1
|
Xu Y, Liu Y, Wu Y, Sun J, Lu X, Dai K, Zhang Y, Luo C, Zhang J. Curcumin Alleviates Microglia-Mediated Neuroinflammation and Neuronal Ferroptosis Following Experimental Subarachnoid Hemorrhage by Modulating the Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2025; 62:2995-3010. [PMID: 39207623 DOI: 10.1007/s12035-024-04443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Early brain injury caused by subarachnoid hemorrhage (SAH) is associated with inflammatory response and ferroptosis. Curcumin alleviates neuroinflammation and oxidative stress by as yet unknown neuroprotective mechanisms. The objective of this study was to investigate the impact of curcumin on neuronal ferroptosis and microglia-induced neuroinflammation following SAH. By examining Nrf2/HO-1 expression levels and ferroptosis biomarkers expression both in vitro and in vivo, it was demonstrated that curcumin effectively suppressed ferroptosis in neurons after SAH through modulation of the Nrf2/HO-1 signaling pathway. Furthermore, by analyzing the expression levels of Nrf2, HO-1, p-p65, and inflammation-related genes, it was confirmed that curcumin could prevent the upregulation of pro-inflammatory factors following SAH by regulating the Nrf2/HO-1/NF-κB signaling pathway in microglia. The ability of curcumin to reduce neuronal damage and cerebral edemas after SAH in mice was validated using TUNEL staining, Nissl staining, and measurement of brain tissue water content. Additionally, through implementation of the modified Garcia test, open field test, and Y-maze test, it was established that curcumin ameliorated neurobehavioral impairments in mice post-SAH. Taken together, these data suggest that curcumin may offer a promising therapeutic approach for improving outcomes following SAH by concurrently attenuating neuronal ferroptosis and reducing neuroinflammation.
Collapse
Affiliation(s)
- Yao Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiting Zhang
- Department of Rheumatology, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Ahmed ME, Akhter N, Fatima S, Ahmad S, Giri S, Hoda MN, Ahmad AS. Therapeutic utility of Perfluorocarbon Oxygent in limiting the severity of subarachnoid hemorrhage in mice. Sci Rep 2024; 14:26638. [PMID: 39496694 PMCID: PMC11535447 DOI: 10.1038/s41598-024-77321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is the deadliest form of hemorrhagic stroke; however, effective therapies are still lacking. Perfluorocarbons (PFCs) are lipid emulsion particles with great flexibility and their much smaller size as compared to red blood cells (RBCs) allows them to flow more efficiently within the blood circulation. Due to their ability to carry oxygen, a specific PFC-based emulsion, PFC-Oxygent, has been used as a blood substitute; however, its role in cerebral blood flow regulation is unknown. Adult C57BL/6 wildtype male mice were subjected to an endovascular perforation model of SAH followed by an intravenous (i.v.) injection of 9 ml/kg PFC-Oxygent or no treatment at 5 h after SAH. At 48 h after SAH, functional and anatomical outcomes were assessed. We found that SAH resulted in significant neurologic and motor deficits which were prevented by PFC-Oxygent treatment. We found that SAH-induced vasospasm, reduced RBC deformability, and augmented endothelial dysfunction were also restricted by PFC-Oxygent treatment. Moreover, mitochondrial activity and fusion proteins were also markedly decreased as assessed by oxidative phosphorylation (OXPHOS) after SAH. Interestingly, PFC-Oxygent treatment brought the mitochondrial activity close to the basal level. Moreover, SAH attenuated the level of phosphorylated AMP-activated protein kinase (pAMPK), whereas PFC treatment improved pAMPK levels. These data show the beneficial effects of PFC-Oxygent in limiting the severity of SAH. Further studies are needed to fully understand the mechanism through which PFC-Oxygent exerts its beneficial effects in limiting SAH severity.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Sumbul Fatima
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Saif Ahmad
- Department of Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | | |
Collapse
|
3
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Rieß C, Darkwah Oppong M, Dinger TF, Rodemerk J, Rauschenbach L, Gümüs M, Frank B, Dammann P, Wrede KH, Sure U, Jabbarli R. Baseline and average platelet count can predict the outcome of patients with aneurysmal subarachnoid hemorrhage. World Neurosurg X 2024; 22:100302. [PMID: 39790119 PMCID: PMC11711821 DOI: 10.1016/j.wnsx.2024.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 01/12/2025] Open
Abstract
Background Baseline values and the change of platelet count (PLT) during disease were reported to be associated with prognosis of patients with cancer and intensive care treatment. We aimed to evaluate the association between PLT with the course and prognosis of aneurysmal subarachnoid hemorrhage (SAH). Methods Admission (AdmPLT) and the 14-days mean PLT (MeanPLT) values of 763 SAH patients treated between 01/2005 and 06/2016 were recorded and, for further analysis, divided into four categories: <150, 150-260, 261-400 and > 400 × 109/L. Primary endpoints were cerebral infarcts in follow-up computed tomography scans, in-hospital mortality and unfavorable outcome at 6-months follow-up defined as modified Rankin scale>3. Adverse events during SAH were assessed as secondary endpoints. Results Higher PLT values were independently associated with lower risk of cerebral infarction (MeanPLT: aOR = 0.65 per-PLT-category-increase, p = 0.001), in-hospital mortality (AdmPLT: aOR = 0.64, p = 0.017; MeanPLT: aOR = 0.23, p < 0.0001) and unfavorable outcome (AdmPLT: aOR = 0.70, p = 0.031; MeanPLT: aOR = 0.35, p < 0.0001). Moreover, individuals with poorer outcome were less prone to PLT increase during SAH (mean values: -+20.3 vs + 30.5 × 109/L for cerebral infarction; +9.3 vs + 32.8 × 109/L for in-hospital mortality; +14.4 vs + 31.1 × 109/L for unfavorable outcome). The following adverse events during SAH were related to AdmPLT and/or MeanPLT: non-aneurysm related secondary rebleeding, intracranial hypertension requiring conservative treatment or decompressive craniectomy, sepsis and acute kidney failure. Conclusion Low PLT at admission and their less prominent increase during SAH were strongly linked with poor outcome of SAH. Further analysis is required to clarify the background of this association and potential therapeutic implications.
Collapse
Affiliation(s)
- Christoph Rieß
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thiemo-Florin Dinger
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meltem Gümüs
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karsten Henning Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats. Transl Stroke Res 2023; 14:987-1001. [PMID: 36418735 DOI: 10.1007/s12975-022-01104-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated. NLRP3 inflammasome proteins were significantly elevated in CSF of human with SAH induced EBI and presented a positive correlation with severity. In ipsilateral hemisphere cortex of rats, these NLRP3 inflammasome proteins were also increased and accompanied with upregulation of H19, and both of NLRP3 and H19 were peaked at 24 h after SAH. However, knockdown of H19 markedly decreased the expression of NLRP3 inflammasome proteins at 24 h after SAH in rats and also ameliorated EBI, showing improved neurobehavioral deficits, cerebral edema, and neuronal injury. Moreover, knocking down of H19 downregulated the expression of Gasdermin D (GSDMD) in microglia in SAH rats. Similarly, knockdown of H19 also alleviated OxyHb-induced pyroptosis and NLRP3-mediated inflammasomes activation in primary microglia. Lastly, H19 competitively sponged with rno-miR-138-5p and then upregulated NLRP3 expression in the post-SAH inflammatory response. lncRNA H19 promotes NLRP3-mediated pyroptosis by functioning as rno-miR-138-5p sponge in rats during EBI after SAH, which might provide a potential therapeutic target for post-SAH inflammation regulation.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zhoule Zhu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohu Nie
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Tao M, Mao J, Bao Y, Liu F, Mai Y, Guan S, Luo S, Huang Y, Li Z, Zhong Y, Wei B, Pan J, Wang Q, Zheng L, Situ B. A Blood-Responsive AIE Bioprobe for the Ultrasensitive Detection and Assessment of Subarachnoid Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205435. [PMID: 36683187 PMCID: PMC10015902 DOI: 10.1002/advs.202205435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe subtype of stroke caused by the rupturing of blood vessels in the brain. The ability to accurately assess the degree of bleeding in an SAH model is crucial for understanding the brain-damage mechanisms and developing therapeutic strategies. However, current methods are unable to monitor microbleeding owing to their limited sensitivities. Herein, a new bleeding assessment system using a bioprobe TTVP with aggregation-induced emission (AIE) characteristics is demonstrated. TTVP is a water-soluble, small-molecule probe that specifically interacts with blood. Taking advantage of its AIE characteristics, cell membranes affinity, and albumin-targeting ability, TTVP fluoresces in bleeding areas and detects the presence of blood with a high signal-to-noise (S/N) ratio. The degree of SAH bleeding in an endovascular perforation model is clearly evaluated based on the intensity of the fluorescence observed in the brain, which enables the ultrasensitive detection of mirco-bleeding in the SAH model in a manner that outperforms the current imaging strategies. This method serves as a promising tool for the sensitive analysis of the degree of bleeding in SAHs and other hemorrhagic diseases.
Collapse
Affiliation(s)
- Maliang Tao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jian Mao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yun Bao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fan Liu
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yiying Mai
- The Second Clinical CollegeSouthern Medical UniversityGuangzhou510515China
| | - Shujuan Guan
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Researchthe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Yifang Huang
- Department of Clinical Laboratorythe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Zixiong Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yuan Zhong
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Binbin Wei
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jun Pan
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qian Wang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
7
|
Li H, Wang Z, Xie X, Luo M, Shen H, Li X, Li H, Wang Z, Li X, Chen G. Peroxiredoxin-3 plays a neuroprotective role in early brain injury after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2023; 193:95-105. [PMID: 36566946 DOI: 10.1016/j.brainresbull.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency associated with a high morbidity and mortality rate. After SAH, early brain injury (EBI) is the leading cause of poor prognosis in SAH patients. Peroxiredoxins (PRDXs) are a family of sulphhydryl-dependent peroxidases. Peroxiredoxin-3 (PRDX3) is mainly located in the mitochondria of neurons, which can remove hydrogen peroxide (H2O2); however, the effect of PRDX3 on EBI after SAH remains unclear. In this study, an endovascular perforation model was used to mimic SAH in Sprague Dawley rats in vivo. The results revealed that after SAH, PRDX3 levels decreased in the neurons. PRDX3 overexpression by neuron-specific adeno-associated viruses upregulated PRDX3 levels. Furthermore, PRDX3 overexpression improved long- and short-term behavioral outcomes and alleviated neuronal impairment in rats. Nissl staining revealed that the upregulation of PRDX3 promoted cortical neuron survival. PRDX3 overexpression decreased the H2O2 content and downregulated caspase-9 expression. In conclusion, PRDX3 participates in neuronal protection by inhibiting the neuronal mitochondria-mediated death pathway; PRDX3 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Haibo Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Muyun Luo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou 341000, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiangdong Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
8
|
Han DW, Oh JE, Lim BJ, Han Y, Song Y. Dexmedetomidine attenuates subarachnoid hemorrhage-induced acute lung injury through regulating autophagy and TLR/NFκB signaling pathway. Korean J Anesthesiol 2022; 75:518-529. [PMID: 35912428 PMCID: PMC9726465 DOI: 10.4097/kja.22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is the most serious complication of subarachnoid hemorrhage (SAH). We investigated role of autophagy and inflammatory signaling pathways in lung damage and therapeutic effects of dexmedetomidine (DEX). METHODS Fifty male Wistar rats were randomly divided into five groups: sham, SAH, SAH+ DEX5, SAH+DEX25, and SAH+DEX50. SAH was induced using endovascular perforation technique. All rats received mechanical ventilation for 60 minutes. At 2 and 24 h of SAH induction, SAH+DEX groups were treated with 5, 25, and 50 µg/kg of DEX, respectively. Histological ALI score and pulmonary edema were assessed after 48 h. Lung expression of LC3B, ATG3, p62, TLR4, TLR9, and NFκB was assessed using western blotting and quantitative PCR. Blood levels of IL-6, IL-1β, IFN-γ, and TNFα were also assessed. RESULTS SAH induced ALI and pulmonary edema, which were attenuated in SAH+DEX5 (P < 0.001 for both) and SAH+DEX25 groups (P = 0.001 and P < 0.001 for ALI and edema, respectively). Lung expressions of LC3B and ATG3 were upregulated in SAH group, which was attenuated in SAH+DEX5 and SAH+DEX25 groups. Lung expressions of TLR4, TLR9, and NFκB were increased in SAH group, which was attenuated in SAH+DEX5 group. Blood IL-6 level was increased in SAH group and attenuated in SAH+DEX5 and SAH+DEX25 groups. Blood IFN-γ level was lower in SAH group than in sham group, and it was increased in SAH+DEX25 group. CONCLUSIONS Low-dose DEX treatment after SAH may protect against ALI by disrupting pathological brain-lung crosstalk and alleviating autophagy flux and TLR-dependent inflammatory pathways.
Collapse
Affiliation(s)
- Dong Woo Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonseung Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Wu X, Guo Y, Zeng H, Chen G. DNase-1 Treatment Exerts Protective Effects in Neurogenic Pulmonary Edema via Regulating the Neutrophil Extracellular Traps after Subarachnoid Hemorrhage in Mice. J Clin Med 2022; 11:jcm11154349. [PMID: 35955969 PMCID: PMC9369252 DOI: 10.3390/jcm11154349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
It has been reported that neutrophil extracellular traps (NETs) involve inflammation, coagulation and cell death. Acute lung injury is also considered to be connected with NETs. Deoxyribonuclease I (DNase-1), a clinical medication for the respiratory system, has been reported to degrade cell-free DNA (cfDNA), which is the main component of NETs. Herein, we did research to clarify the therapeutic value of DNase-1 in NPE after SAH. In this model, we found that the treatment of DNase-1 remarkably decreased lung water, neutrophilic infiltration and inflammation. In addition, DNase-1 inhibited the NETs and proinflammatory subtype transition of the macrophages. Moreover, the depletion of neutrophil also verified the role of NETs in NPE. Our results suggest that DNase-1 has the potential to effectively relieve the NPE after SAH and to be a clinical drug for use after SAH.
Collapse
|
10
|
Clarke JV, Brier LM, Rahn RM, Diwan D, Yuan JY, Bice AR, Imai SI, Vellimana AK, Culver JP, Zipfel GJ. SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2022; 42:1210-1223. [PMID: 35137611 PMCID: PMC9207494 DOI: 10.1177/0271678x221079902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Functional connectivity (FC) is a sensitive metric that provides a readout of whole cortex coordinate neural activity in a mouse model. We examine the impact of experimental SAH modeled through endovascular perforation, and the effectiveness of subsequent treatment on FC, through three key questions: 1) Does the endovascular perforation model of SAH induce deficits in FC; 2) Does exposure to hypoxic conditioning provide protection against these FC deficits and, if so, is this neurovascular protection SIRT1-mediated; and 3) does treatment with the SIRT1 activator resveratrol alone provide protection against these FC deficits? Cranial windows were adhered on skull-intact mice that were then subjected to either sham or SAH surgery and either left untreated or treated with hypoxic post-conditioning (with or without EX527) or resveratrol for 3 days. Mice were imaged 3 days post-SAH/sham surgery, temporally aligned with the onset of major SAH sequela in mice. Here we show that the endovascular perforation model of SAH induces global and network-specific deficits in FC by day 3, corresponding with the time frame of DCI in mice. Hypoxic conditioning provides SIRT1-mediated protection against these network-specific FC deficits post-SAH, as does treatment with resveratrol. Conditioning-based strategies provide multifaceted neurovascular protection in experimental SAH.
Collapse
Affiliation(s)
- Julian V Clarke
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA
| | - Lindsey M Brier
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Rachel M Rahn
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA
| | - Jane Y Yuan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA
| | - Annie R Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Shin-ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA
| | - Joseph P Culver
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
11
|
Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis 2022; 171:105809. [PMID: 35781003 DOI: 10.1016/j.nbd.2022.105809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The modulation of neuroinflammation is a new direction that may alleviate the early brain injury after subarachnoid hemorrhage (SAH). Brain resident microglia/macrophages (Mi/MΦ) are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to play a neuroprotective role by activating phagocytosis and suspending inflammatory response in experimental ischemic stroke and intracerebral hemorrhage. This study was designed to investigate the role of TREM2 on neuroinflammation and neuroprotective effects in a rat SAH model. METHODS Adult male Sprague-Dawley rats were induced SAH through endovascular perforation. Lentivirus vectors were administered by i.c.v. to induce TREM2 overexpression or knockdown 7 days before SAH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the neuroprotective role of TREM2 after SAH. RESULTS The expression of TREM2 elevated in a rat SAH model with a peak at 48 h after SAH and mainly expressed in Mi/MΦ in brain. TREM2 overexpression improved short- and long-term neurological deficits induced by SAH in rats, while TREM2 knockdown worsened neurological dysfunction. The rats with TREM2 overexpressed presented less neuronal apoptosis and more neuronal survival at 48 h after SAH, while the rats with TREM2 knockdown presented on the contrary. TREM2 overexpression manifested activated phagocytosis and suppressed inflammatory response, with the increase of CD206+/CD11b+ cells and IL-10 expression as well as the decrease of the infiltration of MPO+ cells and the expression of TNF-α, IL-1β. While TREM2 knockdown abolished these effects. The protein level of IRAK3, a negative regulatory factor of inflammation, was significantly elevated after TREM2 overexpression and declined after TREM2 knockdown. CONCLUSIONS Our research suggested TREM2 played a neuroprotective role and improved the short- and long-term neurological deficits by modulating neuroinflammation after SAH. The modulation on neuroinflammation of TREM2 after SAH was related with the elevated protein level of IRAK3.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin City 214400, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
12
|
Xue C, Wang R, Jia Y. Downregulation of miR-23a-3p improves cognitive function in rats after subarachnoid hemorrhage by targeting VCAN. Med Mol Morphol 2022; 55:146-157. [PMID: 35137264 DOI: 10.1007/s00795-022-00315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a complicated and deadly disorder. Dysregulation of miRNAs in SAH has been widely reported. This investigation elucidated the function of miR-23a-3p in the in vivo and in vitro models of SAH. The miR-23a-3p and VCAN levels in SAH rats and sham controls were detected by RT-qPCR. The SAH rats were intracerebrally administrated with miR-23a-3p antagomir. Morphological changes and brain function were assessed. The isolated brain microvascular endothelial cells (BMECs), identified by immunofluorescence staining, were used as the model of SAH in vitro. The viability and apoptosis of BMECs were evaluated using MTT, flow cytometry, and western blotting analyses. Targeted relationship between miR-23a-3p and VCAN was predicted in miRDB and validated by a luciferase reporter assay. We found that the miR-23a-3p level was upregulated in rats after SAH, while VCAN was downregulated. Silencing miR-23a-3p attenuated neurological deficits and neuronal apoptosis in rats after SAH. VCAN was verified to be targeted by miR-23a-3p. Functionally, miR-23a-3p downregulation or VCAN overexpression inhibited BMEC apoptosis and promoted cell activity. Moreover, knockdown of VCAN eliminated the influence of miR-23a-3p inhibition in BMECs. Overall, suppression of miR-23a-3p improves cognitive function after SAH by targeting VCAN.
Collapse
Affiliation(s)
- Cheng Xue
- Neurological Center, Hefei BOE Hospital, Intersection of Dongfang Avenue and Wenzhong Road, Xinzhan District, Hefei, 230012, Anhui, China.
| | - Rong Wang
- Neurological Center, Hefei BOE Hospital, Intersection of Dongfang Avenue and Wenzhong Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yu Jia
- Neurological Center, Hefei BOE Hospital, Intersection of Dongfang Avenue and Wenzhong Road, Xinzhan District, Hefei, 230012, Anhui, China
| |
Collapse
|
13
|
Wang X, Wang Z, Wu J, Wang L, Li X, Shen H, Li H, Xu J, Li W, Chen G. Thioredoxin 1 regulates the pentose phosphate pathway via ATM phosphorylation after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2022; 185:162-173. [PMID: 35588962 DOI: 10.1016/j.brainresbull.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency with high morbidity and mortality. Early brain injury (EBI) after SAH is the leading cause of poor prognosis in SAH patients. TRX system is a NADPH-dependent antioxidant system which is composed of thioredoxin reductase (TRXR), thioredoxin (TRX). The pentose phosphate pathway (PPP), a pathway through which glucose can be metabolized, is a major source of NADPH. Thioredoxin 1 (TRX1) is a member of thioredoxin system mainly located in cytoplasm. Serine/threonine kinases ataxia telangiectasia mutated (ATM) is an important oxidative stress receptor, and TRX1 can regulate ATM phosphorylation and then affect the activity of PPP key enzyme glucose 6-phosphate dehydrogenase (G6PD). However, whether TRX1 is involved in the regulation of PPP pathway after subarachnoid hemorrhage remains unclear. The results showed that after SAH, the level of TRX1 and phosphor-ATM decreased while the level of TRXR1 increased. G6PD protein level remained unchanged but the activity decreased, and the NADPH contents decreased. Overexpression of TRX1 by lentivirus upregulates the level of phosphor-ATM, G6PD activity and NADPH content. TRX1 overexpression improved short-term and long-term neurobehavioral outcomes and alleviated neuronal impairment in rats. Nissl staining showed that upregulation of TRX1 reduced cortical neuron injury. Our study shows that TRX1 participates in the PPP pathway by regulating phosphorylation ATM, which is accomplished by affecting G6PD activity. TRX1 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
14
|
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022; 183:184-200. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.
Collapse
|
15
|
Malinova V, Bleuel K, Stadelmann C, Iliev B, Tsogkas I, Psychogios MN, Rohde V, Mielke D. The impact of transcranial direct current stimulation on cerebral vasospasm in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 2021; 41:2000-2009. [PMID: 33504272 PMCID: PMC8323336 DOI: 10.1177/0271678x21990130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to induce changes in cortical excitability and perfusion in a rat ischemic stroke model. Since perfusion disturbances are a common phenomenon, not only in ischemic but also in hemorrhagic stroke, tDCS might have a possible beneficial effect on cerebral perfusion in hemorrhagic stroke as well. We applied tDCS in a rat model of subarachnoid hemorrhage (SAH) and evaluated its impact on vasospasm. SAH was induced using the double-hemorrhage rat model. TDCS was applied on day 3 and 4. For vasospasm assessment magnetic resonance angiography was performed on day 1, day 2 and day 5. A total of 147 rats were operated, whereat 72 rats died before day 5 and 75 rats survived the whole experiment and could be analyzed. The cathodal group consisted of 26 rats, the anodal group included 24 rats. Thirteen rats served as controls without tDCS, and twelve rats underwent a sham operation. The cathodal group revealed the lowest incidence of new vasospasm on day 5 (p = 0.01), and the lowest mean number of vasospastic vessels per rat (p = 0.02). TDCS influences the vasospasm incidence in an SAH-model in rats, where cathodal-tDCS was associated with a lower vasospasm incidence and severity.
Collapse
Affiliation(s)
- Vesna Malinova
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Bogdan Iliev
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ioannis Tsogkas
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Medicine Basel, Basel, Switzerland.,Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Marios N Psychogios
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Medicine Basel, Basel, Switzerland.,Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
BMSCs Regulate Astrocytes through TSG-6 to Protect the Blood-Brain Barrier after Subarachnoid Hemorrhage. Mediators Inflamm 2021; 2021:5522291. [PMID: 34305453 PMCID: PMC8263246 DOI: 10.1155/2021/5522291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background In patients with subarachnoid hemorrhage (SAH), the damage of the blood-brain barrier (BBB) can be life-threatening. Mesenchymal stem cells are widely used in clinical research due to their pleiotropic properties. This study is aimed at exploring the effect of BMSCs regulating astrocytes on the BBB after SAH. Methods The SAH model was established by perforating the blood vessels. BMSCs were transfected with TSG-6 inhibitor plasmid and cocultured with astrocytes. Intravenous transplantation of BMSCs was utilized to treat SAH rats. We performed ELISA, neurological scoring, Evans blue staining, NO measurement, immunofluorescence, BBB permeability, Western blot, HE staining, Nissl staining, and immunohistochemistry to evaluate the effect of BMSCs on astrocytes and BBB. Results SAH rats showed BBB injury, increased BBB permeability, and brain histological damage. BMSCs will secrete TSG-6 after being activated by TNF-α. Under the influence of TSG-6, the NF-κB and MAPK signaling pathways of astrocytes were inhibited. The expression of iNOS was reduced, while occludin, claudin 3, and ZO-1 expression was increased. The production of harmful substances NO and ONOO- decreased. The level of inflammatory factors decreased. The apoptosis of astrocytes was weakened. TSG-6 secreted by BMSCs can relieve inflammation caused by SAH injury. The increase in BBB permeability of SAH rats was further reduced and the risk of rebleeding was reduced. Conclusion BMSCs can regulate the activation of astrocytes through secreting TSG-6 in vivo and in vitro to protect BBB.
Collapse
|
17
|
Tupone D, Cetas JS. In a model of SAH-induced neurogenic fever, BAT thermogenesis is mediated by erythrocytes and blocked by agonism of adenosine A1 receptors. Sci Rep 2021; 11:2752. [PMID: 33531584 PMCID: PMC7854628 DOI: 10.1038/s41598-021-82407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Neurogenic fever (NF) after subarachnoid hemorrhage (SAH) is a major cause of morbidity that is associated with poor outcomes and prolonged stay in the neurointensive care unit (NICU). Though SAH is a much more common cause of fever than sepsis in the NICU, it is often a diagnosis of exclusion, requiring significant effort to rule out an infectious source. NF does not respond to standard anti-pyretic medications such as COX inhibitors, and lack of good medical therapy has led to the introduction of external cooling systems that have their own associated problems. In a rodent model of SAH, we measured the effects of injecting whole blood, blood plasma, or erythrocytes on the sympathetic nerve activity to brown adipose tissue and on febrile thermogenesis. We demonstrate that following SAH the acute activation of brown adipose tissue leading to NF, is not dependent on PGE2, that subarachnoid space injection of whole blood or erythrocytes, but not plasma alone, is sufficient to trigger brown adipose tissue thermogenesis, and that activation of adenosine A1 receptors in the CNS can block the brown adipose tissue thermogenic component contributing to NF after SAH. These findings point to a distinct thermogenic mechanism for generating NF, compared to those due to infectious causes, and will hopefully lead to new therapies.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy. .,Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - Justin S Cetas
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.,Portland VA Health Care System, Portland, OR, USA
| |
Collapse
|
18
|
Liu GJ, Tao T, Zhang XS, Lu Y, Wu LY, Gao YY, Wang H, Dai HB, Zhou Y, Zhuang Z, Hang CH, Li W. Resolvin D1 Attenuates Innate Immune Reactions in Experimental Subarachnoid Hemorrhage Rat Model. Mol Neurobiol 2021; 58:1963-1977. [PMID: 33411245 DOI: 10.1007/s12035-020-02237-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Excessive inflammation is a major cause contributing to early brain injury (EBI) and is associated with negative or catastrophic outcomes of subarachnoid hemorrhage (SAH). Resolvin D1 (RvD1) exerts strong anti-inflammatory and pro-resolving effects on either acute or chronic inflammation of various origin. Henceforth, we hypothesized that RvD1 potentially attenuates excessive inflammation in EBI following SAH. Therefore, we generated a filament perforation SAH model and administered 3 different doses (0.3, 0.6, and 1.2 nmol) of RvD1 after experimental SAH. Neurological scores, brain edema, and blood-brain barrier integrity were evaluated; besides, neutrophil infiltration, neuronal deaths, and microglial pro-inflammatory polarization were observed using histopathology or immunofluorescence staining, western blots, and qPCR. After confirming the effectiveness of RvD1 in SAH, we administered the FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4) 30 min before SAH establishment to observe whether this compound could abolish the anti-inflammatory effect of RvD1. Altogether, our results showed that RvD1 exerted a strong anti-inflammatory effect and markedly reduced neutrophil infiltration and microglial pro-inflammatory activation, leading to remarkable improvements in neurological function and brain tissue restoration. After addition of WRW4, the anti-inflammatory effects of RvD1 were abolished. These results indicated that RvD1 could exert a good anti-inflammatory effect and alleviate EBI, which suggested that RvD1 might be a novel therapeutic alternative for SAH-induced injury.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Hai-Bin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
19
|
Matsubara H, Imai T, Yamada T, Egashira Y, Nakamura S, Shimazawa M, Iwama T, Hara H. Importance of CBF measurement to exclude concomitant cerebral infarction in the murine endovascular perforation SAH model. J Stroke Cerebrovasc Dis 2020; 29:105243. [PMID: 33066951 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Concomitant cerebral infarction (CI) is could be a potential concern in experimental subarachnoid hemorrhage (SAH) induced by endovascular perforation. We propose a noninvasive method for excluding CI in a murine SAH model by using Laser speckle flow imaging (LSFI). METHODS An SAH was induced with endovascular perforation (EVP) in male ddY mice. The cerebral blood flow (CBF) was quantitatively measured in the bilateral cerebral cortex was performed by using LSFI at five timepoints (preprocedure, immediately after, and 3 hours, 6 hours, and 24 hours after the procedure). The mice were then euthanized, and the SAH grade and volume of the CI were evaluated. The mice were divided into the SAH group and the SAH + CI group. Differences between the groups were assessed. RESULTS Forty-eight mice were used in this study. Six were the sham control group. Five SAH mice died within 24 hours after the procedure. A large CI on the ipsilateral side occurred in 15 (40.5%) mice (i.e., SAH + CI group). The remaining 22 (59.5%) mice were classified as the SAH group. The SAH grading score was not significantly different between the groups. The neurological score and CBF of the ipsilateral hemisphere were significantly higher in the SAH group than in the SAH + CI group (neurological score: 12.3 vs. 8, p < 0.01; CBF: 343.1 vs. 205.5; p < 0.01). The cut-off modified neurological score for excluding CI was 8 (area under the curve [AUC]: 0.77) and CBF at 24 hours after the procedure was 279.2 (AUC:0.856). CONCLUSIONS Using LSFI is less invasive and effectively excludes concomitant CI in experimental SAH. This methodological protocol may ad in improving the quality of the EVP-SAH model.
Collapse
Affiliation(s)
- Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuya Yamada
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Egashira
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
20
|
Liu GJ, Tao T, Wang H, Zhou Y, Gao X, Gao YY, Hang CH, Li W. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury. J Neuroinflammation 2020; 17:239. [PMID: 32795323 PMCID: PMC7429751 DOI: 10.1186/s12974-020-01918-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023] Open
Abstract
Background Early brain injury (EBI) has been thought to be a key factor affecting the prognosis of subarachnoid hemorrhage (SAH). Many pathologies are involved in EBI, with inflammation and neuronal death being crucial to this process. Resolvin D1 (RvD1) has shown superior anti-inflammatory properties by interacting with lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) in various diseases. However, it remains not well described about its role in the central nervous system (CNS). Thus, the goal of the present study was to elucidate the potential functions of the RvD1-ALX/FPR2 interaction in the brain after SAH. Methods We used an in vivo model of endovascular perforation and an in vitro model of hemoglobin (Hb) exposure as SAH models in the current study. RvD1 was used at a concentration of 25 nM in our experiments. Western blotting, quantitative polymerase chain reaction (qPCR), immunofluorescence, and other chemical-based assays were performed to assess the cellular localizations and time course fluctuations in ALX/FPR2 expression, evaluate the effects of RvD1 on Hb-induced primary microglial activation and neuronal damage, and confirm the role of ALX/FPR2 in the function of RvD1. Results ALX/FPR2 was expressed on both microglia and neurons, but not astrocytes. RvD1 exerted a good inhibitory effect in the microglial pro-inflammatory response induced by Hb, possibly by regulating the IRAK1/TRAF6/NF-κB or MAPK signaling pathways. RvD1 could also potentially attenuate Hb-induced neuronal oxidative damage and apoptosis. Finally, the mRNA expression of IRAK1/TRAF6 in microglia and GPx1/bcl-xL in neurons was reversed by the ALX/FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4), indicating that ALX/FPR2 could mediate the neuroprotective effects of RvD1. Conclusions The results of the present study indicated that the RvD1-ALX/FPR2 interaction could potentially play dual roles in the CNS, as inhibiting Hb promoted microglial pro-inflammatory polarization and ameliorating Hb induced neuronal oxidant damage and death. These results shed light on a good therapeutic target (ALX/FPR2) and a potential effective drug (RvD1) for the treatment of SAH and other inflammation-associated brain diseases.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
21
|
Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death Dis 2020; 11:363. [PMID: 32404916 PMCID: PMC7220929 DOI: 10.1038/s41419-020-2530-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Patients with subarachnoid hemorrhage (SAH) often suffer from cognitive function impairments even when they have received proper treatment, such as the clipping or coiling of aneurysms, and this causes problems with returning to work and burdens the family. Increasing attention has been paid to mesenchymal stem cell (MSC)-derived extracellular vesicle (MSC-EV) as promising therapeutic vesicles for stroke management. In this study, we explored the potential role of MSC-EV in a rat model of SAH. We observed that MSC-EV ameliorated early brain injury (EBI) after SAH by reducing the apoptosis of neurons and that SAH induced an increase in the expression level of miR-21 in the prefrontal cortex and hippocampus. In addition, using miRNA profiling and CSF sequencing data from the exRNA Atlas, we demonstrated that EV-derived miR-21 protected neurons from apoptosis and alleviated SAH-induced cognitive dysfunction. The neuroprotective role of MSC-EV was abrogated by miR-21 knockdown or the administration of MK2206, a PTEN/Akt inhibitor. Overall, our results suggest that MSC-EV promotes neuronal survival and alleviates EBI after SAH through transferring miR-21 to recipient neurons.
Collapse
|
22
|
Liu GJ, Zhang QR, Gao X, Wang H, Tao T, Gao YY, Zhou Y, Chen XX, Li W, Hang CH. MiR-146a Ameliorates Hemoglobin-Induced Microglial Inflammatory Response via TLR4/IRAK1/TRAF6 Associated Pathways. Front Neurosci 2020; 14:311. [PMID: 32317924 PMCID: PMC7147172 DOI: 10.3389/fnins.2020.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Microglial activation and sustained inflammation in the brain can lead to neuronal damage. Hence, limiting microglial activation and brain inflammation is a good therapeutic strategy for inflammatory-associated central nervous disease. MiR-146a is a promising therapeutic microRNA, since it can negatively regulate the inflammatory response. We thus investigated the expression changes of miR-146a after experimental induction of a subarachnoid hemorrhage (SAH) in vivo and in vitro, and we assessed the anti-inflammatory effects of miR-146a in microglial cells in vitro. Primary microglial cells were preincubated with miR-146a before hemoglobin (Hb) treatment. The results indicated that miR-146a decreased gene expression of Hb-induced pro-inflammatory cytokines (TNF-α and IL-1β) and phenotype-related genes (iNOS and CD86) through IRAK1/TRAF6/NF-κB or MAPK signaling pathways, suggesting its pro-resolution activity in microglia. However, contrary to the LPS-induced microglia or macrophage activation model, we did not observe an elevation in miR-146a after activation. Overall, our findings demonstrated that miR-146a was involved in the regulation of brain inflammation and could be considered a novel therapeutic agent for treating brain inflammation.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
23
|
Mielke D, Bleuel K, Stadelmann C, Rohde V, Malinova V. The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS One 2020; 15:e0227349. [PMID: 32097426 PMCID: PMC7041796 DOI: 10.1371/journal.pone.0227349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
Objective The amount of extravasated blood is an established surrogate marker for subarachnoid hemorrhage (SAH) severity, which varies in different experimental SAH (eSAH) models. A comprehensive eSAH grading system would allow a more reliable correlation of outcome parameters with SAH severity. The aim of this study was to define a severity score for eSAH related to the Fisher-Score in humans. Material and methods SAH was induced in 135 male rats using the modified double hemorrhage model. A sham group included 8 rats, in which saline solution instead of blood was injected. Histological analysis with HE(hematoxylin-eosin)-staining for the visualization of blood was performed in all rats on day 5. The amount and distribution of blood within the subarachnoid space and ventricles (IVH) was analyzed. Results The mortality rate was 49.6% (71/143). In all except five SAH rats, blood was visible within the subarachnoid space. As expected, no blood was detected in the sham group. The following eSAH severity score was established (ESAS-score): grade I: no SAH visible; grade II: local or diffuse thin SAH, no IVH; grade III: diffuse / thick layers of blood, no IVH; grade IV: additional IVH. Grade I was seen in five rats (7.9%), grade II in 28.6% (18/63), grade III in 41.3% (26/63) and grade IV in 22.2% (14/63) of the rats with eSAH. Conclusion The double hemorrhage model allows the induction of a high grade SAH in more than 60% of the rats, making it suitable for the evaluation of outcome parameters in severe SAH.
Collapse
Affiliation(s)
- Dorothee Mielke
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
24
|
MCC950 attenuated early brain injury by suppressing NLRP3 inflammasome after experimental SAH in rats. Brain Res Bull 2019; 146:320-326. [DOI: 10.1016/j.brainresbull.2019.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
|
25
|
Malinova V, Tsogkas I, Behme D, Rohde V, Psychogios MN, Mielke D. Defining cutoff values for early prediction of delayed cerebral ischemia after subarachnoid hemorrhage by CT perfusion. Neurosurg Rev 2019; 43:581-587. [DOI: 10.1007/s10143-019-01082-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
|
26
|
Influence of sex and hormonal status on initial impact and neurocognitive outcome after subarachnoid haemorrhage in rats. Behav Brain Res 2019; 363:13-22. [PMID: 30703399 DOI: 10.1016/j.bbr.2019.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/23/2022]
Abstract
The aim of this study was to detect differences in functional outcome after experimental subarachnoid haemorrhage (SAH) in rodents with different hormonal status. For this purpose, the endovascular perforation model was applied to four groups of Sprague-Dawley-Rats: male intact, male neutered, female intact and female neutered animals. Initial impact was measured by ICP, CPP and cerebral blood flow in the first hour after SAH. From day 4-14, the modified hole board test was applied to assess functional and neuro-cognitive outcome. Histological outcome was examined in the motor cortex and hippocampus of each hemisphere. Mortality was highest in the female intact group albeit not statistically significant. Physiologic parameters did not differ significantly between groups either. In the modified hole board test, male intact animals showed a greater impairment of declarative memory than the female intact and neutered groups. However, male intact animals showed greater avoidance behaviour and male animals revealed higher anxiety levels independent of hormonal status. No differences in histological damage of hippocampus and motor cortex between groups could be shown. We therefore speculate that the marginal deficits in cognitive performance that are shown by the male intact group in the modified hole board test are mostly caused by higher anxiety levels and cannot be interpreted as pure cognitive impairment.
Collapse
|
27
|
Sun J, Zhang Y, Lu J, Zhang W, Yan J, Yang L, Zhou C, Liu R, Chen C. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage. Microcirculation 2019; 25:e12442. [PMID: 29377443 DOI: 10.1111/micc.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the potential of salvinorin A (SA) for cerebral vasospasm after subarachnoid hemorrhage (SAH) and investigate mechanisms of therapeutic effect using rat SAH model. METHODS Salvinorin A was injected intraperitoneally, and the neurobehavioral changes were observed at 12 hours, 24 hours, 48 hours, and 72 hours after SAH. Basilar artery was observed by magnetic resonance imaging (MRI). The inner diameter and thickness of basilar artery were measured. The morphological changes and the apoptosis in CA1 area of hippocampus were detected. Endothelin-1 (ET-1) and nitric oxide (NO) levels were detected by ELISA kit. The protein expression of endothelial NO synthase (eNOS) and aquaporin-4 (AQP-4) was determined by Western blot for potential mechanism exploration. RESULTS Salvinorin A administration could relieve neurological deficits, decrease the neuronal apoptosis, and alleviate the morphological changes in CA1 area of hippocampus. SA alleviated CVS by increasing diameter and decreasing thickness of basilar artery, and such changes were accompanied by the decreased concentration of ET-1 and increased level of NO. Meanwhile, SA increased the expression of eNOS and decreased the expression of AQP-4 protein in the basilar artery and hippocampus. CONCLUSIONS Salvinorin A attenuated CVS and alleviated brain injury after SAH via increasing expression of eNOS and NO content, and decreasing ET-1 concentration and AQP-4 protein expression.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianfei Lu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Duris K, Lipkova J, Splichal Z, Madaraszova T, Jurajda M. Early Inflammatory Response in the Brain and Anesthesia Recovery Time Evaluation After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2018; 10:10.1007/s12975-018-0641-z. [PMID: 29926382 DOI: 10.1007/s12975-018-0641-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
The main objective was to evaluate, whether the subarachnoid hemorrhage (SAH)-associated early inflammatory response has focal or global character, i.e., whether areas distant to hematoma may be affected by an early inflammatory response. The second objective was to evaluate the association of anesthesia recovery time for basic reflexes/neurological functions with severity of SAH. SAH was induced in rats using an endovascular perforation model. Anesthesia recovery time was evaluated for pain reaction recovery time (spinal level), spontaneous ventilation recovery time (brain stem level), and consciousness recovery time (neocortical level). mRNA expressions of TNFα, IL-1β, IL-6, ICAM-1, and VCAM-1 in areas adjacent and distant to hematoma were evaluated between 2 and 8 h after SAH. Serum levels of TNFα, IL-1β, and IL-6 were assessed at 4 and 8 h after SAH. Anesthesia recovery time of all selected parameters was associated with severity of SAH. The consciousness recovery time test had the best predictive value, while the spontaneous ventilation recovery time test was able to bring information in the shortest time. The mRNA expressions of pro-inflammatory cytokines were significantly increased in severe SAH groups in both adjacent and distant areas. The inflammatory response in mild/moderate SAH groups was less strong, peaking at 4 h after SAH. Serum levels of pro-inflammatory cytokines were ambiguous. Anesthesia recovery time may be useful for bleeding severity prediction in the SAH model; however, further validation is needed. Severe subarachnoid hemorrhage is associated with the strong early inflammatory response, which has a global character, while mild subarachnoid hemorrhage is accompanied by a weaker inflammation.
Collapse
Affiliation(s)
- K Duris
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Lipkova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Z Splichal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - T Madaraszova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Jurajda
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
29
|
Jing C, Zhang H, Shishido H, Keep RF, Hua Y. Association of Brain CD163 Expression and Brain Injury/Hydrocephalus Development in a Rat Model of Subarachnoid Hemorrhage. Front Neurosci 2018; 12:313. [PMID: 29867324 PMCID: PMC5964168 DOI: 10.3389/fnins.2018.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Hemoglobin contributes to brain cell damage and death following subarachnoid hemorrhage (SAH). While CD163, a hemoglobin scavenger receptor, can mediate the clearance of extracellular hemoglobin it has not been well-studied in SAH. In the current study, a filament perforation SAH model was performed in male rats. T2-weighted and T2*-weighted scans were carried out using a 7.0-Tesla MR scanner 24 h after perforation. T2 lesions and hydrocephalus were determined on T2-weighted images. A grading system based on MRI was used to assess SAH severity. The effects of SAH on CD163 were determined by immunohistochemistry staining and Western blots. SAH led to a marked increase in CD163 levels in cortex, white matter and periventricular regions from days 1 to 7. CD163 stained cells were co-localized with neurons, microglia/macrophages, oligodendrocytes and cleaved caspase-3-positive cells, but not astrocytes. Furthermore, CD163 protein levels were increased in rats with higher SAH grades, the presence of T2 lesions on MRI, or hydrocephalus. In conclusion, CD163 expression is markedly upregulated after SAH. It is associated with more severe hemorrhage, as well as MRI T2 lesion and hydrocephalus development.
Collapse
Affiliation(s)
- Chaohui Jing
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haining Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Frontera JA, Provencio JJ, Sehba FA, McIntyre TM, Nowacki AS, Gordon E, Weimer JM, Aledort L. The Role of Platelet Activation and Inflammation in Early Brain Injury Following Subarachnoid Hemorrhage. Neurocrit Care 2017; 26:48-57. [PMID: 27430874 DOI: 10.1007/s12028-016-0292-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Early brain injury (EBI) following aneurysmal subarachnoid hemorrhage (SAH) is an important predictor of poor functional outcome, yet the underlying mechanism is not well understood. Animal studies suggest that platelet activation and inflammation with subsequent microthrombosis and ischemia may be a mechanism of EBI. METHODS A prospective, hypothesis-driven study of spontaneous, SAH patients and controls was conducted. Platelet activation [thromboelastography maximum amplitude (MA)] and inflammation [C-reactive protein (CRP)] were measured serially over time during the first 72 h following SAH onset. Platelet activation and inflammatory markers were compared between controls and SAH patients with mild [Hunt-Hess (HH) 1-3] versus severe (HH 4-5) EBI. The association of these biomarkers with 3-month functional outcomes was evaluated. RESULTS We enrolled 127 patients (106 SAH; 21 controls). Platelet activation and CRP increased incrementally with worse EBI/HH grade, and both increased over 72 h (all P < 0.01). Both were higher in severe versus mild EBI (MA 68.9 vs. 64.8 mm, P = 0.001; CRP 12.5 vs. 1.5 mg/L, P = 0.003) and compared to controls (both P < 0.003). Patients with delayed cerebral ischemia (DCI) had more platelet activation (66.6 vs. 64.9 in those without DCI, P = 0.02) within 72 h of ictus. At 3 months, death or severe disability was more likely with higher levels of platelet activation (mRS4-6 OR 1.18, 95 % CI 1.05-1.32, P = 0.007) and CRP (mRS4-6 OR 1.02, 95 % CI 1.00-1.03, P = 0.041). CONCLUSIONS Platelet activation and inflammation occur acutely after SAH and are associated with worse EBI, DCI and poor 3-month functional outcomes. These markers may provide insight into the mechanism of EBI following SAH.
Collapse
Affiliation(s)
- Jennifer A Frontera
- Cerebrovascular Center of the Neurological Institute, Cleveland Clinic, 9500 Euclid Ave. S80, Cleveland, OH, 44195, USA. .,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - J Javier Provencio
- Department of Neurology and Neuroscience, Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
| | - Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Errol Gordon
- Department of Critical Care, Mount Sinai School of Medicine, New York, NY, USA
| | - Jonathan M Weimer
- Cerebrovascular Center of the Neurological Institute, Cleveland Clinic, 9500 Euclid Ave. S80, Cleveland, OH, 44195, USA
| | - Louis Aledort
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Malinova V, Psychogios MN, Tsogkas I, Koennecke B, Bleuel K, Iliev B, Rohde V, Mielke D. MR-angiography allows defining severity grades of cerebral vasospasm in an experimental double blood injection subarachnoid hemorrhage model in rats. PLoS One 2017; 12:e0171121. [PMID: 28182715 PMCID: PMC5300130 DOI: 10.1371/journal.pone.0171121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Magnetic resonance (MR) imaging has been used for the detection of cerebral vasospasm (VSP) related infarction in experimental subarachnoid hemorrhage (eSAH) in rats. Conventional angiography is generally used to visualize VSP, which is an invasive technique with a possible increase in morbidity and mortality. In this study we evaluated the validity of MR-angiography (MRA) in detecting VSP and its feasibility to define VSP severity grades after eSAH in rats. Methods SAH was induced using the double-hemorrhage model in 12 rats. In two rats, saline solution was injected instead of blood (sham group). MR was performed on day 1, 2 and on day 5. T1-, T2-, T2*-weighted and time-of-flight MR sequences were applied, which were analyzed by two blinded neuroradiologists. Vessel narrowing of 25–50% was defined as mild, 50–75% as moderate and >75% as severe VSP. Results We performed a total of 34 MRAs in 14 rats. In 14 rats, MRA was performed on day 2 and day 5. In six rats MRA was additionally performed on day1 before the blood injection. A good visualization of cerebral vessels was possible in all cases. No VSP was seen in the sham group neither on day 2 nor on day 5. We found vasospasm on day 2 in 7 of the 14 rats (50%) whereas all 7 rats had mild and one rat had additionally moderate and severe vasospasm in one vessel, respectively. On day 5 we found vasospasm in 8 of the 14 rats (60%) whereas 4 rats had severe vasospasm, 1 rat had moderate vasospasm and 3 rats demonstrated mild vasospasm. In 4 of the 14 rats (30%) an ischemic lesion was detected on day 5. Three of these rats had severe vasospasm and one rat had mild vasospasm. Severe vasospasm on day 5 was statistically significant correlated with the occurrence of ischemic lesions (Fisher’s Exact test, OR 19.5, p = 0.03). Conclusions MRA is a noninvasive diagnostic tool, which allows a good visualization of the cerebral vasculature and provides reproducible results concerning the detection of VSP and the differentiation into three severity grades in rats. Future studies are needed to directly compare MRA with conventional angiography.
Collapse
Affiliation(s)
- Vesna Malinova
- Department of Neurosurgery, Georg August University Göttingen, Germany
- * E-mail:
| | | | - Ioannis Tsogkas
- Department of Neuroradiology, Georg August University Göttingen, Germany
| | - Birte Koennecke
- Department of Neurology, Georg August University Göttingen, Germany
| | - Kim Bleuel
- Department of Neurosurgery, Georg August University Göttingen, Germany
| | - Bogdan Iliev
- Department of Neurosurgery, Georg August University Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg August University Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, Georg August University Göttingen, Germany
| |
Collapse
|
32
|
Yang T, Sun Y, Zhang F. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury. Med Gas Res 2016; 6:223-226. [PMID: 28217295 PMCID: PMC5223314 DOI: 10.4103/2045-9912.196905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
33
|
Friedrich V, Bi W, Sehba FA. Sexual dimorphism in gene expression after aneurysmal subarachnoid hemorrhage. Neurol Res 2016; 37:1054-9. [PMID: 26923576 DOI: 10.1080/01616412.2015.1115211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Inflammation and compromise in structure and function of cerebral parenchymal microvasculature begins early after subarachnoid hemorrhage (SAH). We recently found greater inflammation and greater vascular compromise in male than in female rats following SAH. In this study, we investigated whether this cross-sexual difference in pathology is reflected in expression levels of genes related to vascular inflammation and structural compromise. METHOD Age-matched male and female rats underwent sham surgery or SAH by endovascular perforation. Early physiology (intracranial pressure (ICP), blood pressure (BP), heart rate, and cerebral blood flow) was monitored. Cerebral RNA was extracted at sacrifice 3 h after surgery and assayed for expression of thrombomodulin (Thbd), endothelial nitric oxide synthase (eNos;Nos3), intracellular adhesion molecule-1 (Icam1), vascular endothelial growth factor (Vegf), interleukin-1beta (Il1β) tumor necrosis factor-alpha (Tnf-α), and arginine vasopressin (Avp). RESULTS Increases in ICP and BP at SAH appeared slightly greater in males but the difference did not reach statistical difference, indicating that SAH intensity did not differ significantly between the sexes. Of the seven genes studied two; Tnf-α and Vegf, did not change after injury, while the remainder showed significant responses to SAH. Response of Nos3 and Thbd was markedly different between the sexes, with expression greater in males. CONCLUSION This study finds that sexual dimorphism is present in the response of some but not all genes to SAH. Since products of genes exhibiting sexual dimorphism have anti-inflammatory activities, our results indicate that previously found sex-based differences in vascular pathology are paralleled by sexually dimorphic changes in gene expression following SAH.
Collapse
Affiliation(s)
- Victor Friedrich
- a Department of Neurosurgery, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | | | | |
Collapse
|
34
|
An C, Jiang X, Pu H, Hong D, Zhang W, Hu X, Gao Y. Severity-Dependent Long-Term Spatial Learning-Memory Impairment in a Mouse Model of Traumatic Brain Injury. Transl Stroke Res 2016; 7:512-520. [DOI: 10.1007/s12975-016-0483-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
|
35
|
Marbacher S. Animal Models for the Study of Subarachnoid Hemorrhage: Are We Moving Towards Increased Standardization? Transl Stroke Res 2016; 7:1-2. [PMID: 26754973 DOI: 10.1007/s12975-015-0442-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Serge Marbacher
- Kantonsspital Aarau, Aarau, Switzerland. .,University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Fujii M, Sherchan P, Soejima Y, Doycheva D, Zhao D, Zhang JH. Cannabinoid Receptor Type 2 Agonist Attenuates Acute Neurogenic Pulmonary Edema by Preventing Neutrophil Migration after Subarachnoid Hemorrhage in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:135-9. [PMID: 26463937 DOI: 10.1007/978-3-319-18497-5_24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We evaluated whether JWH133, a selective cannabinoid type 2 receptor (CB2R) agonist, prevented neurogenic pulmonary edema (NPE) after subarachnoid hemorrhage (SAH) by attenuating inflammation. Adult male rats were assigned to six groups: sham-operated, SAH with vehicle, SAH with JWH133 (0.3, 1.0, or 3.0 mg/kg) treatment 1 h after surgery, and SAH with JWH133 (1.0 mg/kg) at 1 h with a selective CB2R antagonist, SR144528 (3.0 mg/kg). The perforation model of SAH was performed and pulmonary wet-to-dry weight ratio was evaluated 24 and 72 h after surgery. Western blot analyses and immunohistochemistry were evaluated 24 h after surgery. JWH133 (1.0 mg/kg) significantly and most strongly improved lung edema 24 h after SAH. SR144528 administration significantly reversed the effects of JWH133 (1.0 mg/kg). SAH-induced increasing levels of myeloperoxidase (MPO) and decreasing levels of a tight junction (TJ) protein, junctional adhesion molecule (JAM)-A, were ameliorated by JWH133 (1.0 mg/kg) administration 24 h after SAH. Immunohistochemical assessment also confirmed substantial leukocyte infiltration in the outside of vessels in SAH, which were attenuated by JWH133 (1.0 mg/kg) injection. CB2R agonist ameliorated lung permeability by inhibiting leukocyte trafficking and protecting tight junction proteins in the lung of NPE after SAH.
Collapse
Affiliation(s)
- Mutsumi Fujii
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Prativa Sherchan
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yoshiteru Soejima
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | | | - Diana Zhao
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology, Neurosurgery, and Anesthesiology, Loma Linda University, 11234 Anderson Street, Room 2562B, Loma Linda, CA, 92354, USA.
| |
Collapse
|
37
|
Subarachnoid Hemorrhage-Triggered Acute Hypotension Is Associated with Left Ventricular Cardiomyocyte Apoptosis in a Rat Model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:145-50. [PMID: 26463939 DOI: 10.1007/978-3-319-18497-5_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whether hypotension that occurs due to neurogenic stunned myocardium after subarachnoid hemorrhage (SAH) is associated with cardiomyocyte apoptotic cell death remains unknown. In this study, 18 male rats were subjected to sham or the endovascular perforation model of SAH surgery. Based on the mean arterial pressure (MAP) after SAH, rats were separated into SAH with hypotension (SAH hypotension) or SAH with blood pressure preservation (SAH BP preservation) groups. All animals were euthanized 2 h after the surgical procedure. Hearts were removed and separated transversely into base and apex parts, then Western blot analyses and immunohistochemistry were performed only in the apex part. One rat died as a result of severe SAH and two rats with mild SAH were excluded. We analyzed data from 15 rats that were divided into three groups: sham, SAH hypotension, and SAH BP preservation (n = 5, each). There was a significantly higher cleaved caspase-3/caspase-3 ratio in the SAH hypotension group compared with sham and the SAH BP preservation group. Cardiomyocyte apoptosis was demonstrated in the SAH rats. This is the first experimental report that describes SAH-induced neurogenic stunned myocardium with ensuing hypotension may result from the acute apoptotic cardiomyocyte cell death in the left ventricle.
Collapse
|
38
|
Liu F, Chen Y, Hu Q, Li B, Tang J, He Y, Guo Z, Feng H, Tang J, Zhang JH. MFGE8/Integrin β3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Exp Neurol 2015; 272:120-7. [PMID: 25936875 DOI: 10.1016/j.expneurol.2015.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/20/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Milk fat globule-epidermal growth factor-factor 8(MFGE8)/Integrin β3 pathway was reported to be involved in reducing oxidative stress and early brain injury after subarachnoid hemorrhage (SAH). In the present study, the potential effects of MFGE8 and its receptor Integrin β3 in the inhibition of apoptosis and neuroinflammation in early brain injury after SAH were investigated. METHODS Ninety-five (95) male Sprague-Dawley rats were used. The SAH model was induced by endovascular perforation. Recombinant human MFGE8 (rhMFGE8), MFGE8 small interfering RNA (siRNA) and Integrin β3 siRNA were injected intracerebroventricularly. SAH grade, neurologic scores, Western blots and immunofluorescence were employed to study the mechanisms of MFGE8 and its receptor Integrin β3, as well as neurological outcome. RESULTS SAH induced significant neuronal apoptosis and inflammation and exhibited neurological dysfunction in rats. Knockdown endogenous MFGE8 with siRNA significantly increased the protein levels of cleaved caspase 3 and IL-1β, accompanied with more neurological deficits. rhMFGE8 significantly reduced neural cell death in cortex, decreased cleaved caspase 3 and IL-1β expressions, and improved neurological functions 24h after SAH. The anti-apoptosis and anti-inflammation effects of rhMFGE8 were abolished by Integrin β3 siRNA. CONCLUSION MFGE8 could alleviate neurologic damage in early brain injury after SAH via anti-inflammation and anti-apoptosis effects. MFGE8 may serve as a promising therapeutic target for future management of SAH patients.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Qin Hu
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Bo Li
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Junjia Tang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Yue He
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Zongduo Guo
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiping Tang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA.
| |
Collapse
|
39
|
Egashira Y, Shishido H, Hua Y, Keep RF, Xi G. New grading system based on magnetic resonance imaging in a mouse model of subarachnoid hemorrhage. Stroke 2014; 46:582-4. [PMID: 25550373 DOI: 10.1161/strokeaha.114.007834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A grading system for experimental subarachnoid hemorrhage (SAH) that does not require animal euthanasia is currently unavailable. We proposed a new grading system based on MRI and evaluated the feasibility of this method in a mouse model of SAH. METHODS SAH was induced by endovascular perforation in adult male C57BL/6 mice. Mice underwent MRI 24 hours after SAH and were categorized into the following 5 grades based on T2*-weighted imaging: Grade 0, no visible SAH or intraventricular hemorrhage (IVH); Grade 1, minimal/localized SAH without IVH; Grade 2, minimal/localized SAH with IVH; Grade 3, thick/diffuse SAH without IVH; and Grade 4, thick/diffuse SAH with IVH. Neurological deficits were then assessed and the mice euthanized for conventional SAH grading. RESULTS Among a total of 47 mice, 4% were scored as grade 0, 30% as grade 1, 11% as grade 2, 30% as grade 3, and 26% as grade 4. This MRI grading had excellent interobserver reliability (weighted κ value =0.94), and there were strong correlations between the MRI grading and the conventional grading (r=0.85; P<0.001) or between MRI grade and neurological scores (r=-0.46; P<0.01). CONCLUSIONS The new MRI grading correlated well with conventional grading and enabled in vivo evaluation of SAH severity. This grading system may offer advantages in future studies of experimental SAH.
Collapse
Affiliation(s)
- Yusuke Egashira
- From the Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Hajime Shishido
- From the Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
40
|
Suzuki H. What is early brain injury? Transl Stroke Res 2014; 6:1-3. [PMID: 25502277 DOI: 10.1007/s12975-014-0380-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Mie, Japan,
| |
Collapse
|