CA1 pyramidal cell layer until day 28 after reperfusion, while prominent alizarin red staining was detected in CA1 dendritic subfields, particularly in the stratum radiatum, by 14 days after reperfusion. Electron microscopy using the osmium/potassium dichromate method and electron probe microanalysis revealed selective calcium deposits within the mitochondria of degenerating dendrites at as early as 7 days after reperfusion, with subsequent complete mineralization occurring throughout the dendrites, which then coalesced to form larger mineral conglomerates with the adjacent calcifying neurites by 14 days after reperfusion. Large calcifying deposits were frequently observed at 28 days after reperfusion, when they were closely associated with or completely engulfed by astrocytes. In contrast, no prominent calcification was observed in the somata of CA1 pyramidal neurons showing the characteristic features of necrotic cell death after ischemia, although what appeared to be calcified mitochondria were noted in some degenerated neurons that became dark and condensed. Thus, our data indicate that intrahippocampal calcification after ischemic insults initially occurs within the mitochondria of degenerating dendrites, which leads to the extensive calcification that is associated with ischemic injuries. These findings suggest that in degenerating neurons, the calcified mitochondria in the dendrites, rather than in the somata, may serve as the nidus for further calcium precipitation in the ischemic hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea, 137-701, Seoul, Korea
| | - Jeong Min Cho
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Abstract
UNLABELLED The possibility that mechanisms of synaptic modulation differ between males and females has far-reaching implications for understanding brain disorders that vary between the sexes. We found recently that 17β-estradiol (E2) acutely suppresses GABAergic inhibition in the hippocampus of female rats through a sex-specific estrogen receptor α (ERα), mGluR, and endocannabinoid-dependent mechanism. Here, we define the intracellular signaling that links ERα, mGluRs, and endocannabinoids in females and identify where in this pathway males and females differ. Using a combination of whole-cell patch-clamp recording and biochemical analyses in hippocampal slices from young adult rats, we show that E2 acutely suppresses inhibition in females through mGluR1 stimulation of phospholipase C, leading to inositol triphosphate (IP3) generation, activation of the IP3 receptor (IP3R), and postsynaptic endocannabinoid release, likely of anandamide. Analysis of sex differences in this pathway showed that E2 stimulates a much greater increase in IP3 levels in females than males, whereas the group I mGluR agonist DHPG increases IP3 levels equivalently in each sex. Coimmunoprecipitation showed that ERα-mGluR1 and mGluR1-IP3R complexes exist in both sexes but are regulated by E2 only in females. Independently of E2, a fatty acid amide hydrolase inhibitor, which blocks breakdown of anandamide, suppressed >50% of inhibitory synapses in females with no effect in males, indicating tonic endocannabinoid release in females that is absent in males. Together, these studies demonstrate sex differences in both E2-dependent and E2-independent regulation of the endocannabinoid system and suggest that manipulation of endocannabinoids in vivo could affect physiological and behavioral responses differently in each sex. SIGNIFICANCE STATEMENT Many brain disorders vary between the sexes, yet the degree to which this variation arises from differential experience versus intrinsic biological sex differences is unclear. In this study, we demonstrate intrinsic sex differences in molecular regulation of a key neuromodulatory system, the endocannabinoid system, in the hippocampus. Endocannabinoids are involved in diverse aspects of physiology and behavior that involve the hippocampus, including cognitive and motivational state, responses to stress, and neurological disorders such as epilepsy. Our finding that molecular regulation of the endocannabinoid system differs between the sexes suggests mechanisms through which experiences or therapeutics that engage endocannabinoids could affect males and females differently.
Collapse
|
32
|
Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Exp Neurol 2015; 275 Pt 1:78-83. [PMID: 26522013 DOI: 10.1016/j.expneurol.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sirtuins (Sirt) are a class of deacetylase enzymes that play an important role in cell proliferation. Sirt2 activation produces O-acetylated-ADPribose (OAADPr) which can act as a ligand for transient receptor potential cation channel, M2 (TRPM2). We tested the hypothesis that Sirt2 is activated following global cerebral ischemia and contributes to neuronal injury through activation of TRPM2. METHODS Adult male and female mice (8-12 weeks old) C57Bl/6 and TRPM2 knock-out mice were subjected to 8 min of cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). The Sirt2 inhibitor AGK-2 was administered intravenously 30 min after resuscitation. Hippocampal CA1 injury was analyzed at 3 days after CA/CPR. Acute Sirt2 activity was analyzed at 3 and 24 h after CA/CPR. Long-term hippocampal function was assessed using slice electrophysiology 7 days after CA/CPR. RESULTS AGK-2 significantly reduced CA1 injury in WT but not TRPM2 knock-out males and had no effect on CA1 injury in females. Elevated Sirt2 activity was observed in hippocampal tissue from males at 24 h after cardiac arrest and was reduced by AGK-2. In contrast, Sirt2 activity in females was increased at 3 but not 24 h. Finally, we observed long-term benefit of AGK-2 on hippocampal function, with a protection of long-term potentiation at CA1 synapses at 7 and 30 days after ischemia. CONCLUSIONS In summary, we observed a male specific activation of Sirt2 that contributes to neuronal injury and functional deficits after ischemia specifically in males. These results are consistent with a role of Sirt2 in activating TRPM2 following global ischemia in a sex specific manner. These results support the growing body of literature showing that oxidative stress mechanisms predominate in males and converge on TRPM2 activation as a mediator of cell death.
Collapse
|
33
|
Zeng Y, Liu JX, Yan ZP, Yao XH, Liu XH. Potential microRNA biomarkers for acute ischemic stroke. Int J Mol Med 2015; 36:1639-47. [PMID: 26459744 DOI: 10.3892/ijmm.2015.2367] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/29/2015] [Indexed: 11/05/2022] Open
Abstract
Acute ischemic stroke is a significant cause of high morbidity and mortality in the aging population globally. However, current therapeutic strategies for acute ischemic stroke are limited. Atherosclerotic plaque is considered an independent risk factor for acute ischemic stroke. To identify biomarkers for carotid atheromatous plaque, bioinformatics analysis of the gene microarray data of plaque and intact tissue from individuals was performed. Differentially expressed genes (DEGs) were identified using the Multtest and Limma packages of R language, including 56 downregulated and 69 upregulated DEGs. Enriched microRNA (miRNA or miR) DEGs networks were generated using WebGestalt software and the STRING databases, and the miRNAs were validated using serum from acute ischemic stroke patients with reverse transcription quantitative PCR (RT‑qPCR). Four confirmed differentially expressed miRNAs (miR‑9, ‑22, ‑23 and ‑125) were associated with 28 upregulated DEGs, and 7 miRNAs (miR‑9, ‑30, ‑33, ‑124, ‑181, ‑218 and ‑330) were associated with 25 downregulated DEGs. Gene ontology (GO) function suggested that the confirmed miRNA‑targeted DEGs predominantly associated with signal transduction, the circulatory system, biological adhesion, striated muscle contraction, wound healing and the immune system. The confirmed miRNA‑targeted genes identified serve as potential therapeutic targets for acute ischemic stroke.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing-Xia Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi-Ping Yan
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Hong Yao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Heng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
34
|
Dehlendorff C, Andersen KK, Olsen TS. Sex Disparities in Stroke: Women Have More Severe Strokes but Better Survival Than Men. J Am Heart Assoc 2015; 4:e001967. [PMID: 26150479 PMCID: PMC4608080 DOI: 10.1161/jaha.115.001967] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Uncertainty remains about whether stroke affects men and women similarly. We studied differences between men and women with regard to stroke severity and survival. METHODS AND RESULTS We used the Danish Stroke Registry, with information on all hospital admissions for stroke in Denmark between 2003 and 2012 (N=79 617), and the Danish Register of Causes of Death. Information was available on age, sex, marital status, stroke severity, stroke subtype, socioeconomic status, and cardiovascular risk profile. We studied only deaths due to the index stroke, with the assumption that death reported on death certificates as due to stroke was related to the index stroke if death occurred within the first week or month after stroke. Multivariate Cox regression analysis and multiple imputation were applied. Stroke was the cause of death for 4373 and 5512 of the 79 617 patients within 1 week (5.5%) or 1 month (6.9%), respectively. After the age of 60 years, women had more severe strokes than men. Up to ages in the mid-60s, no difference in the risk of death from stroke was seen between the 2 sexes. For people aged >65 years, however, the risk gradually became greater in men than in women and significantly so (>15%) from the mid-70s (adjusted for age, marital status, stroke severity, stroke subtype, socioeconomic status, and cardiovascular risk factors). Results were essentially the same when analyzing deaths within 1 week, 1 month and ischemic and hemorrhagic stroke separately. CONCLUSIONS Stroke affects women and men differently. Elderly women were affected more severely than elderly men but were more likely to survive.
Collapse
Affiliation(s)
| | - Klaus Kaae Andersen
- Section of statistics, Danish Cancer Society Research CenterCopenhagen, Denmark
| | - Tom Skyhøj Olsen
- Department of Neurology, Bispebjerg University HospitalCopenhagen, Denmark
| |
Collapse
|
35
|
Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:39-46. [PMID: 25366597 DOI: 10.1007/978-3-319-04981-6_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Early brain injury (EBI) and cerebral vasospasm (CVS) are the two most important pathophysiological mechanisms for brain injury and poor outcomes for patients with SAH. CVS has traditionally been considered the sole cause of delayed ischemic neurological deficits after SAH. However, the failure of antivasospastic therapy in patients with SAH supported changing the research target from CVS to other mechanisms. Currently, more attention has been focused on global brain injury within 3 days after ictus, designated as EBI. The dysfunction of subcellular organelles, such as endoplasmic reticulum stress, mitochondrial failure, and autophagy-lysosomal system activation, has developed during EBI and delayed brain injury after SAH. To our knowledge, there is a lack of review articles addressing the direction of organelle dysfunction after SAH. In this review, we discuss the roles of organelle dysfunction in the pathogenesis of SAH and present the opportunity to develop novel therapeutic strategies of SAH via modulating the functions of organelles.
Collapse
|
36
|
Hurn PD. 2014 Thomas Willis Award Lecture: sex, stroke, and innovation. Stroke 2014; 45:3725-9. [PMID: 25336516 PMCID: PMC4245388 DOI: 10.1161/strokeaha.114.005377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 01/05/2023]
Abstract
Innovation is a form of purposeful discovery behavior that exploits the unexpected, utilizes imagination, and provides one avenue of new solutions to complex human health needs. It is through this lens that two examples are described in which innovative approaches have been used to dissect the complexities of stroke pathophysiology. The first example focuses on one of the most fundamental genetic factors relevant to the brain and ischemic injury: biological sex. Much might be gained by understanding the details of sex-specific pathobiology, if the field is to develop therapies that work well in patients of both sexes. The second example surrounds brain-spleen cell cycling after stroke which is fundamental to our evolving understanding that stroke is a systemic disease, rather than solely a lesion of the brain. While much work remains, it is now apparent that brain-spleen cell cycling is temporally specific, varies in intensity, and involves cell players that are of much wider lineages than originally believed. In the future, it is likely that innovation will need to turn to “big data”, particularly if our field is to tackle the daunting questions that most greatly matter to unraveling brain injury. The huge availability and growth rate of biomedical data, handled in a shared but coherent environment, offers an opportunity to further vitalize stroke research.
Collapse
|
37
|
Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res 2014; 5:423-8. [PMID: 24986148 DOI: 10.1007/s12975-014-0355-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023]
Affiliation(s)
- John H Zhang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,
| |
Collapse
|
38
|
Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model. PLoS One 2014; 9:e100873. [PMID: 24963809 PMCID: PMC4071009 DOI: 10.1371/journal.pone.0100873] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
Objective Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention. Materials and Methods For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra “experimental group”) or water (sFlt-1 “positive control”) until weaning. The mFc group (“negative control”) received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI). MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis. Results Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes. Conclusion Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.
Collapse
|
39
|
Novel humanized recombinant T cell receptor ligands protect the female brain after experimental stroke. Transl Stroke Res 2014; 5:577-85. [PMID: 24838614 PMCID: PMC4121525 DOI: 10.1007/s12975-014-0345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 02/06/2023]
Abstract
Transmigration of peripheral leukocytes to the brain is a major contributor to cerebral ischemic cell death mechanisms. Humanized partial major histocompatibility complex class II constructs (pMHC), covalently linked to myelin peptides, are effective for treating experimental stroke in males, but new evidence suggests that some inflammatory cell death mechanisms after brain injury are sex-specific. We here demonstrate that treatment with pMHC constructs also improves outcomes in female mice with middle cerebral artery occlusion (MCAO). HLA-DR2 transgenic female mice with MCAO were treated with RTL1000 (HLA-DR2 moiety linked to human MOG-35-55 peptide), HLA-DRa1-MOG-35-55, or vehicle (VEH) at 3, 24, 48, and 72 h after reperfusion and were recovered for 96 h or 2 weeks post-injury for measurement of histology (TTC staining) or behavioral testing. RTL1000- and DRa1-MOG-treated mice had profoundly reduced infarct volumes as compared to the VEH group, although higher doses of DRa1-MOG were needed for females vs. males evaluated previously. RTL1000-treated females also exhibited strongly improved functional recovery in a standard cylinder test. In novel studies of post-ischemic ultrasonic vocalization (USV), as measured by animal calls to their cage mates, we modeled in mice the post-stroke speech deficits common in human stroke survivors. The number of calls was reduced in injured animals relative to pre-MCAO baseline regardless of RTL1000 treatment status. However, call duration was significantly improved by RTL1000 treatment, suggesting benefit to the animal’s recovery of vocalization capability. We conclude that both the parent RTL1000 molecule and the novel non-polymorphic DRα1-MOG-35-55 construct were highly effective immunotherapies for treatment of transient cerebral ischemia in females.
Collapse
|
40
|
Li Q, Khatibi N, Zhang JH. Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res 2014; 5:163-6. [PMID: 24563018 PMCID: PMC3985555 DOI: 10.1007/s12975-014-0335-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/27/2023]
Abstract
This perspective commentary summarized the stroke pathophysiology evolution, especially the focus in the past on neuroprotection and neurovascular protection and highlighted the newer term for stroke pathophysiology: vascular neural network. Emphasis is on the role of venules and veins after an acute stroke and as potential treatment targets. Vein drainage may contribute to the acute phase of brain edema and the outcomes of stroke patients.
Collapse
Affiliation(s)
- Qian Li
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China, 400062
| | | | | |
Collapse
|
41
|
Degracia D, Hu B. Protein misfolding and organelle stress after brain ischemia. Transl Stroke Res 2013; 4:579-80. [PMID: 24323412 DOI: 10.1007/s12975-013-0302-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Donald Degracia
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
42
|
Lapchak PA. Fast neuroprotection (fast-NPRX) for acute ischemic stroke victims: the time for treatment is now. Transl Stroke Res 2013; 4:704-9. [PMID: 24323424 DOI: 10.1007/s12975-013-0303-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Paul A Lapchak
- Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Rm 8305, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA,
| |
Collapse
|
43
|
Bramlett HM. Special issue of translational stroke: importance of sex in the pathophysiology and treatment of acute CNS repair. Transl Stroke Res 2013; 4:379-80. [PMID: 24323336 DOI: 10.1007/s12975-013-0264-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
|