1
|
Fang G, Tian Y, You L, Xu R, Gao S. KLF15 prevents ferroptosis in vascular smooth muscle cells via interacting with p53. Biochem Biophys Res Commun 2025; 770:152029. [PMID: 40382847 DOI: 10.1016/j.bbrc.2025.152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The formation of intracranial aneurysm (IA) is intimately linked to the progressive loss of vascular smooth muscle cells (VSMCs). Reactive oxygen species (ROS) play a pivotal role in inducing VSMC death during IA progression. Krüppel-like factor 15 (KLF15) plays a crucial role in preserving vascular homeostasis. However, the potential impact of KLF15 on ROS-triggered VSMC death remains unexplored. Analysis of microarray datasets from the GEO database suggests reduced KLF15 levels in human IA tissues. This study further confirms decreased KLF15 expression in ROS-treated human brain VSMCs (HBVSMCs). An unbiased examination of the transcriptome in HBVSMCs transfected with siKLF15 reveals that KLF15 regulates the ferroptosis pathway upon ROS stress. Silencing KLF15 results in the upregulation of genes promoting ferroptosis, such as SAT1, HMOX1, and MAP1LC3B, while downregulation of the ferroptosis regulatory gene SLC7A11. Cell death increases in KLF15-silenced HBVSMCs and is rescued by the ferroptosis inhibitor frerrostain-1. Co-immunoprecipitation and in situ proximity ligation assay indicate that KLF15 interacts with p53. Knockdown of p53 rescues the effects of siKLF15 on ROS-induced ferroptosis, including elevated cell death, lipid ROS levels, and the malondialdehyde content, as well as reduced SLC7A11protin levels in HBVSMCs. These findings suggest that KLF15 may lower cell sensitivity to ferroptosis by interacting with p53 and preventing p53-mediated transcriptional repression of SLC7A11. Overall, our results reveal a protective function of KLF15 in preventing ROS-induced ferroptosis in HBVSMCs.
Collapse
Affiliation(s)
- Guangming Fang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yexuan Tian
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lili You
- The Second Hospital of Chaoyang, Chaoyang, 122000, Liaoning Province, China
| | - Ruixue Xu
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
2
|
Xiao Q, Li Y, Cai B, Huang X, Fang L, Liang F, Chen L, Xu K, Zhang W, Wang X, Yin A, Wang X, Cai Z, Zhuang F, Shao Q, Zhou B, Hocher B, He B, Shen L. CCDC80 Protects against Aortic Dissection and Rupture by Maintaining the Contractile Smooth Muscle Cell Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502108. [PMID: 40278823 DOI: 10.1002/advs.202502108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Aortic dissection (AD) is a life-threatening medical emergency characterized by adverse vascular remodeling. Coiled-coil domain-containing protein 80 (CCDC80) plays an essential role in regulating cardiovascular remodeling. This study aims to define the role of CCDC80 in the formation and development of AD. Significant downregulation of CCDC80 in vascular smooth muscle cell (VSMC) in human and mouse AD is identified. Then, CCDC80 knockout mice (CCDC80-/-) and VSMC-specific CCDC80 knockout mice (CCDC80fl/fl SM22α Cre+) treated with angiotensin II (Ang II) or Ang II combined with β-aminopropionitrile monofumarate (BAPN) frequently develop AD with higher frequency and severity, accompanied by severe elastin fragmentation and collagen deposition. Mechanistically, CCDC80 interacts with JAK2, and CCDC80 deficiency promotes VSMC phenotype switching, proliferation, and migration as well as matrix metalloproteinase production by activating the JAK2/STAT3 signaling pathway. Moreover, the JAK2/STAT3 pathway-specific inhibitor ameliorates adverse vascular remodeling and reduces AD formation in CCDC80-knockout mice by mitigating VSMC phenotype switching. In conclusion, CCDC80 deficiency exacerbates the progression of events leading to AD by activating the JAK2/STAT3 pathway involved in regulating the phenotype switching and function of VSMCs. These findings highlight that CCDC80 is a potential key target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Cai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qin Shao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Zhou
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, 69123, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, People's Republic of China, Changsha, 410028, China
- IMD Institut fur Medizinische Diagnostik Berlin-Potsdam GbR, 14473, Berlin, Germany
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
3
|
Rezai Jahromi B, Valori M, Tulamo R, Jauhiainen S, Ilmonen H, Kantonen J, Kaikkonen-Määttä M, Laakso A, Ylä-Hertuala S, Jääskeläinen JE, Tienari PJ, Niemelä M. Cancer-type somatic mutations in saccular cerebral aneurysms. Eur J Hum Genet 2024:10.1038/s41431-024-01765-x. [PMID: 39668185 DOI: 10.1038/s41431-024-01765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/17/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Intracranial aneurysms (IAs) are a major cause of subarachnoidal hemorrhage (SAH) which can have a significant morbidity and mortality. The processes underlying the aneurysm development remains unclear. We performed whole exome sequencing of DNA derived from 20 saccular cerebral aneurysms of 20 patients, followed by somatic variant calling. Eleven (55%) of the 20 patients had detectable nonsynonymous somatic mutations and in total, 48 mutations were detected in the aneurysm samples. The mutations were highly enriched in cancer-related genes and 77% were predictably deleterious. A p.Tyr562Asp somatic mutation was detected in the PDGFRB gene; somatic mutations at the same codon have been reported in fusiform cerebral aneurysms. These results widen the concept on the role of somatic mutations in cerebral aneurysms, indicating their possible role in the more common saccular aneurysm, similarly to the rarer fusiform aneurysm.
Collapse
Affiliation(s)
- Behnam Rezai Jahromi
- Department of Neurosurgey, Neurocenter, Helsinki University Hospital, Helsinki, Finland.
- Neurosurgery Research Group, Biomedicum, University of Helsinki, Helsinki, Finland.
| | - Miko Valori
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Suvi Jauhiainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Henna Ilmonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jonas Kantonen
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Kaikkonen-Määttä
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Aki Laakso
- Department of Neurosurgey, Neurocenter, Helsinki University Hospital, Helsinki, Finland
- Neurosurgery Research Group, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Seppo Ylä-Hertuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgey, Neurocenter, Helsinki University Hospital, Helsinki, Finland
- Neurosurgery Research Group, Biomedicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Lee CH, Chang MH, Koh YH, Pack SP, Seo M, Cha H, Lee JH. Mechanistic insight into airborne particulate matter PM10 as an environmental hazard for hemorrhagic stroke: Evidence from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136319. [PMID: 39488980 DOI: 10.1016/j.jhazmat.2024.136319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Airborne particulate matter less than 10 µm in diameter (PM10) is recognized as a significant environmental risk factor for hemorrhagic stroke (HS), as evidenced by epidemiological studies that link PM10 with the heightened cerebrovascular mortality related to HS. Nonetheless, the molecular mechanisms underlying this association remain unknown. Cerebral aneurysm (CA), an etiological factor of HS, is characterized by a bulge resulting from the abnormal loss of the muscular layer of a cerebral artery, comprising brain vascular endothelial cell (BVEC) and vascular smooth muscle cell (VSMC). BVEC exhibiting an inflammatory phenotype is critical for VSMC death within the cerebrovasculature. Here, we elucidate a molecular mechanism by which PM10 augments necroptotic death of VSMC as a consequence of intercellular effects arising from FasL inflammatory cytokine, which is derived from BVEC. Notably, BVEC exposed to PM10 upregulates FasL through ATM-NF-κB signaling, in response to oxidative DNA damage. This genotoxic stress is attributed to pro-oxidant action of aluminum, the prevalent element in PM10. Furthermore, respiratory exposure to PM10 in mice precipitates early onset of CA development through necroptotic VSMC death in cerebral artery, by activating FasL expression in BVEC. In conclusion, this study provides molecular evidence establishing a direct association between PM10 pollution and an elevated risk of stroke, particularly HS.
Collapse
Affiliation(s)
- Chae Hwan Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Pil Pack
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Minseok Seo
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Computer and Information Science, Korea University, Sejong, Republic of Korea
| | - Hanvit Cha
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
5
|
Catalano M, Crimi L, Belfiore G, Grippaldi D, David E, Spatola C, Cristaudo C, Foti PV, Palmucci S, Basile A. Congenital and acquired anomalies of the basilar artery: A pictorial essay. Neuroradiol J 2024; 37:661-677. [PMID: 37210636 PMCID: PMC11531057 DOI: 10.1177/19714009231177412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION The basilar artery is one of the two cases in our body where an arterial vessel is formed by the union of two others - the vertebral arteries. It provides vascular supply to essential structures for the main vital functions; the posterior cerebral arteries originate from it as terminal branches, and form part of the anastomotic circle of Willis. IMAGING FINDINGS Congenital and acquired anomalies of the basilar trunk are described. We provide a schematic and detailed representation of normal anatomical variants - mainly represented by the fenestrated basilar artery or the persistence of carotid-basilar anastomosis; course anomalies are also illustrated, with reference to neuro-vascular conflicts and dolichoectasia. Among congenital anomalies, this pictorial review also shows the variants of the basilar origin, such as in the case of basilar trunk arising from only one of the two vertebral arteries, and the calibre changes - which are represented by aneurysm and hypoplasia. The latter appears to be a risk factor for posterior circulation stroke, when associated with a bilateral posterior foetal variant.Among the acquired forms, this pictorial essay describes some clinical cases of dissections, non-congenital aneurysms, thrombosis and tumour with vascular encasing or compression of basilar artery. CONCLUSION CT angiography and MRI allow us to study the posterior intracranial circulation in detail, providing useful pre-treatment information. Therefore, knowledge of congenital or acquired anomalies of the basilar artery is essential for radiologists, neuroradiologists and neurosurgeons.
Collapse
Affiliation(s)
- Marco Catalano
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Luca Crimi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Daniele Grippaldi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Concetto Cristaudo
- UOC Neuroradiologia, Azienda Ospedaliera per L’Emergenza Cannizzaro, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Italy
| |
Collapse
|
6
|
Sun D, Du Y. O304 alleviates abdominal aortic aneurysm formation via AMPK/mTOR/MMP pathway activation. Front Pharmacol 2024; 15:1457817. [PMID: 39679375 PMCID: PMC11637863 DOI: 10.3389/fphar.2024.1457817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Background Abdominal aortic aneurysm (AAA) rupture is a significant cause of mortality in the elderly population. Despite experimental models identifying promising pharmacological therapies, there is still a lack of pharmacological interventions for AAA prior to surgery. This study aims to evaluate the regulatory role of the novel adenosine monophosphate-activated protein kinase (AMPK) agonist O304 in AAA formation and explore its underlying molecular mechanisms. Methods We evaluated the expression of AMPK signaling pathway components and contractile vascular smooth muscle cell (VSMC)-related genes in AAA samples from mice using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We evaluate the TGF-β expression by western blotting and RT-qPCR and TGF-β concentration in blood by ELISA. We developed an in vitro model of transforming growth factor-β (TGF-β)-induced VSMC phenotypic switching. After treatment with O304, we analyzed the expression of contractile genes and proteins in VSMCs by immunofluorescence and Western blotting. We also evaluated the expression of AMPK signaling pathway components and matrix metalloproteinases by western blotting and immunofluorescence analysis. We established a mouse model of AAA to evaluate the impact of O304 on aneurysm diameter and blood pressure, analyzed VSMC phenotypic switching through immunofluorescence analysis, and assessed the regulatory effects of O304 on AMPK signaling in the mouse model of AAA by Western blotting. Results AMPK signaling pathway components and contractile genes in VSMCs were downregulated in mouse AAA samples, underscoring the crucial role of AMPK signaling in VSMC phenotypic switching. In the TGF-β-induced model of VSMC phenotypic switching, O304 activated AMPK signaling and prevented VSMC phenotypic switching from the contractile to the synthetic phenotype. Moreover, O304 significantly activated AMPK signaling, increased the proportion of contractile VSMCs, and reduced AAA formation and blood pressure in the mouse model of AAA. Conclusion During AAA development, VSMCs transitioned from the contractile to the proliferative phenotype, a process that has previously been associated with AMPK pathway inhibition. O304, an AMPK agonist, activated the AMPK pathway, preventing VSMC phenotypic switching and inhibiting AAA formation. These findings highlight the therapeutic potential of targeting the AMPK pathway in AAA.
Collapse
Affiliation(s)
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
7
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
8
|
Xu H, Zhou Q, Xu Z, Long S, Luo G, Chen J, Wei W, Li Z, Li X. Multiple omics reveal link between the microbiota-gut-brain axis and intracranial aneurysm rupture. iScience 2024; 27:111184. [PMID: 39524364 PMCID: PMC11550638 DOI: 10.1016/j.isci.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial aneurysms (IAs) are benign cerebrovascular maladies characterized by wall dilatation in the intracranial arteries. Nevertheless, spontaneous aneurysmal rupture can cause a life-threatening spontaneous subarachnoid hemorrhage (SAH). Emerging evidence indicates potential associations between gut dysbiosis and IAs pathogenesis, though the relationship with IA rupture remains unclear. This research analyzed 124 fecal samples for microbiomics and 160 for metabolomics, with the discovery and validation sets established for cross-validation. We identified differential gut microbiota and metabolites associated with ruptured intracranial aneurysms (RIAs) and developed a superior risk assessment model. Subsequent integrative analyses and validation revealed a significant link between disrupted unsaturated fatty acid and essential amino acid metabolic pathways and IA rupture, driven by alterations in gut microbiota. This study underscores the potential association between the gut-brain axis and IA rupture, while also highlighting gut microbiota dysbiosis as a potential risk factor for IA rupture and providing biomarkers for assessment.
Collapse
Affiliation(s)
- Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiangqiang Zhou
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Shengrong Long
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Gaomeng Luo
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cerebrovascular Severe Disease, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cerebrovascular Severe Disease, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430072, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Zhang Q, Shi LF, Chen RD, Zhao HH, Yu C, Wang YR, Lu P. Geniposide modulates GSK3β to inhibit Th17 differentiation and mitigate endothelial damage in intracranial aneurysm. Phytother Res 2024; 38:5184-5202. [PMID: 39180344 DOI: 10.1002/ptr.8320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen) on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3β in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3β/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF-α and IL-23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen-treated, Th17 differentiation-inducing cell-conditioned medium significantly up-regulated the expression of tight junction proteins ZO-1, Occludin, and Claudin-5 in murine aortic endothelial cells. Administering the GSK3β inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up-regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3β, which reduces endothelial cell injury and up-regulates tight junction protein expression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu-Feng Shi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Run-Dong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - He-He Zhao
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yu
- Department of Neurosurgery, Sir Run Run Shaw Hospital (Shaoxing), Shaoxing, China
| | - Yi-Rong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Orrego Gonzalez E, Mantziaris G, Shaaban A, Starke RM, Ding D, Lee JYK, Mathieu D, Kondziolka D, Feliciano C, Grills IS, Barnett GH, Lunsford LD, Liščák R, Lee CC, Martinez Álvarez R, Peker S, Samanci Y, Cockroft KM, Tripathi M, Palmer JD, Zada G, Cifarelli CP, Nabeel AM, Pikis S, Sheehan JP. Comparison of Repeat Versus Initial Stereotactic Radiosurgery for Intracranial Arteriovenous Malformations: A Retrospective Multicenter Matched Cohort Study. Neurosurgery 2024; 95:904-914. [PMID: 39283113 DOI: 10.1227/neu.0000000000002950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Studies comparing neurological and radiographic outcomes of repeat to initial stereotactic radiosurgery (SRS) intracranial arteriovenous malformations are scarce. Our aim was to perform a retrospective matched comparison of patients initially treated with SRS with those undergoing a second radiosurgical procedure. METHODS We collected data from arteriovenous malformations managed in 21 centers that underwent initial and repeated radiosurgery from 1987 to 2022. Based on arteriovenous malformations volume, margin dose, deep venous drainage, deep, and critical location, we matched 1:1 patients who underwent an initial SRS for treatment-naive arteriovenous malformations and a group with repeated SRS treatment. RESULTS After the selection process, our sample consisted of 328 patients in each group. Obliteration in the initial SRs group was 35.8% at 3 and 56.7% at 5 years post-SRS, while the repeat SRS group showed obliteration rates of 33.9% at 3 years and 58.6% at 5 years, without statistically significant differences (P = .75 and P = .88, respectively). There were no statistically significant differences between the 2 groups for obliteration rates (hazard ratio = 0.93; 95% CI, 0.77-1.13; P = .5), overall radiation-induced changes (RIC) (OR = 1.1; 95% CI, 0.75-1.6; P = .6), symptomatic RIC (OR = 0.78; 95% CI, 0.4-1.5; P = .4), and post-SRS hemorrhage (OR = 0.68; 95% CI; P = .3). CONCLUSION In matched cohort analysis, a second SRS provides comparable outcomes in obliteration and RIC compared with the initial SRS. Dose reduction on repeat SRS may not be warranted.
Collapse
Affiliation(s)
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Ahmed Shaaban
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Robert M Starke
- Department of Neurosurgery, University of Miami, Miami, Florida, USA
| | - Dale Ding
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Mathieu
- Department of Neurosurgery, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Caleb Feliciano
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Inga S Grills
- Gamma Knife Center, Beaumont Health System, Royal Oak, Michigan, USA
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - L Dade Lunsford
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Roman Liščák
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei City, Taiwan
| | | | - Selcuk Peker
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Yavuz Samanci
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kevin M Cockroft
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Comprehensive Cancer Center Ohio State University, Columbus, Ohio, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | | | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Department of Neurosurgery, Benha University, Benha, Egypt
| | - Stylianos Pikis
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Ling C, Yang Y, Zhang B, Wang H, Chen C. Phoenixin-14 maintains the contractile type of vascular smooth muscle cells in cerebral aneurysms rats. J Biochem Mol Toxicol 2024; 38:e23813. [PMID: 39148253 DOI: 10.1002/jbt.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The rupture of intracranial aneurysm (IA) is the primary reason contributing to the occurrence of life-threatening subarachnoid hemorrhages. The oxidative stress-induced phenotypic transformation from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (VSMCs) plays a pivotal role in IA formation and rupture. Our study aimed to figure out the role of phoenixin-14 in VSMC phenotypic switching during the pathogenesis of IA by using both cellular and animal models. Primary rat VSMCs were isolated from the Willis circle of male Sprague-Dawley rats. VSMCs were stimulated by hydrogen peroxide (H2O2) to establish a cell oxidative damage model. After pretreatment with phoenixin-14 and exposure to H2O2, VSMC viability, migration, and invasion were examined through cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Intracellular reactive oxygen species (ROS) production in VSMCs was evaluated by using 2',7'-Dichlorofluorescin diacetate (DCFH-DA) fluorescence probes and flow cytometry. Rat IA models were established by ligation of the left common carotid arteries and posterior branches of both renal arteries. The histopathological changes of rat intracranial blood vessels were observed through hematoxylin and eosin staining. The levels of contractile phenotype markers (alpha-smooth muscle actin [α-SMA] and smooth muscle 22 alpha [SM22α]) in VSMCs and rat arterial rings were determined through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results showed that H2O2 stimulated the production of intracellular ROS and induced oxidative stress in VSMCs, while phoenixin-14 pretreatment attenuated intracellular ROS levels in H2O2-exposed VSMCs. H2O2 exposure promoted VSMC migration and invasion, which, however, was reversed by phoenixin-14 pretreatment. Besides, phoenixin-14 administration inhibited IA formation and rupture in rat models. The decrease in α-SMA and SM22α levels in H2O2-exposed VSMCs and IA rat models was antagonized by phoenixin-14. Collectively, phoenixin-14 ameliorates the progression of IA through preventing the loss of the contractile phenotype of VSMCs.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Rats
- Male
- Rats, Sprague-Dawley
- Intracranial Aneurysm/pathology
- Intracranial Aneurysm/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Reactive Oxygen Species/metabolism
- Oxidative Stress/drug effects
- Hydrogen Peroxide/pharmacology
- Muscle Contraction/drug effects
Collapse
Affiliation(s)
- Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Kimura T, Rahmani R, Miyamoto T, Kamio Y, Kudo D, Sato H, Ikedo T, Baranoski JF, Uchikawa H, Ai J, Lawton MT, Hashimoto T. Vitamin D deficiency promotes intracranial aneurysm rupture. J Cereb Blood Flow Metab 2024; 44:1174-1183. [PMID: 38241458 PMCID: PMC11179614 DOI: 10.1177/0271678x241226750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Intracranial aneurysm rupture causes severe disability and high mortality. Epidemiological studies show a strong association between decreased vitamin D levels and an increase in aneurysm rupture. However, the causality and mechanism remain largely unknown. In this study, we tested whether vitamin D deficiency promotes aneurysm rupture and examined the underlying mechanism for the protective role of vitamin D against the development of aneurysm rupture utilizing a mouse model of intracranial aneurysm. Mice consuming a vitamin D-deficient diet had a higher rupture rate than mice with a regular diet. Vitamin D deficiency increased proinflammatory cytokines in the cerebral arteries. Concurrently, vitamin D receptor knockout mice had a higher rupture rate than the corresponding wild-type littermates. The vitamin D receptors on endothelial and vascular smooth muscle cells, but not on hematopoietic cells, mediated the effect of aneurysm rupture. Our results establish that vitamin D protects against the development of aneurysmal rupture through the vitamin D receptors on vascular endothelial and smooth muscle cells. Vitamin D supplementation may be a viable pharmacologic therapy for preventing aneurysm rupture.
Collapse
MESH Headings
- Animals
- Vitamin D Deficiency/complications
- Intracranial Aneurysm/etiology
- Mice
- Aneurysm, Ruptured/etiology
- Mice, Knockout
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/deficiency
- Vitamin D/therapeutic use
- Vitamin D/blood
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cytokines/metabolism
- Mice, Inbred C57BL
- Male
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Tetsuro Kimura
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Takeshi Miyamoto
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Yoshinobu Kamio
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Daisuke Kudo
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Taichi Ikedo
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Hiroki Uchikawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Michael T Lawton
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Rantasalo V, Gunn J, Pan E, Kiviniemi T, Hirvonen J, Rahi M, Fordell T, Rinne JK, Laukka D. Positive Correlation Between Thoracic Aortic Diameter and Intracranial Aneurysm Size-An Observational Cohort Study. World Neurosurg 2024; 184:e633-e646. [PMID: 38342167 DOI: 10.1016/j.wneu.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To investigate the association between intracranial aneurysms (IAs) and thoracic aortic diameter. METHODS This observational cohort study examined thoracic aortic diameters in patients with IA. Patients were categorized by IA size (<7 mm and ≥7 mm) and IA status (ruptured/unruptured) based on radiologic findings. We investigated the association between thoracic aortic diameter and IA size and status using binary and linear regression as univariate and multivariable analyses. RESULTS A total of 409 patients were included. Mean age was 60 (±11.7) years and 63% were women. Thoracic aortic diameters were greater among patients who had an IA ≥7 mm versus IA <7 mm (P < 0.05). In the univariate analysis, the diameter of the ascending aorta (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.02-1.129 per 1 mm; P = 0.002), aortic arch (OR, 1.10; 95% CI, 1.04-1.15 per 1 mm; P < 0.001), and descending aorta (OR, 1.10; 95% CI, 1.03-1.16 per 1 mm; P = 0.003) were associated with IAs ≥7 mm. In the multivariable regression model, larger ascending aorta (OR, 1.09; 95% CI, 1.01-1.17 per 1 mm; P = 0.018), aortic arch (OR, 1.12; 95% CI, 1.02-1.22 per 1 mm; P = 0.013), and descending aorta (OR, 1.20; 95% CI, 1.08-1.33 per 1 mm; P < 0.001) were associated with ruptured IA. CONCLUSIONS Greater thoracic aortic diameters are associated with a higher risk of IA being larger than 7 mm and IA rupture. Exploring the concomitant growth tendency in IA and thoracic aorta provides a basis for future considerations regarding screening and risk management.
Collapse
Affiliation(s)
- Ville Rantasalo
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Department of Surgery, Mikkeli Central Hospital, Mikkeli, Finland.
| | - Jarmo Gunn
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Emily Pan
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland; Department of Radiology, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere University, Tampere, Finland
| | - Melissa Rahi
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Terhi Fordell
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Department of Surgery, Helsinki University Hospital, Hyvinkää Hospital, Hyvinkää, Finland
| | - Jaakko K Rinne
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Dan Laukka
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
14
|
Ji H, Han Y, Danyang Jie, Yue Li, Hailan Yang, Sun H, You C, Xiao A, Liu Y. Decoding the biology and clinical implication of neutrophils in intracranial aneurysm. Ann Clin Transl Neurol 2024; 11:958-972. [PMID: 38317016 PMCID: PMC11021671 DOI: 10.1002/acn3.52014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Abundant neutrophils have been identified in both ruptured and unruptured intracranial aneurysm (IA) domes, with their function and clinical implication being poorly characterized. MATERIALS AND METHODS We employed single-cell RNA sequencing (scRNA-Seq) datasets of both human and murine model, and external bulk mRNA sequencing datasets to thoroughly explore the features and functional heterogeneous of neutrophils infiltrating the IA dome. RESULTS We found that both unruptured and ruptured IA dome contain a substantial population of neutrophils, characterized by FCGR3B, G0S2, CSF3R, and CXCR2. These cells exhibited heterogeneity in terms of function and differentiation. Despite similar transcriptional activation, neutrophils in IA dome expressed a repertoire of gene programs that mimicked transcriptomic alterations observed from bone marrow to peripheral blood, showing self-similarity. In addition, the recruitment of neutrophils in unruptured IA was primarily mediated by monocytes/macrophages, and once ruptured, both neutrophils, and a specific subset of inflammatory smooth muscle cells (SMCs) were involved in the process. The receiver operator characteristic curve (ROC) analysis indicated that distinct neutrophil subclusters were associated with IA formation and rupture, respectively. By reviewing current studies, we found that neutrophils play a detrimental role to IA wall integrity through secreting specific ligands, ferroptosis driven by ALOX5AP and PTGS2, and the formation of neutrophil extracellular traps (NETs) mediated by PADI4. INTERPRETATION This study delineated the biology and potential clinical implications of neutrophils in IA dome and provided a reliable basis for future researches.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yujing Han
- Plevic Floor Disorders Centre, West China Tianfu HospitalSichuan UniversityNo. 3966, Tianfu AvenueChengduSichuanChina
| | - Danyang Jie
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yue Li
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Hailan Yang
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Haogeng Sun
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Anqi Xiao
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yi Liu
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| |
Collapse
|
15
|
Zhu L, Tang H, Wu C, Wei Y, Li Q, Dai D, Yang P, Huang Q, Xu Y, Liu J, Zhao R, Zuo Q. Activation of BMP4-pSmad1/5 pathway impairs the function of VSMCs in intracranial aneurysms. Vascul Pharmacol 2023; 153:107236. [PMID: 37774964 DOI: 10.1016/j.vph.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Intracranial aneurysms (IAs) are characterized by abnormal dilatation of the cerebral vessels. Vascular smooth muscle cells (VSMCs) are implicated in maintaining vascular homeostasis. Disordered VSMCs are one of the most common causes for occurrence and development of IAs. The bone morphogenetic protein 4 (BMP4) signalling pathway is involved in regulating cell proliferation, apoptosis, and differentiation. This study aimed to investigate the effects of BMP4 on VSMCs and its underlying mechanisms. BMP4 was upregulated in the VSMCs of IAs and caused apoptosis of VSMCs through Smad1/5 phosphorylation. In addition, BMP4 overexpression significantly promoted the proliferation and migration of VSMCs and induced a phenotypic transformation from contractile to inflammatory. Our findings facilitate further understanding of the occurrence and development of IAs and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Luojiang Zhu
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Haishuang Tang
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Congyan Wu
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yanpeng Wei
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qiang Li
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Dongwei Dai
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qinghai Huang
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yi Xu
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Rui Zhao
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Qiao Zuo
- Neurovascular Centre, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
16
|
Fan H, Tian H, Jin F, Zhang X, Su S, Liu Y, Wen Z, He X, Li X, Duan C. CypD induced ROS output promotes intracranial aneurysm formation and rupture by 8-OHdG/NLRP3/MMP9 pathway. Redox Biol 2023; 67:102887. [PMID: 37717465 PMCID: PMC10514219 DOI: 10.1016/j.redox.2023.102887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD-/- remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Hao Tian
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Fa Jin
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xin Zhang
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shixing Su
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yanchao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhuohua Wen
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xuying He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xifeng Li
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Chuanzhi Duan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
17
|
Chen B, Xie K, Zhang J, Yang L, Zhou H, Zhang L, Peng R. Comprehensive analysis of mitochondrial dysfunction and necroptosis in intracranial aneurysms from the perspective of predictive, preventative, and personalized medicine. Apoptosis 2023; 28:1452-1468. [PMID: 37410216 PMCID: PMC10425526 DOI: 10.1007/s10495-023-01865-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial dysfunction and necroptosis are closely associated, and play vital roles in the medical strategy of multiple cardiovascular diseases. However, their implications in intracranial aneurysms (IAs) remain unclear. In this study, we aimed to explore whether mitochondrial dysfunction and necroptosis could be identified as valuable starting points for predictive, preventive, and personalized medicine for IAs. The transcriptional profiles of 75 IAs and 37 control samples were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis, and least absolute shrinkage and selection operator (LASSO) regression were used to screen key genes. The ssGSEA algorithm was performed to establish phenotype scores. The correlation between mitochondrial dysfunction and necroptosis was evaluated using functional enrichment crossover, phenotype score correlation, immune infiltration, and interaction network construction. The IA diagnostic values of key genes were identified using machine learning. Finally, we performed the single-cell sequencing (scRNA-seq) analysis to explore mitochondrial dysfunction and necroptosis at the cellular level. In total, 42 IA-mitochondrial DEGs and 15 IA-necroptosis DEGs were identified. Screening revealed seven key genes invovled in mitochondrial dysfunction (KMO, HADH, BAX, AADAT, SDSL, PYCR1, and MAOA) and five genes involved in necroptosis (IL1B, CAMK2G, STAT1, NLRP3, and BAX). Machine learning confirmed the high diagnostic value of these key genes for IA. The IA samples showed higher expression of mitochondrial dysfunction and necroptosis. Mitochondrial dysfunction and necroptosis exhibited a close association. Furthermore, scRNA-seq indicated that mitochondrial dysfunction and necroptosis were preferentially up-regulated in monocytes/macrophages and vascular smooth muscle cells (VSMCs) within IA lesions. In conclusion, mitochondria-induced necroptosis was involved in IA formation, and was mainly up-regulated in monocytes/macrophages and VSMCs within IA lesions. Mitochondria-induced necroptosis may be a novel potential target for diagnosis, prevention, and treatment of IA.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Surgery, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kang Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jianzhong Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| |
Collapse
|
18
|
Wang Z, Ma J, Yue H, Zhang Z, Fang F, Wang G, Liu X, Shen Y. Vascular smooth muscle cells in intracranial aneurysms. Microvasc Res 2023:104554. [PMID: 37236346 DOI: 10.1016/j.mvr.2023.104554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Intracranial aneurysm (IA) is a severe cerebrovascular disease characterized by abnormal bulging of cerebral vessels that may rupture and cause a stroke. The expansion of the aneurysm accompanies by the remodeling of vascular matrix. It is well-known that vascular remodeling is a process of synthesis and degradation of extracellular matrix (ECM), which is highly dependent on the phenotype of vascular smooth muscle cells (VSMCs). The phenotypic switching of VSMC is considered to be bidirectional, including the physiological contractile phenotype and alternative synthetic phenotype in response to injury. There is increasing evidence indicating that VSMCs have the ability to switch to various phenotypes, including pro-inflammatory, macrophagic, osteogenic, foamy and mesenchymal phenotypes. Although the mechanisms of VSMC phenotype switching are still being explored, it is becoming clear that phenotype switching of VSMCs plays an essential role in IA formation, progression, and rupture. This review summarized the various phenotypes and functions of VSMCs associated with IA pathology. The possible influencing factors and potential molecular mechanisms of the VSMC phenotype switching were further discussed. Understanding how phenotype switching of VSMC contributed to the pathogenesis of unruptured IAs can bring new preventative and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Zhenye Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhewei Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China; Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
19
|
Sun ZH, Liu F, Kong LL, Ji PM, Huang L, Zhou HM, Sun R, Luo J, Li WZ. Interruption of TRPC6-NFATC1 signaling inhibits NADPH oxidase 4 and VSMCs phenotypic switch in intracranial aneurysm. Biomed Pharmacother 2023; 161:114480. [PMID: 37002575 DOI: 10.1016/j.biopha.2023.114480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Intracranial aneurysm (IA) is a frequent cerebrovascular disorder with unclear pathogenesis. The vascular smooth muscle cells (VSMCs) phenotypic switch is essential for IA formation. It has been reported that Ca2+ overload and excessive reactive oxygen species (ROS) are involved in VSMCs phenotypic switch. The transient receptor potential canonical 6 (TRPC6) and NADPH oxidase 4 (NOX4) are the main pathway to participate in Ca2+ overload and ROS production in VSMCs. Ca2+ overload can activate calcineurin (CN), leading to nuclear factor of activated T cell (NFAT) dephosphorylation to regulate the target gene's transcription. We hypothesized that activation of TRPC6-NFATC1 signaling may upregulate NOX4 and involve in VSMCs phenotypic switch contributing to the progression of IA. Our results showed that the expressions of NOX4, p22phox, p47phox, TRPC6, CN and NFATC1 were significantly increased, and VSMCs underwent a significant phenotypic switch in IA tissue and cellular specimens. The VIVIT (NFATC1 inhibitor) and BI-749327 (TRPC6 inhibitor) treatment reduced the expressions of NOX4, p22phox and p47phox and the production of ROS, and significantly improved VSMCs phenotypic switch in IA rats and cells. Consistent results were obtained from IA Trpc6 knockout (Trpc6-/-) mice. Furthermore, the results also revealed that NFATC1 could regulate NOX4 transcription by binding to its promoter. Our findings reveal that interrupting the TRPC6-NFATC1 signaling inhibits NOX4 and improves VSMCs phenotypic switch in IA, and regulating Ca2+ homeostasis may be an important therapeutic strategy for IA.
Collapse
Affiliation(s)
- Zheng-Hao Sun
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Fei Liu
- Department of neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Liang-Liang Kong
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Peng-Min Ji
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Hui-Min Zhou
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Jing Luo
- Department of neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China.
| | - Wei-Zu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
20
|
Association of elevated neutrophil-to-lymphocyte ratio with increased intracranial aneurysm stability scores and aneurysm growth. J Stroke Cerebrovasc Dis 2023; 32:107052. [PMID: 36780759 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammation involves in the progression of intracranial aneurysms (IAs). However, whether the neutrophil-to-lymphocyte ratio (NLR) as an inflammatory marker links to IAs stability is unidentified. This study was performed to assess the association of the NLR with IAs stability. METHODS We retrospectively reviewed the medical records of patients diagnosed with unruptured IAs from January 2014 to June 2018. According to the quartiles of the NLR, patients with unruptured IAs were categorized into four groups. We evaluated the association between the NLR and IAs stability scores and IAs growth. Multiple logistic regression models were used in the analysis. RESULTS A significant dose-response association was found between the NLR with IAs stability scores and IAs growth. After adjustment for potential confounders, an elevated NLR (fourth quartile) was associated with increased PHASES score (>5) (adjusted odds ratio [OR], 2.007; 95% confidence interval [CI], 1.361-2.960; p<0.001 [p for trend <0.001]), increased ELAPSS score (>15) (adjusted OR, 1.581; 95% CI, 1.074-2.328; p=0.020 [p for trend =0.001]), increased JAPAN 3-year rupture risk score (>5) (adjusted OR, 1.512; 95% CI, 1.033-2.215; p=0.034 [p for trend <0.001]), and IAs growth (adjusted OR, 16.759; 95% CI, 3.022-92.928; p=0.001 [p for trend <0.001]). CONCLUSION An elevated NLR was associated with increased IAs stability scores and IAs growth. The association between NLR and IAs stability need further investigate.
Collapse
|
21
|
Poppenberg KE, Chien A, Santo BA, Baig AA, Monteiro A, Dmytriw AA, Burkhardt JK, Mokin M, Snyder KV, Siddiqui AH, Tutino VM. RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood. J Pers Med 2023; 13:jpm13020266. [PMID: 36836499 PMCID: PMC9967913 DOI: 10.3390/jpm13020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
After detection, identifying which intracranial aneurysms (IAs) will rupture is imperative. We hypothesized that RNA expression in circulating blood reflects IA growth rate as a surrogate of instability and rupture risk. To this end, we performed RNA sequencing on 66 blood samples from IA patients, for which we also calculated the predicted aneurysm trajectory (PAT), a metric quantifying an IA's future growth rate. We dichotomized dataset using the median PAT score into IAs that were either more stable and more likely to grow quickly. The dataset was then randomly divided into training (n = 46) and testing cohorts (n = 20). In training, differentially expressed protein-coding genes were identified as those with expression (TPM > 0.5) in at least 50% of the samples, a q-value < 0.05 (based on modified F-statistics with Benjamini-Hochberg correction), and an absolute fold-change ≥ 1.5. Ingenuity Pathway Analysis was used to construct networks of gene associations and to perform ontology term enrichment analysis. The MATLAB Classification Learner was then employed to assess modeling capability of the differentially expressed genes, using a 5-fold cross validation in training. Finally, the model was applied to the withheld, independent testing cohort (n = 20) to assess its predictive ability. In all, we examined transcriptomes of 66 IA patients, of which 33 IAs were "growing" (PAT ≥ 4.6) and 33 were more "stable". After dividing dataset into training and testing, we identified 39 genes in training as differentially expressed (11 with decreased expression in "growing" and 28 with increased expression). Model genes largely reflected organismal injury and abnormalities and cell to cell signaling and interaction. Preliminary modeling using a subspace discriminant ensemble model achieved a training AUC of 0.85 and a testing AUC of 0.86. In conclusion, transcriptomic expression in circulating blood indeed can distinguish "growing" and "stable" IA cases. The predictive model constructed from these differentially expressed genes could be used to assess IA stability and rupture potential.
Collapse
Affiliation(s)
- Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Aichi Chien
- Department of Radiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Briana A. Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ammad A. Baig
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Andre Monteiro
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adam A. Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxim Mokin
- Department of Neurosurgery, University of South Florida, Tampa, FL 33620, USA
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-716-829-5400
| |
Collapse
|
22
|
Xu J, Fang C. Circ-ATL1 silencing reverses the activation effects of SIRT5 on smooth muscle cellular proliferation, migration and contractility in intracranial aneurysm by adsorbing miR-455. BMC Mol Cell Biol 2023; 24:3. [PMID: 36717793 PMCID: PMC9887762 DOI: 10.1186/s12860-022-00461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Alterations in vascular smooth muscle cells (VSMCs) contribute to the pathogenesis of intracranial aneurysms (IAs). However, molecular mechanisms underlying these changes remain unknown. The present study aimed to characterize the molecular mechanisms underlying VSMC-mediated IAs. METHODS Expression of the circular RNA circ-ATL1 and microRNA miR-455 was detected in IAs by RT-qPCR. Interactions between circ-ATL1, miR-455 and SIRT5 were examined by luciferase reporter analysis and RT-qPCR. The regulatory roles of circ-ATL1, miR-455 and SIRT5 in VSMC migration, proliferation and phenotypic modulation were also examined by CCK8, Transwell® migration and western blot assays. RESULTS Biochemical and bioinformatic techniques were used to demonstrate that circ-ATL1 and miR-455 participated in disparate biological processes relevant to aneurysm formation. Clinically, increased expression of circ-ATL1 and downregulated miR-455 expression were observed in IA patients compared with healthy subjects. Silencing of circ-ATL1 led to suppression of VSMC migration, proliferation and phenotypic modulation. Both SIRT5 and miR-455 were found to be downstream targets of circ-ATL1. SIRT5 upregulation or miR-455 inhibition reversed the inhibitory effects induced by circ-ATL1 silencing on VSMC proliferation, migration and phenotypic modulation. We found that VSMC phenotypic modulation by circ-ATL1 upregulation and miR-455 downregulation had a critical role in the development and formation of AIs. Specifically, circ-ATL1 downregulation reversed IA formation. CONCLUSION Our data provide the theoretical basis for future studies on potential clinical treatment and prevention of IAs.
Collapse
Affiliation(s)
- Jichong Xu
- grid.412793.a0000 0004 1799 5032Department of Interventional Radiology, Tongji Hospital of Tongji University, 389, Xincun Road, Shanghai, 200065 China
| | - Chun Fang
- grid.412793.a0000 0004 1799 5032Department of Interventional Radiology, Tongji Hospital of Tongji University, 389, Xincun Road, Shanghai, 200065 China
| |
Collapse
|
23
|
Sun K, Zhang X, Li X, Li X, Su S, Luo Y, Tian H, Zeng M, Wang C, Xie Y, Zhang N, Cao Y, Zhu Z, Ni Q, Liu W, Xia F, He X, Shi Z, Duan C, Sun H. Plasma metabolic signatures for intracranial aneurysm and its rupture identified by pseudotargeted metabolomics. Clin Chim Acta 2023; 538:36-45. [PMID: 36347333 DOI: 10.1016/j.cca.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND AIMS The vital metabolic signatures for IA risk stratification and its potential biological underpinnings remain elusive. Our study aimed to develop an early diagnosis model and rupture classification model by analyzing plasma metabolic profiles of IA patients. MATERIALS AND METHODS Plasma samples from a cohort of 105 participants, including 75 IA patients in unruptured and ruptured status (UIA, RIA) and 30 control participants were collected for comprehensive metabolic evaluation using ultra-high-performance liquid chromatography-mass spectrometry-based pseudotargeted metabolomics method. Furthermore, an integrated machine learning strategy based on LASSO, random forest and logistic regression were used for feature selection and model construction. RESULTS The metabolic profiling disturbed significantly in UIA and RIA patients. Notably, adenosine content was significantly downregulated in UIA, and various glycine-conjugated secondary bile acids were decreased in RIA patients. Enriched KEGG pathways included glutathione metabolism and bile acid metabolism. Two sets of biomarker panels were defined to discriminate IA and its rupture with the area under receiver operating characteristic curve of 0.843 and 0.929 on the validation sets, respectively. CONCLUSIONS The present study could contribute to a better understanding of IA etiopathogenesis and facilitate discovery of new therapeutic targets. The metabolite panels may serve as potential non-invasive diagnostic and risk stratification tool for IA.
Collapse
Affiliation(s)
- Kaijian Sun
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xin Li
- Clinical Biobank Centre, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Shixing Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yunhao Luo
- Clinical Biobank Centre, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Hao Tian
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Meiqin Zeng
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Cheng Wang
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yugu Xie
- Clinical Biobank Centre, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Nan Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Ying Cao
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan 430000, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Fangbo Xia
- Clinical Biobank Centre, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xuying He
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China.
| | - Haitao Sun
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China; Clinical Biobank Centre, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
24
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
25
|
Zhang Q, Liu H, Zhang M, Liu F, Liu T. Identification of co-expressed central genes and transcription factors in atherosclerosis-related intracranial aneurysm. Front Neurol 2023; 14:1055456. [PMID: 36937519 PMCID: PMC10017537 DOI: 10.3389/fneur.2023.1055456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Background Numerous clinical studies have shown that atherosclerosis is one of the risk factors for intracranial aneurysms. Calcifications in the intracranial aneurysm walls are frequently correlated with atherosclerosis. However, the pathogenesis of atherosclerosis-related intracranial aneurysms remains unclear. This study aims to investigate this mechanism. Methods The Gene Expression Omnibus (GEO) database was used to download the gene expression profiles for atherosclerosis (GSE100927) and intracranial aneurysms (GSE75436). Following the identification of the common differentially expressed genes (DEGs) of atherosclerosis and intracranial aneurysm, the network creation of protein interactions, functional annotation, the identification of hub genes, and co-expression analysis were conducted. Thereafter, we predicted the transcription factors (TF) of hub genes and verified their expressions. Results A total of 270 common (62 downregulated and 208 upregulated) DEGs were identified for subsequent analysis. Functional analyses highlighted the significant role of phagocytosis, cytotoxicity, and T-cell receptor signaling pathways in this disease progression. Eight hub genes were identified and verified, namely, CCR5, FCGR3A, IL10RA, ITGAX, LCP2, PTPRC, TLR2, and TYROBP. Two TFs were also predicted and verified, which were IKZF1 and SPI1. Conclusion Intracranial aneurysms are correlated with atherosclerosis. We identified several hub genes for atherosclerosis-related intracranial aneurysms and explored the underlying pathogenesis. These discoveries may provide new insights for future experiments and clinical practice.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hengfang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Hengfang Liu
| | - Min Zhang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tiantian Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Mandrycky CJ, Abel AN, Levy S, Marsh LM, Chassagne F, Chivukula VK, Barczay SE, Kelly CM, Kim LJ, Aliseda A, Levitt MR, Zheng Y. Endothelial Responses to Curvature-Induced Flow Patterns in Engineered Cerebral Aneurysms. J Biomech Eng 2023; 145:011001. [PMID: 35838329 PMCID: PMC9445320 DOI: 10.1115/1.4054981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Hemodynamic factors have long been associated with clinical outcomes in the treatment of cerebral aneurysms. Computational studies of cerebral aneurysm hemodynamics have provided valuable estimates of the mechanical environment experienced by the endothelium in both the parent vessel and aneurysmal dome walls and have correlated them with disease state. These computational-clinical studies have recently been correlated with the response of endothelial cells (EC) using either idealized or patient-specific models. Here, we present a robust workflow for generating anatomic-scale aneurysm models, establishing luminal cultures of ECs at physiological relevant flow profiles, and comparing EC responses to curvature mediated flow. We show that flow patterns induced by parent vessel curvature produce changes in wall shear stress (WSS) and wall shear stress gradients (WSSG) that are correlated with differences in cell morphology and cellular protein localization. Cells in higher WSS regions align better with the flow and display strong Notch1-extracellular domain (ECD) polarization, while, under low WSS, differences in WSSG due to curvature change were associated with less alignment and attenuation of Notch1-ECD polarization in ECs of the corresponding regions. These proof-of-concept results highlight the use of engineered cellularized aneurysm models for connecting computational fluid dynamics to the underlying endothelial biology that mediates disease.
Collapse
Affiliation(s)
- Christian J. Mandrycky
- Bioengineering, University of Washington, Seattle, WA 98105; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109
| | - Ashley N. Abel
- Neurological Surgery, University of Washington, Seattle, WA 98195
| | - Samuel Levy
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| | - Laurel M. Marsh
- Mechanical Engineering, University of Washington, Seattle, WA 98195
| | | | | | - Sari E. Barczay
- Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Cory M. Kelly
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| | - Louis J. Kim
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Radiology, University of Washington, Seattle, WA 98195
| | - Alberto Aliseda
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Michael R. Levitt
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Mechanical Engineering, University of Washington, Seattle, WA 98195; Radiology, University of Washington, Seattle, WA 98195
| | - Ying Zheng
- Bioengineering, University of Washington, Seattle, WA 98105Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| |
Collapse
|
27
|
Han Y, Yan L, Xia L, Li S, Zhang Q, jin C. Global trends and Frontier topics about vascular smooth muscle cells phenotype switch: A bibliometric analysis from 1999 to 2021. Front Pharmacol 2022; 13:1004525. [PMID: 36452231 PMCID: PMC9702355 DOI: 10.3389/fphar.2022.1004525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/02/2022] [Indexed: 03/31/2024] Open
Abstract
Objective: Vascular smooth muscle cell phenotype switch (VSMCPS) plays a significant role in vascular remodeling. This study aimed to conduct a bibliometric analysis and visualize the knowledge map of research on VSMCPS. Methods: We retrieved publications focusing on VSMCPS from the Web of Science Core Collection database (SCI-EXPANDED) from 1999 to 2021. Using bibliometric tools, VOSviewer and CiteSpace, we identified the most productive researchers, journals, institutions, and countries. At the same time, the trends, hot topics, and knowledge networks were analyzed and visualized. Results: A total of 2213 publications were included in this analysis. The number of annual publications in the VSMCPS field exhibited an upward trend and could be roughly divided into three phases. Until 2006, the most prolific authors were from the United States. As of 2008, the number of articles published in China increased dramatically to reach 126 papers in 2020. As of 2014, China was the most productive country in this field. The United States ranked first in the number of highly-influential authors, institutions, and literature from 1999 to 2022. Owens GK, Hata, Akiko, and Wen, jin-kun were the most prolific authors. Arteriosclerosis Thrombosis and Vascular Biology, Circulation Research, and Cardiovascular Research were the top-ranked journals in this field. "Vascular remodeling," "atherosclerosis," "neointima," "hypertension", and "inflammation" were the main researched topics. New diseases, new mechanisms, and new phenotype (e.g., micro RNA, macrophage-like-cell, hypoxia, autophagy, long noncoding RNA, oxidative stress, endoplasmic reticulum stress, senescence, aging, abdominal aortic aneurysm, and aortic dissection) represent the trending topics in recent years. Conclusion: This study systematically analyzed and visualized the knowledge map of VSMCPS over the past 2 decades. Our findings provide a comprehensive overview for scholars who want to understand current trends and new research frontiers in this area.
Collapse
Affiliation(s)
- Ying Han
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Langchao Yan
- Mini-invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Xia
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chen jin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Zhang Z, Mu X, Zhou X. Dexmedetomidine alleviates inflammatory response and oxidative stress injury of vascular smooth muscle cell via α2AR/GSK-3β/MKP-1/NRF2 axis in intracranial aneurysm. BMC Pharmacol Toxicol 2022; 23:81. [PMID: 36273189 PMCID: PMC9588221 DOI: 10.1186/s40360-022-00607-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic modulation regulates the initiation and progression of intracranial aneurysm (IA). Dexmedetomidine (DEX) is suggested to play neuroprotective roles in patients with craniocerebral injury. Therefore, we investigated the biological functions of DEX and its mechanisms against IA formation and progression in the current study. The rat primary VSMCs were isolated from Sprague-Dawley rats. IA and superficial temporal artery (STA) tissue samples were obtained from patients with IA. Flow cytometry was conducted to identify the characteristics of isolated VSMCs. Hydrogen peroxide (H2O2) was used to mimic IA-like conditions in vitro. Cell viability was detected using CCK-8 assays. Wound healing and Transwell assays were performed to detect cell motility. ROS production was determined by immunofluorescence using DCFH-DA probes. Western blotting and RT-qPCR were carried out to measure gene expression levels. Inflammation responses were determined by measuring inflammatory cytokines. Immunohistochemistry staining was conducted to measure α2-adrenergic receptor levels in tissue samples. DEX alleviated the H2O2-induced cytotoxicity, attenuated the promoting effects of H2O2 on cell malignancy, and protected VSMCs against H2O2-induced oxidative damage and inflammation response. DEX regulated the GSK-3β/MKP-1/NRF2 pathway via the α2AR. DEX alleviates the inflammatory responses and oxidative damage of VSMCs by regulating the GSK-3β/MKP-1/NRF2 pathway via the α2AR in IA.
Collapse
Affiliation(s)
- Ze Zhang
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiue Mu
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiaohui Zhou
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
29
|
Ye C, Geng Z, Zhang LL, Zheng F, Zhou YB, Zhu GQ, Xiong XQ. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol Sin 2022; 43:2573-2584. [PMID: 35260820 PMCID: PMC9525578 DOI: 10.1038/s41401-022-00875-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Ling-Li Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Huang J, Hong L, Shen B, Zhou Y, Lan J, Peng Y. FOXO1 represses MCL1 transcription to regulate the function of vascular smooth muscle cells in intracranial aneurysm. Exp Brain Res 2022; 240:2861-2870. [DOI: 10.1007/s00221-022-06461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
31
|
Wang K, Tan G, Tian R, Zhou H, Xiang C, Pan K. Circular RNA circ_0021001 regulates miR-148b-3p/GREM1 axis to modulate proliferation and apoptosis of vascular smooth muscle cells. Metab Brain Dis 2022; 37:2027-2038. [PMID: 35689751 DOI: 10.1007/s11011-022-01014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Intracranial aneurysm (IA) is an abnormal expression in the intracranial arteries, which is related to the growth and apoptosis of vascular smooth muscle cells (VSMCs). Circular RNA (circRNA) circ_0021001 (also named circARFIP2) has been identified to mediate the regulation of VSMCs proliferation. However, the molecular mechanism of circ_0021001 involved in VSMC dysfunction in IA is poorly defined. The expression levels of circ_0021001, microRNA-148b-3p (miR-148b-3p), and Gremlin 1 (GREM1) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, cell cycle progression, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Protein levels of proliferating cell nuclear antigen (PCNA), p21, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), and GREM1 were examined by western blot assay. The binding relationship between miR-148b-3p and circ_0021001 or GREM1 was predicted by StarBase and then verified using a dual-luciferase reporter assay. The expression levels of circ_0021001 and GREM1 were increased, and that of miR-148b-3p was decreased in IA tissues and HUASMCs. Moreover, the downregulation of circ_0021001 could repress proliferation ability and induce apoptosis of HUASMCs. The mechanical analysis uncovered that circ_0021001 served as a sponge of miR-148b-3p to regulate GREM1 expression. Circ_0021001 silencing could suppress cell growth and induce apoptosis of HUASMCs partially through modulating the miR-148b-3p/GREM1, presented circ_0021001 as a promising therapeutic target for IA.
Collapse
Affiliation(s)
- Kui Wang
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Gaofeng Tan
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Renfu Tian
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Han Zhou
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Chunhui Xiang
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Ke Pan
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China.
| |
Collapse
|
32
|
Ling C, Yang Y, Hu X, Cai M, Wang H, Chen C. Phoenixin-14 alleviates inflammatory smooth muscle cell-induced endothelial cell dysfunction in vitro. Cytokine 2022; 157:155973. [PMID: 35907364 DOI: 10.1016/j.cyto.2022.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) is cerebrovascular disorder which refers to local vessel wall damage to intracranial arteries, forming abnormal bulge. Both endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are closely associated with IA formation and rupture. Inflammatory SMCs (iSMCs) were reported to induce EC dysfunction and result in IA progression. Phoenixin-14 (PNX-14) is a recently discovered brain peptide with pleiotropic roles, which participates in reproduction, cardio protection, lipid deposition and blood glucose metabolism. PNX-14 was previously reported to protect brain endothelial cells against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cell injury. Therefore, our study was designed to investigate the influence of PNX-14 on iSMCs-induced endothelial dysfunction. METHODS Inflammation in SMCs was induced by cyclic mechanical stretch. Human umbilical vein endothelial cells (HUVECs) were exposed to SMC- or iSMC-conditioned medium and then treated with 100 nM PNX-14 for 24 h. The levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in cell supernatants were analyzed by ELISA. Cell viability, apoptosis, angiogenesis and migration were subjected to CCK-8 assay, flow cytometry analysis, tube formation assay and Transwell migration assay. The protein levels of proinflammatory cytokines and apoptosis markers (Bcl-2 and Bax) were evaluated by western blotting. RESULTS Cyclic mechanical stretch upregulated IL-1β, IL-6 and TNF-α levels in SMCs. Treatment with SMC- or iSMC-conditioned medium HUVECs inhibited cell viability, angiogenesis and migration and induced apoptosis in HUVECs. iSMC-conditioned medium has more significant effects on cell functions. However, the influence of SMC- or iSMC-conditioned medium treatment on HUVEC biological functions were reversed by PNX-14 treatment. PNX-14 exerts no significant influence on the biological functions of HUVECs treated with SMC medium. CONCLUSION PNX-14 alleviates iSMCs-induced endothelial cell dysfunction in vitro.
Collapse
Affiliation(s)
- Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yang Yang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiling Hu
- Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
33
|
Wang T, Tang X, Zhang Y, Wang X, Shi H, Yin R, Pan C. Delivery of miR-654-5p via SonoVue Microbubble Ultrasound Inhibits Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells and Arterial Thrombosis and Stenosis through Targeting TCF21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4757081. [PMID: 35910838 PMCID: PMC9325610 DOI: 10.1155/2022/4757081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important cause of vascular stenosis. The study explored the mechanism of inhibition of vascular stenosis through the molecular mechanism of smooth muscle cell phenotype transformation. Methods Coronary heart disease-related genes were screened by bioinformatics, and the target genes of miR-654-5p were predicted by dual-luciferase method and immunofluorescence method. miR-654-5p mimic stimulation and transfection of TCF21 and MTAP into cells. SonoVue microbubble sonication was used to deliver miR-654-5p into cells. Cell proliferation, migration, and invasion were detected by CCK-8, wound scratch, and Transwell. HE and IHC staining were performed to study the effect of miR-654-5p delivery via SonoVue microbubble ultrasound on vessel stenosis in a model of arterial injury. Gene expression was determined by qRT-PCR and WB. Results TCF21 and MTAP were predicted as the target genes of miR-654-5p. Cytokines induced smooth muscle cell proliferation, migration, and invasion and promoted miR-654-5p downregulation; noticeably, downregulated miR-654-5p was positively associated with the cell proliferation and migration. Overexpression of TCF21 promoted proliferation, invasion, and migration, and mimic reversed such effects. miR-654-5p overexpression delivered by SonoVue microbubble ultrasound inhibited proliferation, migration, and invasion of cells. Moreover, in arterial injury model, we found that SonoVue microbubble ultrasound transmitted miR-654-5p into the arterial wall to inhibit arterial thrombosis and stenosis, while TCF21 was inhibited. Conclusion Ultrasound delivery of miR-654-5p via SonoVue microbubbles was able to inhibit arterial thrombosis and stenosis by targeting TCF21.
Collapse
Affiliation(s)
- Tao Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqiang Tang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Yong Zhang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqin Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Haifeng Shi
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Ruohan Yin
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Changjie Pan
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
34
|
Martinez AN, Tortelote GG, Pascale CL, McCormack IG, Nordham KD, Suder NJ, Couldwell MW, Dumont AS. Single-Cell Transcriptome Analysis of the Circle of Willis in a Mouse Cerebral Aneurysm Model. Stroke 2022; 53:2647-2657. [PMID: 35770669 DOI: 10.1161/strokeaha.122.038776] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The circle of Willis (CoW) is the most common location for aneurysms to form in humans. Although the major cell types of the intracranial vasculature are well known, the heterogeneity and relative contributions of the different cells in healthy and aneurysmal vessels have not been well characterized. Here, we present the first comprehensive analysis of the lineage heterogeneity and altered transcriptomic profiles of vascular cells from healthy and aneurysmal mouse CoW using single-cell RNA sequencing. METHODS Cerebral aneurysms (CAs) were induced in adult male mice using an elastase model. Single-cell RNA sequencing was then performed on CoW samples obtained from animals that either had aneurysms form or rupture 14 days post-induction. Sham-operated animals served as controls. RESULTS Unbiased clustering analysis of the transcriptional profiles from >3900 CoW cells identified 19 clusters representing ten cell lineages: vascular smooth muscle cells, endothelial cells fibroblasts, pericytes and immune cells (macrophages, T and B lymphocytes, dendritic cells, mast cells, and neutrophils). The 5 vascular smooth muscle cell subpopulations had distinct transcriptional profiles and were classified as proliferative, stress-induced senescent, quiescent, inflammatory-like, or hyperproliferative. The transcriptional signature of the metabolic pathways of ATP generation was found to be downregulated in 2 major vascular smooth muscle cell clusters when CA was induced. Aneurysm induction led to significant expansion of the total macrophage population, and this expansion was further increased with rupture. Both inflammatory and resolution-phase macrophages were identified, and a massive spike of neutrophils was seen with CA rupture. Additionally, the neutrophil-to-lymphocyte ratio (NLR), which originated from CA induction mirrored what happens in humans. CONCLUSIONS Our data identify CA disease-relevant transcriptional signatures of vascular cells in the CoW and is searchable via a web-based R/shiny interface.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Giovane G Tortelote
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA. (G.G.T.)
| | - Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Isabella G McCormack
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Kristen D Nordham
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Natalie J Suder
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Mitchell W Couldwell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| |
Collapse
|
35
|
Gao F, Chen B, Zhou T, Luo H. Research on the effect of visceral artery Aneurysm's cardiac morphological variation on hemodynamic situation based on time-resolved CT-scan and computational fluid dynamics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106928. [PMID: 35701249 DOI: 10.1016/j.cmpb.2022.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Muscular arteries and related aneurysms keep deforming during the cardiac cycle. However, current patient-specific computational fluid dynamics (CFD) analyses of aneurysms are usually based on individual cardiac phase images. The cardiac deformation and displacement characteristics of muscle arteries and aneurysms, as well as their impact on CFD results, have not been adequately explored. The present study tried to illustrate the cardiac morphological variation of visceral muscular arteries (VMAs) & aneurysms (VAAs) and evaluate its influence on the hemodynamic situation at lesion locations. METHODS Four-dimensional computed tomography angiogram (4D-CTA) images of six patients with VAAs were acquired. Medical image registration is used to capture cardiac variations of VMAs. The steady-state CFD simulation is performed on twelve different time-phase geometries. Deformation, displacement, wall shear stress (WSS), velocity, and pressure values at pathological locations are compared to illustrate the deforming characteristics of VAAs and their influence on CFD simulation results. RESULTS The deformation and displacement characteristics of lesion locations for six specific patients show a pulsatile pattern. Maximum displacements are always less than 4 mm. The ratio fluctuations of endovascular cavity volume and vascular inner wall surface area, which were employed to depict cardiac deformation, are always less than 20%. According to CFD simulations based on deformed VMAs, WSS has a larger coefficient of variation (COV) than velocity and pressure. Except for one patient's WSS, the COVs of different hemodynamic parameters obtained from simulation results are always less than 10%. CONCLUSIONS Based on 4D-CTA images, we confirmed that cardiovascular circulation has a periodic impact on the morphologic characteristics of VMAs. A wave that has extended throughout the studied region is observed. It has a dominant influence on the displacement of VMAs. According to CFD results, the influence of the VMAs' deformation and displacement on different hemodynamic parameters is distinct. The variance in WSS is more prominent compared to pressure and velocity. On most occasions, the influence of the VMAs' periodic deformation and displacement on simulation results is insignificant. However, the variant simulation results induced by deforming VMAs cannot be simply ignored.
Collapse
Affiliation(s)
- Fan Gao
- Department of Simulation Science and Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd, Hangzhou 310000, China.
| | - Bing Chen
- Division of Vascular Surgery, Department of Surgery, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310052, China.
| | - Tao Zhou
- Department of Simulation Science and Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd, Hangzhou 310000, China.
| | - Huan Luo
- Department of Simulation Science and Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd, Hangzhou 310000, China.
| |
Collapse
|
36
|
Chen B, Zhou H, Zhou X, Yang L, Xiong Y, Zhang L. Comprehensive Analysis of Endoplasmic Reticulum Stress in Intracranial Aneurysm. Front Cell Neurosci 2022; 16:865005. [PMID: 35465608 PMCID: PMC9022475 DOI: 10.3389/fncel.2022.865005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Aberrant endoplasmic reticulum stress (ERS) plays an important role in multiple cardiovascular diseases. However, their implication in intracranial aneurysms (IAs) remains unclear. We designed this study to explore the general expression pattern and potential functions of ERS in IAs. Methods Five Gene Expression Omnibus (GEO) microarray datasets were used as the training cohorts, and 3 GEO RNA sequencing (RNA-seq) datasets were used as the validating cohorts. Differentially expressed genes (DEGs), functional enrichment, Lasso regression, logistic regression, ROC analysis, immune cell profiling, vascular smooth muscle cell (VSMC) phenotyping, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) analysis were applied to investigate the role of ERS in IA. Finally, we predicted the upstream transcription factor (TF)/miRNA and potential drugs targeting ERS. Results Significant DEGs were majorly associated with ERS, autophagy, and metabolism. Eight-gene ERS signature and IRE1 pathway were identified during the IA formation. WGCNA showed that ERS was highly associated with a VSMC synthesis phenotype. Next, ERS-VSMC-metabolism-autophagy PPI and ERS-TF-miRNA networks were constructed. Finally, we predicted 9 potential drugs targeting ERS in IAs. Conclusion ERS is involved in IA formation. Upstream and downstream regulatory networks for ERS were identified in IAs. Novel potential drugs targeting ERS were also proposed, which may delay IA formation and progress.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yuanyuan Xiong,
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Liyang Zhang,
| |
Collapse
|
37
|
Nabaei M. Cerebral aneurysm evolution modeling from microstructural computational models to machine learning: A review. Comput Biol Chem 2022; 98:107676. [DOI: 10.1016/j.compbiolchem.2022.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/13/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
|
38
|
Chang YJ, Liu CK, Cheng CY, Shih YC, Wang SC, Lin CC, Lin CM. Predictive Factors of Cerebral Aneurysm Rerupture After Clipping. Front Neurol 2022; 12:789216. [PMID: 35250792 PMCID: PMC8888407 DOI: 10.3389/fneur.2021.789216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to estimate the risk of rerupture after first-time aneurysmal clipping surgery, explore the possible related factors, and assess long-term physical functionality. We hypothesized that the modified Rankin scale (mRS) could serve as an effective substitute for Hunter and Hess scale. Methods This retrospective study included 171 patients with cerebral aneurysmal rupture who had completed aneurysmal clipping treatment and collected their demographic data and medical records. The outcome assessments include neuroimaging records, Hunter and Hess scale, and the mRS scale during hospitalization and follow-up after discharge. The mean length of follow-up was 4.28 years. Results After aneurysmal clipping treatment, 83 patients (48.5%) had subsequently ruptured aneurysms. The scores of the reruptured group on the Hunt and Hess scale and mRS were significantly higher than those of the non-reruptured group. Multiple Cox proportional-hazards regression also showed that postoperative mRS >2, smoking, and two or more aneurysms were potentially important risk factors leading to aneurysm rupture again [the corresponding hazard ratios (HRs) were 5.209, 2.109, and 2.775, respectively] in patients. In addition, the location of an aneurysm on the anterior cerebral artery (ACA) or the posterior communicating (Pcom) artery had a higher risk of rerupture (the corresponding HRs were 1.996 and 2.934, respectively). Conclusions Nearly half of the collected participants experienced the rerupture episode, who had undergone the second-time clipping surgery. Smoking and multiple aneurysms are potential risk factors for aneurysmal rerupture. Most aneurysms are located along the ICA, but aneurysms located at the ACA or Pcom site are most likely to rerupture. As compared with the Hunter and Hess scale, the mRS scale does not have inferior predicting power in following patients' long-term functionalities.
Collapse
Affiliation(s)
- Yu-Jun Chang
- Big Data Center, Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Kuang Liu
- Department of Medical Imaging, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Yuan Cheng
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Cheng Shih
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shih-Chun Wang
- Department of Medical Imaging, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Chih Lin
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Ming Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
39
|
Ma Z, Zhong P, Yue P, Sun Z. Uncovering of Key Pathways and miRNAs for Intracranial Aneurysm Based on Weighted Gene Co-Expression Network Analysis. Eur Neurol 2022; 85:212-223. [PMID: 35034029 DOI: 10.1159/000521390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) is a serious cerebrovascular disease. The identification of key regulatory genes can provide research directions for early diagnosis and treatment of IA. METHODS Initially, the miRNA and mRNA data were downloaded from the Gene Expression Omnibus database. Subsequently, the limma package in R was used to screen for differentially expressed genes. In order to investigate the function of the differentially expressed genes, a functional enrichment analysis was performed. Moreover, weighted gene co-expression network analysis (WGCNA) was performed to identify the hub module and hub miRNAs. The correlations between miRNAs and mRNAs were assessed by constructing miRNA-mRNA regulatory networks. In addition, in vitro validation was performed. Finally, diagnostic analysis and electronic expression verification were performed on the GSE122897 dataset. RESULTS In the present study, 955 differentially expressed mRNAs (DEmRNAs, 480 with increased and 475 with decreased expression) and 46 differentially expressed miRNAs (DEmiRNAs, 36 with increased and 10 with decreased expression) were identified. WGCNA demonstrated that the yellow module was the hub module. Moreover, 16 hub miRNAs were identified. A total of 1,124 negatively regulated miRNA-mRNA relationship pairs were identified. Functional analysis demonstrated that DEmRNAs in the targeted network were enriched in vascular smooth muscle contraction and focal adhesion pathways. In addition, the area under the curve of 16 hub miRNAs was >0.8. It is implied that 16 hub miRNAs may be used as potential diagnostic biomarkers of IA. CONCLUSION Hub miRNAs and key signaling pathways were identified by bioinformatics analysis. This evidence lays the foundation for understanding the underlying molecular mechanisms of IA and provided potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhengfei Ma
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Peidong Yue
- Department of Neurosurgery, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Rantasalo V, Gunn J, Kiviniemi T, Hirvonen J, Saarenpää I, Kivelev J, Rahi M, Lassila E, Rinne J, Laukka D. Intracranial aneurysm is predicted by abdominal aortic calcification index: A retrospective case-control study. Atherosclerosis 2021; 334:30-38. [PMID: 34461392 DOI: 10.1016/j.atherosclerosis.2021.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Patients with intracranial aneurysms (IA) have excess mortality for cardiovascular diseases, but little is known on whether atherosclerotic manifestations and IA coexist. We investigated abdominal aortic calcification index (ACI) association with unruptured and ruptured IAs. METHODS This retrospective case-control study reviews all tertiary centers patients (n = 24,660) who had undergone head computed tomography angiography (CTA), magnetic resonance angiography (MRA) or digital subtraction angiography (DSA) for any reason between January 2003 and May 2018. Patients (n = 2020) with unruptured or ruptured IAs were identified, and patients with available abdominal CT were included. IA patients were matched by sex and age to controls (available abdomen CT, no IAs) in ratio of 1:3. ACI was measured from abdomen CT scans and patient records were reviewed. RESULTS 1720 patients (216 ruptured IA (rIA), 246 unruptured IA (UIA) and 1258 control) were included. Mean age was 62.9 ± 11.9 years and 58.2% were female. ACI (OR 1.02 per increment, 95%CI 1.01-1.03) and ACI>3 (OR 5.77, 95%CI 3.29-10.11) increased risk for rIA compared to matched controls. UIA patients' ACI was significantly higher but ACI did not increase odds for UIA compared to matched controls. History of coronary artery disease was less frequent in rIA patients. There was no calcification in aorta in 8.8% rIA and 13.6% UIA patients (matched controls 25.7% and 22.6% respectively, p < 0.01). CONCLUSIONS Aortic calcification is greater in rIA and UIA patients than matched controls. ACI increases risk for rIAs.
Collapse
Affiliation(s)
- Ville Rantasalo
- Department of Surgery, Turku University Hospital and University of Turku, Turku, Finland.
| | - Jarmo Gunn
- Department of Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilkka Saarenpää
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Juri Kivelev
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Melissa Rahi
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Elli Lassila
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Jaakko Rinne
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Dan Laukka
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
41
|
Qin K, Tian G, Zhou D, Chen G. Circular RNA circ-ARFIP2 regulates proliferation, migration and invasion in human vascular smooth muscle cells via miR-338-3p-dependent modulation of KDR. Metab Brain Dis 2021; 36:1277-1288. [PMID: 33837886 DOI: 10.1007/s11011-021-00726-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/28/2021] [Indexed: 12/24/2022]
Abstract
Dysfunction of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of intracranial aneurysm (IA). Circular RNAs (circRNAs) have been implicated in the pathogenesis of IA by reducing microRNA (miRNA) activity. In this paper, we investigated the precise roles of circRNA ADP ribosylation factor interacting protein 2 (circ-ARFIP2, circ_0021001) in VSMC dysfunction. The levels of circ-ARFIP2, miR-338-3p and kinase insert domain receptor (KDR) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R and subcellular fractionation assays were used to assess the stability and localization of circ-ARFIP2, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell invasion was measured by transwell assay. Cell proliferation was gauged by 5-Ethynyl-2'-Deoxyuridine (EdU) assay. Cell migration was evaluated by transwell and wound-healing assays. Targeted correlations among circ-ARFIP2, miR-338-3p and KDR were validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ-ARFIP2 and KDR were underexpressed and miR-338-3p was overexpressed in the arterial wall tissues of IA patients. Overexpression of circ-ARFIP2 in human umbilical artery smooth muscle cells (HUASMCs) showed a significant promotion in cell proliferation, migration and invasion. Mechanistically, circ-ARFIP2 targeted miR-338-3p, and circ-ARFIP2 regulated cell behaviors by miR-338-3p. KDR was a direct and functional target of miR-338-3p. Moreover, KDR was a downstream effector of circ-ARFIP2 function. Circ-ARFIP2 regulated KDR expression by targeting miR-338-3p. Our present findings demonstrated that the increased level of circ-ARFIP2 enhanced HUASMC proliferation, migration and invasion at least in part by the miR-338-3p/KDR axis.
Collapse
Affiliation(s)
- Kun Qin
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China
| | - Ge Tian
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
42
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
43
|
Chen X, Yang S, Yang J, Liu Q, Li M, Wu J, Wang H, Wang S. The Potential Role of hsa_circ_0005505 in the Rupture of Human Intracranial Aneurysm. Front Mol Biosci 2021; 8:670691. [PMID: 34336924 PMCID: PMC8316638 DOI: 10.3389/fmolb.2021.670691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: Recently, abundant number of studies have revealed many functions of circular RNAs in multiple diseases, however, the role of circular RNA in the rupture of human intracranial aneurysm is still unknown. This study aims to explore the potential functions of circular RNA in the rupture of human intracranial aneurysms. Methods: The differentially expressed circular RNAs between un-ruptured intracranial aneurysms (n = 5) and ruptured intracranial aneurysms (n = 5) were analyzed with the Arraystar human circRNAs microarray. Quantitative real-time PCR (qPCR) was used to verify the results of the circRNA microarray. The role of circular RNA in intracranial aneurysm rupture was assessed in vitro. MTT assay, CCK-8 assay, Caspase3/7 assay, assay of cell apoptosis and Celigo wound healing was conducted to evaluate the relationship between circular RNA and the rupture of human intracranial aneurysms. Results: A total of 13,175 circRNA genes were detected. Among them 63 circRNAs upregulated and 54 circRNAs downregulated significantly in ruptured intracranial aneurysms compared with un-ruptured intracranial aneurysms (p < 0.05 Fold Change > 1.5). Five upregulated circRNAs were selected for further study (hsa_circ_0001947, hsa_circ_0043001, hsa_circ_0064557, hsa_circ_0058514, hsa_circ_0005505). The results of qPCR showed only hsa_circ_0005505 significantly upregulated (p < 0.05). The expression of hsa_circ_0005505 was higher in ruptured intracranial aneurysm tissues. And our in vitro data showed that hsa_circRNA_005505 promotes the proliferation, migration and suppresses the apoptosis of vascular smooth muscle cell. Conclusion: This study revealed an important role of hsa_circ_0005505 in the proliferation, migration and apoptosis of vascular smooth muscle cell, and indicated that hsa_circ_0005505 may associate with the pathological process of intracranial aneurysms.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junhua Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
44
|
SDF-1α/CXCR4 Pathway Mediates Hemodynamics-Induced Formation of Intracranial Aneurysm by Modulating the Phenotypic Transformation of Vascular Smooth Muscle Cells. Transl Stroke Res 2021; 13:276-286. [PMID: 34173205 DOI: 10.1007/s12975-021-00925-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The objective of this study is to explore the role of the SDF-1α/CXCR4 pathway in the development of intracranial aneurysm (IA) induced by hemodynamic forces. We collected 12 IA and six superficial temporal artery samples for high-throughput sequencing, hematoxylin and eosin staining, and immunohistochemistry to examine vascular remodeling and determine the expression of the components of the SDF-1α/CXCR4 pathway, structural proteins (α-SMA and calponin) of vascular smooth muscle cells (VSMCs), and inflammatory factors (MMP-2 and TNF-α). Computational fluid dynamics (CFD) was used for hemodynamic analysis. Mouse IA model and dynamic co-culture model were established to explore the mechanism through which the SDF-1α/CXCR4 pathway regulates the phenotypic transformation of VSMCs in vivo and in vitro. We detected a significant elevation of SDF-1α and CXCR4 in IA, which was accompanied by vascular remodeling in the aneurysm wall (i.e., the upregulation of inflammatory factors, MMP-2 and TNF-α, and the downregulation of contractile markers, α-SMA and calponin). In addition, hemodynamic analysis revealed that compared with unruptured aneurysms, ruptured aneurysms were associated with lower wall shear stress and higher MMP-2 expression. In vivo and in vitro experiments showed that abnormal hemodynamics could activate the SDF-1α/CXCR4, P38, and JNK signaling pathways to induce the phenotypic transformation of VSMCs, leading to IA formation. Hemodynamics can induce the phenotypic transformation of VSMCs and cause IA by activating the SDF-1α/CXCR4 signaling pathway.
Collapse
|
45
|
Tutino VM, Zebraski HR, Rajabzadeh-Oghaz H, Waqas M, Jarvis JN, Bach K, Mokin M, Snyder KV, Siddiqui AH, Poppenberg KE. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics (Basel) 2021; 11:1092. [PMID: 34203780 PMCID: PMC8232768 DOI: 10.3390/diagnostics11061092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39 patients, we performed differential expression analysis to define an IA-associated signature of 54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these genes could delineate patients with IAs from controls, as the majority of them still had the same direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes, intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that 4/54 genes were associated with rupture risk. These findings highlight the potential to develop predictive biomarkers from PBMCs to identify patients harboring IAs.
Collapse
Affiliation(s)
- Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Haley R. Zebraski
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA;
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - James N. Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA;
| | - Konrad Bach
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
46
|
Bae H, Suh SI, Yoon WK, Roh H, Kim C, Kwon TH. Correlation of Aneurysmal Wall Enhancement of Unruptured Intracranial Aneurysms on High-Resolution Vessel-Wall Imaging With Clinical Indices and Surgical Findings. Neurosurgery 2021; 89:420-427. [PMID: 34114036 DOI: 10.1093/neuros/nyab178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many physicians consider aneurysmal wall enhancement (AWE) on high resolution-vessel wall imaging (HR-VWI) as an imaging biomarker of unstable unruptured intracranial aneurysms (UIAs). OBJECTIVE To evaluate the clinical value of different AWE signal intensities (SIs) by assessing the correlation between the AWE SIs and surgical findings and rupture risk assessment tools. METHODS Twenty-six patients with 34 aneurysms who underwent surgical clipping were included. The corrected AWE SI was calculated by comparing T1-weighted images with post-gadolinium enhanced T1-weighted images. The correlation of AWE with the population, hypertension, age, size of aneurysm, earlier subarachnoid hemorrhage from another aneurysm, site of aneurysm (PHASES) and earlier subarachnoid hemorrhage, location of the aneurysm, age >60 years, population, size of the aneurysm, shape of the aneurysm (ELAPSS) scores was evaluated using correlation and linear regression analysis. To quantify the surgical findings, the average color value of the aneurysms expressed in the CIELCh system was measured. Δh, color difference from yellow, was used for statistical analysis. RESULTS The mean age of the patients and aneurysm size were 64.08 yr and 6.95 mm, respectively. The mean AWE SI, PHASES and ELAPSS scores, and Δh were 22.30, 8.41, 20.32, and 41.36, respectively. The coefficients of correlation of AWE SI with the PHASES and ELAPSS scores and Δh were 0.526, 0.563, and -0.431. We found that the AWE SI affected the PHASES (β = 0.430) and ELAPSS scores (β = 0.514) and Δh (β = -0.427) in simple linear regression analysis. CONCLUSION The AWE on HR-VWI was correlated with the PHASES and ELAPSS scores and the color. The stronger the AWE, the higher were the PHASES and ELAPSS scores and the more abnormal was the color. The AWE might indicate the degree of inflammation.
Collapse
Affiliation(s)
- Heejin Bae
- Department of Neurosurgery, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Won Ki Yoon
- Department of Neurosurgery, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Haewon Roh
- Department of Neurosurgery, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Taek-Hyun Kwon
- Department of Neurosurgery, Guro Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Ding X, Wang X, Han L, Zhao Z, Jia S, Tuo Y. CircRNA DOCK1 Regulates miR-409-3p/MCL1 Axis to Modulate Proliferation and Apoptosis of Human Brain Vascular Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:655628. [PMID: 34109173 PMCID: PMC8181129 DOI: 10.3389/fcell.2021.655628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Intracranial aneurysm is an abnormal expansion in the intracranial arteries, which is associated with growth and apoptosis of vascular smooth muscle cells. Circular RNAs (circRNAs) have implicated in the progression of intracranial aneurysms. The purpose of this paper is to study the function and mechanism of circRNA dedicator of cytokinesis 1 (circ_DOCK1) in regulating proliferation and apoptosis of human brain vascular smooth muscle cells (HBVSMCs). Methods HBVSMCs were exposed to hydrogen peroxide (H2O2). Cell proliferation and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry, respectively. Circ_DOCK1, microRNA (miR)-409-3p, and myeloid cell leukemia sequence 1 (MCL1) levels were examined by quantitative reverse transcription polymerase chain reaction or western blotting. The target association was assessed by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Results Exposure to H2O2 decreased proliferation and increased apoptosis of HBVSMCs. Circ_DOCK1 expression was reduced in H2O2-treated HBVSMCs. Circ_DOCK1 overexpression rescued H2O2-caused reduction of proliferation and PCNA expression and attenuated H2O2-induced apoptosis and expression of Bcl-2, Bax, and cleaved PARP. MiR-409-3p was targeted by circ_DOCK1 and upregulated in H2O2-treated HBVSMCs. MiR-409-3p upregulation mitigated the role of circ_DOCK1 in proliferation and apoptosis of H2O2-treated HBVSMCs. MCL1 was targeted via miR-409-3p and downregulated via H2O2 treatment. Circ_DOCK1 overexpression enhanced MCL1 expression via modulating miR-409-3p. MiR-409-3p knockdown weakened H2O2-induced proliferation reduction and apoptosis promotion via regulating MCL1. Conclusion Circ_DOCK1 overexpression mitigated H2O2-caused proliferation inhibition and apoptosis promotion in HBVSMCs by modulating miR-409-3p/MCL1 axis.
Collapse
Affiliation(s)
- Xinmin Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Han
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiyu Zhao
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jia
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanzhao Tuo
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
48
|
Takeuchi M, Uyama A, Matsumoto T, Tsuto K, Konishi Y, Iwabuchi S. Experimental Safety Evaluation of Inflated Assisting Balloons for Endovascular Surgery. JOURNAL OF NEUROENDOVASCULAR THERAPY 2021; 15:707-711. [PMID: 37502270 PMCID: PMC10371007 DOI: 10.5797/jnet.oa.2020-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 07/29/2023]
Abstract
Objective The balloon-assisted technique is one of the methods used for cerebral aneurysm embolization. There are several applications of assisting balloons such as remodeling the neck of cerebral aneurysms, protecting blood vessel branches, and stabilizing the microcatheter. In this study, we measured the pressure inside inflated assisting balloons to assess safety or procedure. Methods A T-junction silicone model was used. The pressure inside the balloon inflated to the set herniation levels in the T-junction model was measured using a fiber pressure sensor. We compared the pressure and difference between each assisting balloon. Results The pressure required for inflating the balloon to the set herniation level in the T-junction model varied depending on the type of assisting balloon. The results suggest that differences in pressure among inflated balloons are likely attributable to differences in the materials used in the lumens of the balloons. Conclusion The pressure inside various inflated assisting balloons was measured for comparison and differences were found. This experiment contributes to the safety of the balloon-assisted technique.
Collapse
Affiliation(s)
- Masataka Takeuchi
- Department of Neurosurgery, Seishou Hospital, Odawara, Kanagawa, Japan
- Department of Neurosurgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Uyama
- Department of Neurosurgery, Seishou Hospital, Odawara, Kanagawa, Japan
| | - Takashi Matsumoto
- Department of Neurosurgery, Seishou Hospital, Odawara, Kanagawa, Japan
| | - Kazuma Tsuto
- Department of Neurosurgery, Seishou Hospital, Odawara, Kanagawa, Japan
| | - Yoshifumi Konishi
- Department of Neurosurgery, Seishou Hospital, Odawara, Kanagawa, Japan
| | - Satoshi Iwabuchi
- Department of Neurosurgery (Ohashi), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
49
|
Effect of combined acetylsalicylic acid and statins treatment on intracranial aneurysm rupture. PLoS One 2021; 16:e0247153. [PMID: 33600491 PMCID: PMC7891751 DOI: 10.1371/journal.pone.0247153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023] Open
Abstract
Background Acetylsalicylic acid (ASA) and statins have been identified as potentially reducing the risk of intracranial aneurysms (IA) rupture. We aim to determine the effect of this drugs on the risk of rupture of IA. Patients and methods We performed a retrospective cohort study from a prospective database of patients with IA treated in our institution between January 2013 and December 2018. Demographics, previous oral treatments, presence of multiple aneurysms, size of aneurysm, lobulation, location and morphology of the aneurysms were recorded. Patients were dichotomized as ruptured and unruptured IA. Results A total of 408 IA were treated, of which 283 (68.6%) were in women. The median age was 53, 194 (47.5%) were ruptured IA. 38 patients (9.3%) were receiving ASA and 84 (20.6%) were receiving statins at the moment of the IA diagnosis. In the multivariable regression analysis, ASA plus statin use and multiple aneurysms were independently associated with unruptured IA (OR 5.01, 95% CI, 1.37–18.33, P = 0.015 and OR 2.72, 95% CI 1.68–4.27, P<0.001, respectively). Whereas, lobulated wall aneurysm and PComA/AComA location were inversely and independently associated with unruptured IA condition (OR 0.34, 95% CI 0.21–0.55, P<0.001 and OR 0.37, 95% CI 0.23–0.60, P<0.001, respectively). However, ASA and statins in monotherapy were not independently associated with unruptured IA condition. Conclusions In our study population ASA plus statins treatment is independently associated with unruptured IA. Larger and prospective studies are required to explore this potential protective effect against IA rupture.
Collapse
|
50
|
Xiao G, Zhang M, Peng X, Jiang G. Protocatechuic acid attenuates cerebral aneurysm formation and progression by inhibiting TNF-alpha/Nrf-2/NF-kB-mediated inflammatory mechanisms in experimental rats. Open Life Sci 2021; 16:128-141. [PMID: 33817305 PMCID: PMC7968537 DOI: 10.1515/biol-2021-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Our current research aims to examine whether protocatechuic acid (PCA) can be used as a therapeutic agent for the development of cerebral aneurysm (CA) and to elucidate the mechanisms behind this. We assessed the effects of PCA at 50 and 100 mg/kg on the activation of signaling pathways for tissue necrosis factor (TNF)-α/nuclear factor (NF)-κB/nuclear factor erythroid 2 (Nrf-2) on progression and development in an elastase-induced CA model, accompanied by a high-salt diet to induce hypertension. The expression of inflammatory cytokines, chemokines, tumor necrosis factor-α, interleukins (IL)-8, IL-17, IL-6, IL-1β, and matrix metalloproteinase (MMP)-2 and MMP-9 was analyzed by ELISA, western blot, and reverse transcriptase quantative polymerase chain reaction. The expression levels of antioxidant enzymes and translocation of Nrf-2 were also determined. The group treated with PCA demonstrated a significant (P < 0.05) decrease in the aneurysmal size in rats compared to the CA-induced group. We found that PCA treatment suppressed the invasion of macrophage and activation of TNF-α/NF-κB/Nrf-2 signaling pathways. There was a significant decrease (P < 0.05) in pro-inflammatory cytokine and chemokine levels in a dose-dependent manner. We found that PCA treatment exerts protective effects by suppressing the development and progression of CA through the inhibition of inflammatory responses in macrophages via TNF-α/NF-κB/Nrf-2 signaling pathways, thus demonstrating that PCA can act as a treatment for CA.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi 7 Branch Road, Jiangbei District, Chongqing 400021, People’s Republic of China
| | - Mei Zhang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xing Peng
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi 7 Branch Road, Jiangbei District, Chongqing 400021, People’s Republic of China
| | - Guangyuan Jiang
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi 7 Branch Road, Jiangbei District, Chongqing 400021, People’s Republic of China
| |
Collapse
|