1
|
Wang T, Shao C, An H, Xu G, Wan H, Yang J. Catalpol Research on the Mechanism of Antimyocardial Reperfusion Injury by Regulating the MiR-126/TWEAK-FN14 Pathway: In Vitro and Computer Simulation Studies. ACS OMEGA 2025; 10:19538-19551. [PMID: 40415811 PMCID: PMC12096214 DOI: 10.1021/acsomega.4c11357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025]
Abstract
The objective of this study was to investigate the mechanism through which catalpol (CAT) exerts its protective effects in the context of myocardial ischemia-reperfusion injury. Preliminary results showed that Cat significantly attenuated oxygen-glucose deprivation/reoxygenation (OGD/R) damage to H9C2 cells, inhibited intracellular reactive oxygen species levels, and downregulated the protein expression of TWEAK and Fn14 post-OGD/R. The intracellular level of miR-126 was downregulated after OGD/R, and this effect was reversed by CAT administration. To further elucidate its mechanisms, a miR-126 inhibitor was used in the H9C2 cells, and the inhibitory effect was validated using real-time fluorescence quantitative polymerase chain reaction (RT-PCR). Following CAT treatment, lactate dehydrogenase (LDH) levels within the cells were assessed. The results revealed that CAT not only decreased LDH levels but also modulated the miR-126/TWEAK-FN14 signaling axis and the expression of inflammatory-related mediators, as evidenced through RT-PCR and Western blot. Additionally, molecular docking (MD) studies suggested that CAT exhibited a strong binding affinity to both the signaling pathway and inflammatory-related components. Furthermore, molecular dynamics simulations (MDS) demonstrated that the CAT-protein complex exhibited high stability, flexibility, and low binding free energy under physiological conditions. Additionally, CAT showed favorable absorption, distribution, metabolism, excretion, and toxicity characteristics. In summary, this study, through in vitro experimentation, confirmed that CAT regulates the miR-126 and inflammatory proteins within the signaling pathway, with these results being further supported by MD and MDS analyses.
Collapse
Affiliation(s)
- Ting Wang
- College of
Basic Medical Sciences, Zhejiang Chinese
Medical University, Zhejiang, Hangzhou310053, China
| | - Chongyu Shao
- College of
Basic Medical Sciences, Zhejiang Chinese
Medical University, Zhejiang, Hangzhou310053, China
| | - Huiyan An
- College of
Life Science, Zhejiang Chinese Medical University, Zhejiang, Hangzhou310053, China
| | - Guanfeng Xu
- College of
Basic Medical Sciences, Zhejiang Chinese
Medical University, Zhejiang, Hangzhou310053, China
| | - Haitong Wan
- College of
Basic Medical Sciences, Zhejiang Chinese
Medical University, Zhejiang, Hangzhou310053, China
- College
of
Chinese Medical Sciences, Henan University
of Chinese Medicine, Zhengzhou, Henan450046, China
| | - Jiehong Yang
- College of
Basic Medical Sciences, Zhejiang Chinese
Medical University, Zhejiang, Hangzhou310053, China
| |
Collapse
|
2
|
Wang M, Chen Y, Xu B, Zhu X, Mou J, Xie J, Che Z, Zuo L, Li J, Jia H, Yu B. Recent advances in the roles of extracellular vesicles in cardiovascular diseases: pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy. Mol Med 2025; 31:169. [PMID: 40325357 PMCID: PMC12051314 DOI: 10.1186/s10020-025-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) represent a profound challenge with inflammation playing a significant role in their pathophysiology. Extracellular vesicles (EVs), which are membranous structures encapsulated by a lipid bilayer, are essential for intercellular communication by facilitating the transport of specific bioactive molecules, including microRNAs, proteins, and lipids. Emerging evidence suggests that the regulatory mechanisms governing cardiac resident cells are influenced by EVs, which function as messengers in intercellular communication and thereby contribute to the advancement of CVDs. In this review, we discuss the multifaceted biological functions of EVs and their involvement in the pathogenesis of various CVDs, encompassing myocardial infarction, ischemia-reperfusion injury, heart failure, atherosclerosis, myocarditis, cardiomyopathy, and aneurysm. Furthermore, we summarize the recent advancements in utilizing EVs as non-invasive biomarkers and in cell-free therapy based on EVs for the diagnosis and treatment of CVDs. Future research should investigate effective techniques for the isolation and purification of EVs from body fluids, while also exploring the pathways for the clinical translation of therapy based on EVs. Additionally, it is imperative to identify appropriate EV-miRNA profiles or combinations present in the circulation of patients, which could serve as biomarkers to improve the diagnostic accuracy of CVDs. By synthesizing and integrating recent research findings, this review aims to provide innovative perspectives for the pathogenesis of CVDs and potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Junke Mou
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Jiani Xie
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Ziao Che
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Liyang Zuo
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| |
Collapse
|
3
|
Chen J, Tian C, Xiong X, Yang Y, Zhang J. Extracellular vesicles: new horizons in neurodegeneration. EBioMedicine 2025; 113:105605. [PMID: 40037089 PMCID: PMC11925178 DOI: 10.1016/j.ebiom.2025.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-enclosed nanovesicles secreted by diverse cell types that orchestrate intercellular communication through cargo delivery. Their pivotal roles span from supporting the development of normal central nervous system (CNS) to contributing to the pathogenesis of neurological diseases. Particularly noteworthy is their involvement in the propagation of pathogenic proteins, such as those involved in neurodegenerative disorders, and nucleic acids, closely linking them to disease onset and progression. Moreover, EVs have emerged as promising diagnostic biomarkers for neurological disorders and as tools for disease staging, owing to their ability to traverse the blood-brain barrier and their specific, stable, and accessible properties. This review comprehensively explores the realm of CNS-derived EVs found in peripheral blood, encompassing their detection methods, transport mechanisms, and diverse roles in various neurodegenerative diseases. Furthermore, we evaluate the potentials and limitations of EVs in clinical applications and highlight prospective research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Xiao Xiong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China; National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
4
|
Fan X, Yang G, Wang Y, Shi H, Nitschke K, Sattler K, Abumayyaleh M, Cyganek L, Nuhn P, Worst T, Liao B, Dobreva G, Duerschmied D, Zhou X, El-Battrawy I, Akin I. Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: a novel mechanism in Takotsubo cardiomyopathy. Stem Cell Res Ther 2025; 16:36. [PMID: 39901299 PMCID: PMC11792229 DOI: 10.1186/s13287-025-04157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Takotsubo cardiomyopathy (TTC) is marked by an acute, transient, and reversible left ventricular systolic dysfunction triggered by stress, with endothelial dysfunction being one of its pathophysiological mechanisms. However, the precise molecular mechanism underlying the interaction between endothelial cells and cardiomyocytes during TTC remains unclear. This study reveals that exosomal miRNAs derived from endothelial cells exposed to catecholamine contribute to ion channel dysfunction in the setting of TTC. METHODS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with epinephrine (Epi) or exosomes (Exo) from Epi-treated human cardiac microvascular endothelial cells (HCMECs) or Exo derived from HCMECs transfected with miR-126-3p. The immunofluorescence staining, flow cytometry, qPCR, single-cell contraction, intracellular calcium transients, patch-clamp, dual luciferase reporter assay and western blot were performed for the study. RESULTS Modeling TTC with high doses of epinephrine (Epi) treatment in hiPSC-CMs shows suppression of depolarization velocity (Vmax), prolongation of action potential duration (APD), and induction of arrhythmic events. Exo derived from HCMECs treated with Epi (Epi-exo) mimicked or enhanced the effects of Epi. Epi exposure led to elevated levels of miR-126-3p in both HCMECs and their exosomes. Exo enriched with miR-126-3p demonstrated similar effects as Epi-exo, establishing the crucial role of miR-126-3p in the mechanism of Epi-exo. Dual luciferase reporter assay coupled with gene mutation techniques identified that miR-126-3p was found to target the regulator of G-protein signaling 3 (RGS3) gene. Western blot and qPCR analyses confirmed that miR-126-3p-mimic reduced RGS3 expression in both HCMECs and hiPSC-CMs, indicating miR-126-3p inhibits RGS3 signaling. Additionally, miR-126-3p levels were significantly higher in the serum of TTC patients compared to healthy controls and patients who had recovered from TTC. CONCLUSIONS Our study is the first to reveal that exosomal miR-126-3p, originating from endothelial cells, contributes to ion channel dysfunction by regulating RGS3 signaling in cardiomyocytes. These findings provide new perspectives on the pathogenesis of TTC and suggest potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany.
| | - Guoqiang Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Haojie Shi
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katja Nitschke
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine Sattler
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Mohammad Abumayyaleh
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Philipp Nuhn
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Worst
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany.
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
5
|
Hu H, Wang X, Yu H, Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol (Lausanne) 2025; 15:1444940. [PMID: 39850481 PMCID: PMC11753959 DOI: 10.3389/fendo.2024.1444940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems. Understanding the molecular events that inhibit or repress cardiac hypertrophy may help identify novel therapeutic strategies. Increasing evidence has indicated that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role in the development and progression of cardiac hypertrophy. In this review, we briefly review recent advancements in EV research, especially on biogenesis, cargoes and its role in cardiac hypertrophy. We then describe the latest findings regarding EV-derived miRNAs, highlighting their functions and regulatory mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will be discussed.
Collapse
Affiliation(s)
- Hai Hu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xiulian Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
6
|
Akkoca A, Büyükakıllı B, Ballı E, Gültekin B, Özbay E, Oruç Demirbağ H, Türkseven ÇH. Protective effect of MitoTEMPO against cardiac dysfunction caused by ischemia-reperfusion: MCAO stroke model study. Int J Neurosci 2024; 134:1582-1593. [PMID: 37862003 DOI: 10.1080/00207454.2023.2273768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke. MATERIALS AND METHODS Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations. RESULTS Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage. CONCLUSIONS The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.
Collapse
Affiliation(s)
- Ahmet Akkoca
- Department of Occupational Health and Safety, Taşkent Vocational School, Selcuk University, Konya, Türkiye
| | - Belgin Büyükakıllı
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ebru Ballı
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Burcu Gültekin
- Department of Histology and Embryology, Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Erkan Özbay
- Department of Medical Services and Techniques, Health Services Vocational School, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hatice Oruç Demirbağ
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | | |
Collapse
|
7
|
Qi C, Wang W, Liu Y, Hua T, Yang M, Liu Y. Heart-brain interactions: clinical evidence and mechanisms based on critical care medicine. Front Cardiovasc Med 2024; 11:1483482. [PMID: 39677041 PMCID: PMC11638053 DOI: 10.3389/fcvm.2024.1483482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
In this review paper, we search the recent literature regarding the application of the heart-brain interaction theories in the field of intensive care unit. Simultaneously, we methodically summarize the clinical evidence supporting its application in intensive care unit treatment, based on clinical randomized trials and clinical case studies. We delve into how it's applied in treating severely ill patients and in researching animal models for cardio-cerebral comorbidities, aiming to supply benchmarks for subsequent clinical trials and studies on mechanisms.
Collapse
Affiliation(s)
- Chuyao Qi
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianfeng Hua
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Min Yang
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Liang W, Huang B, Shi Q, Yang X, Zhang H, Chen W. Circulating MicroRNAs as potential biomarkers for cerebral collateral circulation in symptomatic carotid stenosis. Front Physiol 2024; 15:1403598. [PMID: 39552721 PMCID: PMC11563797 DOI: 10.3389/fphys.2024.1403598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cerebral collateral circulation (CCC) considerably improves the prognosis of patients with symptomatic carotid stenosis (SCS). This study evaluated the diagnostic value of plasma microRNAs (miRNAs) in determining CCC status in patients with SCS. Methods This single-center observational study enrolled patients with ≥50% carotid artery stenosis diagnosed using Doppler ultrasound. CCC was assessed using cerebrovascular digital subtraction angiography (DSA). Quantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of plasma miRNAs. A multivariate logistic regression model and receiver operating characteristic (ROC) curve were used to analyze the diagnostic value of plasma miRNA expression in determining CCC status. Results A total of 43 patients were enrolled (28 with CCC and 15 without CCC). The plasma expression levels of miR-126-3p, miR-132-3p, and miR-210-3p were significantly higher and those of miR-16-3p and miR-92-3p were significantly lower in patients with CCC. After adjusting for age, gender, drinking history, comorbidities and degree of SCS, miR-92a-3p, miR-126-3p, miR-132-3p, and miR-210-3p were found to be significantly associated with CCC establishment (p < 0.05). ROC curve analysis indicated a high diagnostic value of these miRNAs in determining CCC status [area under the curve (AUC): 0.918-0.965], with miR-126-3p exhibiting the highest predictive performance (AUC: 0.965). Subgroup analysis revealed that patients with CCC who had 50%-70% stenosis showed significantly higher expression level of miR-126-3p, whereas those with CCC who had 70%-99% stenosis showed significantly higher expression levels of miR-126-3p, miR-132-3p, and miR-210-3p as well as significantly lower expression levels of miR-15a-3p, miR-16-3p, and miR-92a-3p. Conclusion The results indicate that these six plasma miRNAs have promising diagnostic value in determining CCC status in varying degrees of SCS. These miRNAs can serve as biomarkers for CCC status following SCS, with miR-126-3p showing the strongest positive correlation.
Collapse
Affiliation(s)
- Wenwen Liang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bingcang Huang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qin Shi
- Department of General Practice, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xuelian Yang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hanwen Zhang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Wei Chen
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
9
|
Yilmaz G, Alexander JS. Impaired Peripheral Vascular Function Following Ischemic Stroke in Mice: Potential Insights into Blood Pressure Variations in the Post-Stroke Patient. PATHOPHYSIOLOGY 2024; 31:488-501. [PMID: 39311310 PMCID: PMC11417821 DOI: 10.3390/pathophysiology31030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
High systolic blood pressure and increased blood pressure variability after the onset of ischemic stroke are associated with poor clinical outcomes. One of the key determinants of blood pressure is arteriolar size, determined by vascular smooth muscle tone and vasodilatory and vasoconstrictor substances that are released by the endothelium. The aim of this study is to outline alterations in vasomotor function in isolated peripheral arteries following ischemic stroke. The reactivity of thoracic aortic segments from male C57BL/6 mice to dilators and constrictors was quantified using wire myography. Acetylcholine-induced endothelium-dependent vasodilation was impaired after ischemic stroke (LogIC50 Sham = -7.499, LogIC50 Stroke = -7.350, p = 0.0132, n = 19, 31 respectively). The vasodilatory responses to SNP were identical in the isolated aortas in the sham and stroke groups. Phenylephrine-induced vasoconstriction was impaired in the aortas isolated from the stroke animals in comparison to their sham treatment counterparts (Sham LogEC50= -6.652 vs. Stroke LogEC50 = -6.475, p < 0.001). Our study demonstrates that 24 h post-ischemic stroke, peripheral vascular responses are impaired in remote arteries. The aortas from the stroke animals exhibited reduced vasoconstrictor and endothelium-dependent vasodilator responses, while the endothelium-independent vasodilatory responses were preserved. Since both the vasodilatory and vasoconstrictor responses of peripheral arteries are impaired following ischemic stroke, our findings might explain increased blood pressure variability following ischemic stroke.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Molecular Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA
| | - Jonathan Steven Alexander
- Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| |
Collapse
|
10
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
11
|
Wang L, Ma L, Ren C, Zhao W, Ji X, Liu Z, Li S. Stroke-heart syndrome: current progress and future outlook. J Neurol 2024; 271:4813-4825. [PMID: 38869825 PMCID: PMC11319391 DOI: 10.1007/s00415-024-12480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Stroke can lead to cardiac complications such as arrhythmia, myocardial injury, and cardiac dysfunction, collectively termed stroke-heart syndrome (SHS). These cardiac alterations typically peak within 72 h of stroke onset and can have long-term effects on cardiac function. Post-stroke cardiac complications seriously affect prognosis and are the second most frequent cause of death in patients with stroke. Although traditional vascular risk factors contribute to SHS, other potential mechanisms indirectly induced by stroke have also been recognized. Accumulating clinical and experimental evidence has emphasized the role of central autonomic network disorders and inflammation as key pathophysiological mechanisms of SHS. Therefore, an assessment of post-stroke cardiac dysautonomia is necessary. Currently, the development of treatment strategies for SHS is a vital but challenging task. Identifying potential key mediators and signaling pathways of SHS is essential for developing therapeutic targets. Therapies targeting pathophysiological mechanisms may be promising. Remote ischemic conditioning exerts protective effects through humoral, nerve, and immune-inflammatory regulatory mechanisms, potentially preventing the development of SHS. In the future, well-designed trials are required to verify its clinical efficacy. This comprehensive review provides valuable insights for future research.
Collapse
Affiliation(s)
- Lanjing Wang
- Department of Neurology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Linqing Ma
- Department of Neurology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Center for Combined Heart and Brain Disease, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zhi Liu
- Department of Emergency, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Emergency, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
12
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
13
|
Hao X, Zhu M, Sun Z, Li P, Meng Q, Tan L, Chen C, Zhang Y, Yang L, Zhang J, Huang Y. Systemic immune-inflammation index is associated with cardiac complications following acute ischemic stroke: A retrospective single-center study. Clin Neurol Neurosurg 2024; 241:108285. [PMID: 38636361 DOI: 10.1016/j.clineuro.2024.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Stroke-induced heart syndrome is a feared complication of ischemic stroke, that is commonly encountered and has a strong association with unfavorable prognosis. More research is needed to explore underlying mechanisms and inform clinical decision making. This study aims to explore the relationship between the early systemic immune-inflammation (SII) index and the cardiac complications after acute ischemic stroke. METHODS Consecutive patients with acute ischemic stroke were prospectively collected from January 2020 to August 2022 and retrospectively analyzed. We included subjects who presented within 24 hours after symptom onset and were free of detectable infections or cancer on admission. SII index [(neutrophils × platelets/ lymphocytes)/1000] was calculated from laboratory data at admission. RESULTS A total of 121 patients were included in our study, of which 24 (19.8 %) developed cardiac complications within 14 days following acute ischemic stroke. The SII level was found higher in patients with stroke-heart syndrome (p<.001), which was an independent predictor of stroke-heart syndrome (adjusted odds ratio 5.089, p=.002). CONCLUSION New-onset cardiovascular complications diagnosed following a stroke are very common and are associated with early SII index.
Collapse
Affiliation(s)
- Xiaodi Hao
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Mingfang Zhu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhengyu Sun
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Penghui Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Qi Meng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Leilei Tan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Chen Chen
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yakun Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lihua Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Yue Huang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
14
|
Fan Z, Wu C, Wang C, Liu C, Fang L, Ma L, Zou W, Yuan B, Ji Z, Cai B, Liu G. Impact of Concurrent Ischaemic Stroke on Unfavourable Outcomes in Men and Women with Dilated Cardiomyopathy. Rev Cardiovasc Med 2024; 25:215. [PMID: 39076319 PMCID: PMC11270057 DOI: 10.31083/j.rcm2506215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background Growing evidence suggests that concurrent ischaemic stroke (IS) exacerbates the prognosis of patients with dilated cardiomyopathy (DCM) and that this effect may be further influenced by sex. However, the exact effect of sex remains unclear. This study aimed to explore the effects of the relevant risk factors on the prognosis of patients with DCM and concurrent IS. Considering the sex differences in DCM, this study further investigated the impact of concurrent IS on the prognosis of men and women with DCM. Methods A total of 632 patients with DCM enrolled between 2016 and 2021 were included in this study. Clinical data were obtained from medical records, and all participants were followed up in the outpatient clinic or by telephone for at least 1 year. A Cox proportional hazards model and Kaplan-Meier curves were used to evaluate the effects of concurrent IS on the prognosis of patients with DCM. Results Patients with DCM complicated with IS (DCM-IS) had significantly lower cumulative survival rates than patients with DCM without IS (non-IS) (74.6% vs. 84.2%, χ 2 = 6.85, p = 0.009). Additionally, IS was associated with greater risks of death and heart transplantation (HTx) in men (75.8% vs. 85.1%, χ 2 = 5.02, p = 0.025), but not in women (71.0% vs. 81.5%, χ 2 = 1.91, p = 0.167). Conclusions This large-scale multicentre prospective cohort study demonstrated a poorer prognosis in patients with concurrent DCM and IS, particularly among men. Patients with DCM should not be overlooked in IS screening, emphasis should be placed on the occurrence of IS in patients with DCM. Early and proactive secondary prevention of cerebrovascular diseases might improve the prognosis of DCM patients. More intervention studies focusing on men with DCM complicated with IS should be prioritised.
Collapse
Affiliation(s)
- Zexin Fan
- Department of Neurology, The Second Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Chao Wu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Chaobin Wang
- Department of Neurology, Beijing Fangshan District Liangxiang Hospital, 102401 Beijing, China
| | - Chun Liu
- Department of Neurology, Mechinka Hospital, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Libo Fang
- Department of Neurology, Beijing Fuxing Hospital, Capital Medical University, 100038 Beijing, China
| | - Lin Ma
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Wenlong Zou
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Boyi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zeyu Ji
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Bin Cai
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Guangzhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
15
|
Fu G, Wang Z, Hu S. Exercise improves cardiac fibrosis by stimulating the release of endothelial progenitor cell-derived exosomes and upregulating miR-126 expression. Front Cardiovasc Med 2024; 11:1323329. [PMID: 38798919 PMCID: PMC11119291 DOI: 10.3389/fcvm.2024.1323329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiac fibrosis is an important pathological manifestation of various cardiac diseases such as hypertension, coronary heart disease, and cardiomyopathy, and it is also a key link in heart failure. Previous studies have confirmed that exercise can enhance cardiac function and improve cardiac fibrosis, but the molecular target is still unclear. In this review, we introduce the important role of miR-126 in cardiac protection, and find that it can regulate TGF-β/Smad3 signaling pathway, inhibit cardiac fibroblasts transdifferentiation, and reduce the production of collagen fibers. Recent studies have shown that exosomes secreted by cells can play a specific role through intercellular communication through the microRNAs carried by exosomes. Cardiac endothelial progenitor cell-derived exosomes (EPC-Exos) carry miR-126, and exercise training can not only enhance the release of exosomes, but also up-regulate the expression of miR-126. Therefore, through derivation and analysis, it is believed that exercise can inhibit TGF-β/Smad3 signaling pathway by up-regulating the expression of miR-126 in EPC-Exos, thereby weakening the transdifferentiation of cardiac fibroblasts into myofibroblasts. This review summarizes the specific pathways of exercise to improve cardiac fibrosis by regulating exosomes, which provides new ideas for exercise to promote cardiovascular health.
Collapse
Affiliation(s)
- Genzhuo Fu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Wang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Siyuan Hu
- School of Sports and Arts, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Wang Z, Zhang QF, Guo M, Qi XX, Xing XH, Li G, Zhang SL. A case report of successful rescue using veno-arterial extracorporeal membrane oxygenation: managing cerebral-cardiac syndrome. Front Cardiovasc Med 2024; 11:1370696. [PMID: 38665233 PMCID: PMC11044681 DOI: 10.3389/fcvm.2024.1370696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction The presence of cerebral-cardiac syndrome, wherein brain diseases coincide with heart dysfunction, significantly impacts patient prognosis. In severe instances, circulatory failure may ensue, posing a life-threatening scenario necessitating immediate life support measures, particularly effective circulatory support methods. The application of extracorporeal membrane oxygenation (ECMO) is extensively employed as a valuable modality for delivering circulatory and respiratory support in the care of individuals experiencing life-threatening circulatory and respiratory failure. This approach facilitates a critical temporal window for subsequent interventions. Consequently, ECMO has emerged as a potentially effective life support modality for patients experiencing severe circulatory failure in the context of cerebral-cardiac syndrome. However, the existing literature on this field of study remains limited. Case description In this paper, we present a case study of a patient experiencing a critical cerebral-cardiac syndrome. The individual successfully underwent veno-arterial-ECMO (VA-ECMO) therapy, and the patient not only survived, but also received rehabilitation treatment, demonstrating its efficacy as a life support intervention. Conclusion VA-ECMO could potentially serve as an efficacious life support modality for individuals experiencing severe circulatory failure attributable to cerebral-cardiac syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Li
- Department of Critical Care Medicine, Peking University International Hospital, Beijing, China
| | - Shuang-Long Zhang
- Department of Critical Care Medicine, Peking University International Hospital, Beijing, China
| |
Collapse
|
17
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
18
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
19
|
Hu JR, Abdullah A, Nanna MG, Soufer R. The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep 2023; 25:1745-1758. [PMID: 37994952 PMCID: PMC10908342 DOI: 10.1007/s11886-023-01990-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW The role of neuroimmune modulation and inflammation in cardiovascular disease has been historically underappreciated. Physiological connections between the heart and brain, termed the heart-brain axis (HBA), are bidirectional, occur through a complex network of autonomic nerves/hormones and cytokines, and play important roles in common disorders. RECENT FINDINGS At the molecular level, advances in the past two decades reveal complex crosstalk mediated by the sympathetic and parasympathetic nervous systems, the renin-angiotensin aldosterone and hypothalamus-pituitary axes, microRNA, and cytokines. Afferent pathways amplify proinflammatory signals via the hypothalamus and brainstem to the periphery, promoting neurogenic inflammation. At the organ level, while stress-mediated cardiomyopathy is the prototypical disorder of the HBA, cardiac dysfunction can result from a myriad of neurologic insults including stroke and spinal injury. Atrial fibrillation is not necessarily a causative factor for cardioembolic stroke, but a manifestation of an abnormal atrial substrate, which can lead to the development of stroke independent of AF. Central and peripheral neurogenic proinflammatory factors have major roles in the HBA, manifesting as complex bi-directional relationships in common conditions such as stroke, arrhythmia, and cardiomyopathy.
Collapse
Affiliation(s)
- Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Ahmed Abdullah
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Michael G Nanna
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Robert Soufer
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA.
- VA Connecticut Healthcare System, 950 Campbell Ave, -111B, West Haven, CT, 06516, USA.
| |
Collapse
|
20
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Rakicevic L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023; 15:2141. [PMID: 37631355 PMCID: PMC10459020 DOI: 10.3390/pharmaceutics15082141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There has always been a tendency of medicine to take an individualised approach to treating patients, but the most significant advances were achieved through the methods of molecular biology, where the nucleic acids are in the limelight. Decades of research of molecular biology resulted in setting medicine on a completely new platform. The most significant current research is related to the possibilities that DNA and RNA analyses can offer in terms of more precise diagnostics and more subtle stratification of patients in order to identify patients for specific therapy treatments. Additionally, principles of structure and functioning of nucleic acids have become a motive for creating entirely new therapy strategies and an innovative generation of drugs. All this also applies to cardiovascular diseases (CVDs) which are the leading cause of mortality in developed countries. This review considers the most up-to-date achievements related to the use of translatory potential of DNA and RNA in treatment of cardiovascular diseases, and considers the challenges and prospects in this field. The foundations which allow the use of translatory potential are also presented. The first part of this review focuses on the potential of the DNA variants which impact conventional therapies and on the DNA variants which are starting points for designing new pharmacotherapeutics. The second part of this review considers the translatory potential of non-coding RNA molecules which can be used to formulate new generations of therapeutics for CVDs.
Collapse
Affiliation(s)
- Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
22
|
Extracellular vesicles: Critical bilateral communicators in periphery-brain crosstalk in central nervous system disorders. Biomed Pharmacother 2023; 160:114354. [PMID: 36753954 DOI: 10.1016/j.biopha.2023.114354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Growing evidence shows that there is a comorbid mechanism between the central nervous system (CNS) and the peripheral organs. The bilateral transmission of signal molecules in periphery-brain crosstalk plays an important role in the underlying mechanism, which result from complex networks of neurohumoral circuits. Secreted by almost all cells and considered innovative information transport systems, extracellular vesicles (EVs) encapsulate and deliver nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), they are also identified primarily as essential communicators between the periphery and the CNS. In addition to transporting molecules under physiological or pathological conditions, EVs also show novel potential in targeted drug delivery. In this review, we discuss the mechanisms implicated in the transport of EVs in crosstalk between the peripheral and the central immune systems as well as in crosstalk between the peripheral organs and the brain in CNS disorders, especially in neurodegenerative diseases, stroke, and trauma. This work will help in elucidating the contributions of EVs to brain health and disorders, and promote the development of new strategies for minimally invasive treatment.
Collapse
|
23
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
24
|
Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, Chen Y, Shen X, Zheng Y, Zhao Y. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology 2023; 21:70. [PMID: 36855156 PMCID: PMC9976550 DOI: 10.1186/s12951-023-01828-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a major adverse event after ischemic stroke (IS). Caveolin-1 (Cav-1), a scaffolding protein, played multiple roles in BBB permeability after IS, while the pros and cons of Cav-1 on BBB permeability remain controversial. Numerous studies revealed that extracellular vesicles (EVs), especially stem cells derived EVs, exerted therapeutic efficacy on IS; however, the mechanisms of BBB permeability needed to be clearly illustrated. Herein, we compared the protective efficacy on BBB integrity between bone marrow mesenchymal stem cells derived extracellular vesicles (BMSC-EVs) and EVs from brain endothelial cells (BEC-EVs) after acute IS and investigated whether the mechanism was associated with EVs antagonizing Cav-1-dependent tight junction proteins endocytosis. METHODS BMSC-EVs and BEC-EVs were isolated and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscope. Oxygen and glucose deprivation (OGD) treated b. End3 cells were utilized to evaluate brain endothelial cell leakage. CCK-8 and TRITC-dextran leakage assays were used to measure cell viability and transwell monolayer permeability. Permanent middle cerebral artery occlusion (pMCAo) model was established, and EVs were intravenously administered in rats. Animal neurological function tests were applied, and microvessels were isolated from the ischemic cortex. BBB leakage and tight junction proteins were analyzed by Evans Blue (EB) staining and western blotting, respectively. Co-IP assay and Cav-1 siRNA/pcDNA 3.1 vector transfection were employed to verify the endocytosis efficacy of Cav-1 on tight junction proteins. RESULTS Both kinds of EVs exerted similar efficacies in reducing the cerebral infarction volume and BBB leakage and enhancing the expressions of ZO-1 and Claudin-5 after 24 h pMCAo in rats. At the same time, BMSC-EVs were outstanding in ameliorating neurological function. Simultaneously, both EVs treatments suppressed the highly expressed Cav-1 in OGD-exposed b. End3 cells and ischemic cerebral microvessels, and this efficacy was more prominent after BMSC-EVs administration. Cav-1 knockdown reduced OGD-treated b. End3 cells monolayer permeability and recovered ZO-1 and Claudin-5 expressions, whereas Cav-1 overexpression aggravated permeability and enhanced the colocalization of Cav-1 with ZO-1 and Claudin-5. Furthermore, Cav-1 overexpression partly reversed the lower cell leakage by BMSC-EVs and BEC-EVs administrations in OGD-treated b. End3 cells. CONCLUSIONS Our results demonstrated that Cav-1 aggravated BBB permeability in acute ischemic stroke, and BMSC-EVs exerted similar antagonistic efficacy to BEC-EVs on Cav-1-dependent ZO-1 and Claudin-5 endocytosis. BMSC-EVs treatment was superior in Cav-1 suppression and neurological function amelioration.
Collapse
Affiliation(s)
- Yiyang Li
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Bowen Liu
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Zhao
- grid.259384.10000 0000 8945 4455Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Xingping Quan
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yan Han
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yaxin Cheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yanling Chen
- grid.417409.f0000 0001 0240 6969Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong China
| | - Xu Shen
- grid.410745.30000 0004 1765 1045Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
25
|
Ischemic Stroke Induces Skeletal Muscle Damage and Alters Transcriptome Profile in Rats. J Clin Med 2023; 12:jcm12020547. [PMID: 36675476 PMCID: PMC9865444 DOI: 10.3390/jcm12020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
To establish pathological features of skeletal muscle post-stroke and to provide a background for promising interventions. Adult male SD rats were selected and randomly divided into a control group, a sham group, and a middle cerebral artery occlusion (MCAO) group. The tolerance and capability of exercise were separately collected on days 1, 3, 5, and 7 after the MCAO operation. The neurological deficits, brain infarct volume, soleus histopathology, mRNA-seq analysis, flow cytometry, immunofluorescence, and protein expression analysis were performed on the seventh day. Rats in the MCAO group showed that soleus tissue weight, pulling force, exercise capacity, endurance, and muscle structure were significantly decreased. Moreover, the RNA sequencing array revealed that mitochondrial-mediated autophagy was the critical pathological process, and the result of transcriptomic findings was confirmed at the translational level. The mitochondrial membrane potential and the mfn2 and p62 protein expression were decreased, and the Beclin-1, ATG5, Parkin, PINK1, LC3B, and Drp1 expression were upregulated; these results were consistent with immunohistochemistry. This is the first report on the pathological features of limbic symptoms on day 7 after MCAO surgery in rats. In addition, we further confirmed that autophagy is one of the main causative mechanisms of reduced muscle function after stroke.
Collapse
|
26
|
Zhang M, Wang J, Li J, Kong F, Lin S. miR-101-3p improves neuronal morphology and attenuates neuronal apoptosis in ischemic stroke in young mice by downregulating HDAC9. Transl Neurosci 2023; 14:20220286. [PMID: 37250142 PMCID: PMC10224617 DOI: 10.1515/tnsci-2022-0286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective MiRNAs play a key role in ischemic stroke (IS). Although miR-101-3p can participate in multiple disease processes, its role and mechanism in IS are not clear. The aim of the present study was to observe the effect of miR-101-3p activation on IS in young mice and the role of HDAC9 in this effect. Methods The young mice were first subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, and the cerebral infarct area was assessed with 2,3,5-triphenyltetrazolium chloride staining. Meanwhile, the expressions of miR-101-3p and HDAC9 were tested using RT-qPCR or western blot. Besides, neuron morphology and apoptosis were confirmed using Nissl staining and TUNEL staining. Results We first verified that miR-101-3p was downregulated and HDAC9 was upregulated in the brain tissue of tMCAO young mice. Moreover, we proved that overexpression of miR-101-3p could improve cerebral infarction, neuronal morphology, and neuronal apoptosis in tMCAO young mice by lowering the expression of HDAC9. Conclusions Activation of miR-101-3p can protect against IS in young mice, and its mechanism is relevant to the inhibition of HDAC9. Therefore, miR-101-3p and HDAC9 might be the latent targets for IS therapy.
Collapse
Affiliation(s)
- Mengru Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jianjun Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jinfang Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Fanxin Kong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Songjun Lin
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| |
Collapse
|
27
|
Machado HC, Bispo S, Dallagiovanna B. miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinform Biol Insights 2023; 17:11779322231161918. [PMID: 37020502 PMCID: PMC10069004 DOI: 10.1177/11779322231161918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.
Collapse
Affiliation(s)
- Hellen Cristine Machado
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
| | - Saloe Bispo
- Laboratory of Molecular and Systems
Biology of Trypanosomatids, Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba,
Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
- Bruno Dallagiovanna, Laboratory of Basic
Stem-Cell Biology, Instituto Carlos Chagas – FIOCRUZ-PR, Rua Professor Algacyr
Munhoz Mader, 3775, Curitiba 81350-010, Brazil.
| |
Collapse
|
28
|
Venkat P, Gao H, Findeis EL, Chen Z, Zacharek A, Landschoot-Ward J, Powell B, Lu M, Liu Z, Zhang Z, Chopp M. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front Neurosci 2023; 17:1061485. [PMID: 36968490 PMCID: PMC10033607 DOI: 10.3389/fnins.2023.1061485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 μg/200 μl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1β, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Poornima Venkat,
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
29
|
Wang M, Peng Y. Advances in brain-heart syndrome: Attention to cardiac complications after ischemic stroke. Front Mol Neurosci 2022; 15:1053478. [PMID: 36504682 PMCID: PMC9729265 DOI: 10.3389/fnmol.2022.1053478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Neurocardiology is an emerging field that studies the interaction between the brain and the heart, namely the effects of heart injury on the brain and the effects of brain damage on the heart. Acute ischemic stroke has long been known to induce heart damage. Most post-stroke deaths are attributed to nerve damage, and cardiac complications are the second leading cause of death after stroke. In clinical practice, the proper interpretation and optimal treatment for the patients with heart injury complicated by acute ischemic stroke, recently described as stroke-heart syndrome (SHS), are still unclear. Here, We describe a wide range of clinical features and potential mechanisms of cardiac complications after ischemic stroke. Autonomic dysfunction, microvascular dysfunction and coronary ischemia process are interdependent and play an important role in the process of cardiac complications caused by stroke. As a unique comprehensive view, SHS can provide theoretical basis for research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Ya Peng,
| |
Collapse
|
30
|
Inflammatory Response and Immune Regulation in Brain-Heart Interaction after Stroke. Cardiovasc Ther 2022; 2022:2406122. [PMID: 36474712 PMCID: PMC9683992 DOI: 10.1155/2022/2406122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrocardiac syndrome (CCS) is one of the secondary myocardial injuries after stroke. Cerebrocardiac syndrome may result in a poor prognosis with high mortality. Understanding the mechanism of the brain-heart interaction may be crucial for clinical treatment of pathological changes in CCS. Accumulating evidence suggests that the inflammatory response is involved in the brain-heart interaction after stroke. Systemic inflammatory response syndrome (SIRS) evoked by stroke may injure myocardial cells directly, in which the interplay between inflammatory response, oxidative stress, cardiac sympathetic/parasympathetic dysfunction, and splenic immunoregulation may be also the key pathophysiology factor. This review article summarizes the current understanding of inflammatory response and immune regulation in brain-heart interaction after stroke.
Collapse
|
31
|
Limin Z, Alsamani R, Jianwei W, Yijun S, Dan W, Yuehong S, Ziwei L, Huiwen X, Dongzhi W, Xingquan Z, Guojun Z. The relationship of α-hydroxybutyrate dehydrogenase with 1-year outcomes in patients with intracerebral hemorrhage: A retrospective study. Front Neurol 2022; 13:906249. [PMID: 36330431 PMCID: PMC9623007 DOI: 10.3389/fneur.2022.906249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Cardiac enzymes are recognized as a valuable tool for predicting the prognosis of various cardiovascular diseases. The prognostic value of alpha-hydroxybutyrate dehydrogenase (α-HBDH) in patients with intracerebral hemorrhage (ICH) was ambiguous and not evaluated. Methods Two hundred and thirteen Chinese patients with ICH participated in the study from December 2018 to December 2019. Laboratory routine tests and cardiac enzymes, including α-HBDH level, were examined and analyzed. All the patients were classified into two groups by the median value of α-HBDH: B1 <175.90 and B2 ≥175.90 U/L. The clinical outcomes included functional outcome (according to modified Rankin Scale (mRS) score ≥3), all-cause death, and recurrent cerebro-cardiovascular events 1 year after discharge. Associations between the α-HBDH and the outcomes were evaluated using logistic regression analysis. Univariate survival analysis was performed by the Kaplan-Meier method and log-rank test. Results Of the 213 patients, 117 had α-HBDH ≥175.90 U/L. Eighty-two patients had poor functional outcomes (mRS≥3). During the 1-year follow-up, a total of 20 patients died, and 15 of them had α-HBDH ≥175.90 U/L during the follow-up time. Moreover, 24 recurrent events were recorded. After adjusting confounding factors, α-HBDH (≥175.90) remained an indicator of poor outcome (mRS 3-6), all-cause death, and recurrent cerebro-cardiovascular events. The ORs for B2 vs. B1 were 4.78 (95% CI: 2.60 to 8.78, P = 0.001), 2.63 (95% CI: 0.80 to 8.59, P = 0.11), and 2.40 (95% CI: 0.82 to 7.02, P = 0.11) for poor functional outcomes with mRS ≥ 3, all-cause death, and recurrent cerebro-cardiovascular events, respectively. Conclusion Increased α-HBDH at admission was independently related to poor functional outcome and all-cause mortality in patients with ICH at 1-year follow-up.
Collapse
Affiliation(s)
- Zhang Limin
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Rasha Alsamani
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Wu Jianwei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shi Yijun
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Wang Dan
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Sun Yuehong
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Liu Ziwei
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Xu Huiwen
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Wang Dongzhi
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Zhao Xingquan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhang Guojun
- Department of Clinical Diagnosis Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
32
|
Pandur E, Szabó I, Hormay E, Pap R, Almási A, Sipos K, Farkas V, Karádi Z. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr 2022; 14:147. [PMID: 36210435 PMCID: PMC9549668 DOI: 10.1186/s13098-022-00919-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The hypothalamus of the central nervous system is implicated in the development of diabetes due to its glucose-sensing function. Dysregulation of the hypothalamic glucose-sensing neurons leads to abnormal glucose metabolism. It has been described that fractalkine (FKN) is involved in the development of hypothalamic inflammation, which may be one of the underlying causes of a diabetic condition. Moreover, iron may play a role in the pathogenesis of diabetes via the regulation of hepcidin, the iron regulatory hormone synthesis. MicroRNAs (miRNAs) are short non-coding molecules working as key regulators of gene expression, usually by inhibiting translation. Hypothalamic miRNAs are supposed to have a role in the control of energy balance by acting as regulators of hypothalamic glucose metabolism via influencing translation. METHODS Using a miRNA array, we analysed the expression of diabetes, inflammation, and iron metabolism related miRNAs in the hypothalamus of a streptozotocin-induced rat type 1 diabetes model. Determination of the effect of miRNAs altered by STZ treatment on the target genes was carried out at protein level. RESULTS We found 18 miRNAs with altered expression levels in the hypothalamus of the STZ-treated animals, which act as the regulators of mRNAs involved in glucose metabolism, pro-inflammatory cytokine synthesis, and iron homeostasis suggesting a link between these processes in diabetes. The alterations in the expression level of these miRNAs could modify hypothalamic glucose sensing, tolerance, uptake, and phosphorylation by affecting the stability of hexokinase-2, insulin receptor, leptin receptor, glucokinase, GLUT4, insulin-like growth factor receptor 1, and phosphoenolpyruvate carboxykinase mRNA molecules. Additional miRNAs were found to be altered resulting in the elevation of FKN protein. The miRNA, mRNA, and protein analyses of the diabetic hypothalamus revealed that the iron import, export, and iron storage were all influenced by miRNAs suggesting the disturbance of hypothalamic iron homeostasis. CONCLUSION It can be supposed that glucose metabolism, inflammation, and iron homeostasis of the hypothalamus are linked via the altered expression of common miRNAs as well as the increased expression of FKN, which contribute to the imbalance of energy homeostasis, the synthesis of pro-inflammatory cytokines, and the iron accumulation of the hypothalamus. The results raise the possibility that FKN could be a potential target of new therapies targeting both inflammation and iron disturbances in diabetic conditions.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary.
| | - István Szabó
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Attila Almási
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Viktória Farkas
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| |
Collapse
|
33
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
34
|
Scheitz JF, Sposato LA, Schulz-Menger J, Nolte CH, Backs J, Endres M. Stroke-Heart Syndrome: Recent Advances and Challenges. J Am Heart Assoc 2022; 11:e026528. [PMID: 36056731 PMCID: PMC9496419 DOI: 10.1161/jaha.122.026528] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After ischemic stroke, there is a significant burden of cardiovascular complications, both in the acute and chronic phase. Severe adverse cardiac events occur in 10% to 20% of patients within the first few days after stroke and comprise a continuum of cardiac changes ranging from acute myocardial injury and coronary syndromes to heart failure or arrhythmia. Recently, the term stroke–heart syndrome was introduced to provide an integrated conceptual framework that summarizes neurocardiogenic mechanisms that lead to these cardiac events after stroke. New findings from experimental and clinical studies have further refined our understanding of the clinical manifestations, pathophysiology, and potential long‐term consequences of the stroke–heart syndrome. Local cerebral and systemic mediators, which mainly involve autonomic dysfunction and increased inflammation, may lead to altered cardiomyocyte metabolism, dysregulation of (tissue‐resident) leukocyte populations, and (micro‐) vascular changes. However, at the individual patient level, it remains challenging to differentiate between comorbid cardiovascular conditions and stroke‐induced heart injury. Therefore, further research activities led by joint teams of basic and clinical researchers with backgrounds in both cardiology and neurology are needed to identify the most relevant therapeutic targets that can be tested in clinical trials.
Collapse
Affiliation(s)
- Jan F Scheitz
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,World Stroke Organization Brain & Heart Task Force
| | - Luciano A Sposato
- World Stroke Organization Brain & Heart Task Force.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry Western University London Ontario Canada.,Heart & Brain Laboratory Western University London Ontario Canada
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - Christian H Nolte
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany
| | - Johannes Backs
- Institute of Experimental Cardiology Heidelberg University Heidelberg Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim Heidelberg Germany
| | - Matthias Endres
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,DZNE (German Center for Neurodegenerative Disease), Partner Site Berlin Berlin Germany.,ExcellenceCluster NeuroCure Berlin Germany
| |
Collapse
|
35
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Type 2 alveolar epithelial cell-derived circulating extracellular vesicle-encapsulated surfactant protein C as a mediator of cardiac inflammation in COVID-19. Inflamm Res 2022; 71:1003-1009. [PMID: 35909187 PMCID: PMC9340698 DOI: 10.1007/s00011-022-01612-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022] Open
Abstract
Among the countless endeavours made at elucidating the pathogenesis of COVID-19, those aimed at the histopathological alterations of type 2 alveolar epithelial cells (AT2) are of outstanding relevance to the field of lung physiology, as they are the building blocks of the pulmonary alveoli. A merit of high regenerative and proliferative capacity, exocytotic activity resulting in the release of extracellular vesicles (EVs) is particularly high in AT2 cells, especially in those infected with SARS-CoV-2. These AT2 cell-derived EVs, containing the genetic material of the virus, might enter the bloodstream and make their way into the cardiovascular system, where they may infect cardiomyocytes and bring about a series of events leading to heart failure. As surfactant protein C, a marker of AT2 cell activity and a constituent of the lung surfactant complex, occurs abundantly inside the AT2-derived EVs released during the inflammatory stage of COVID-19, it could potentially be used as a biomarker for predicting impending heart failure in those patients with a history of cardiovascular disease.
Collapse
|
37
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
38
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
39
|
Chen P, Li X, Yu X, Yang M. Ginsenoside Rg1 Suppresses Non-Small-Cell Lung Cancer via MicroRNA-126-PI3K-AKT-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1244836. [PMID: 35815288 PMCID: PMC9270109 DOI: 10.1155/2022/1244836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
As one of the most common cause of cancer death in the world, lung cancer causes approximately 1.6 million deaths annually. Among them, NSCLC accounts for approximately 85% of patients in whole lung cancer patients. Ginsenoside Rg1 has been confirmed to play an important role in various diseases including cancer. As one of miRNAs, miR-126 closely involves in pathogenesis of the several types of cancers including colorectal, prostate, bladder and gastric cancer, and so on. Thus, the present study aims to investigate effects of the Ginsenoside Rg1 on NSCLC and underlying mechanism. In the study, two lung cancer cell lines including A549 and H1650 were used. It was found that expression of miR-126 was decreased in PBMC of NSCLC patients compared to healthy control. Expression of miR-126 was decreased in cancer tissue compared to paracancerous tissues in NSCLC patients. Importantly, it was found Ginsenoside Rg1 could inhibit growth of lung cancer cells. miR-126 KD remarkably increased the expression of apoptosis genes including caspase 3 and caspase 9 and decreased cell viability in lung cancer cells including A549 and H1650 cells. Interesting, in silico analysis indicated that miR-126 could target PI3K signaling pathway, which was confirmed by WB assay. KD of PI3KR2 compromised promotion of miR-126 on cell apoptosis. Similarly, it was found that KD of mTOR compromised promotion of miR-126 on cell apoptosis. Inhibition of Ginsenoside Rg1 on growth of lung cancer cells was through miR-126 and mTOR. Thus, the present study confirmed that Ginsenoside Rg1 remarkably inhibit lung cancer, which is through microRNA-126-PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Panfeng Chen
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xi Yu
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Yang
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
40
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
41
|
Gabisonia K, Khan M, Recchia FA. Extracellular vesicle-mediated bidirectional communication between heart and other organs. Am J Physiol Heart Circ Physiol 2022; 322:H769-H784. [PMID: 35179973 PMCID: PMC8993522 DOI: 10.1152/ajpheart.00659.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
In recent years, a wealth of studies has identified various molecular species released by cardiac muscle under physiological and pathological conditions that exert local paracrine and/or remote endocrine effects. Conversely, humoral factors, principally produced by organs such as skeletal muscle, kidney, or adipose tissue, may affect the function and metabolism of normal and diseased hearts. Although this cross communication within cardiac tissue and between the heart and other organs is supported by mounting evidence, research on the role of molecular mediators carried by exosomes, microvesicles, and apoptotic bodies, collectively defined as extracellular vesicles (EVs), is at an early stage of investigation. Once released in the circulation, EVs can potentially reach any organ where they transfer their cargo of proteins, lipids, and nucleic acids that exert potent biological effects on recipient cells. Although there are a few cases where such signaling was clearly demonstrated, the results from many other studies can only be tentatively inferred based on indirect evidence obtained by infusing exogenous EVs in experimental animals or by adding them to cell cultures. This area of research is in rapid expansion and most mechanistic interpretations may change in the near future; hence, the present review on the role played by EV-carried mediators in the two-way communication between heart and skeletal muscle, kidneys, bone marrow, lungs, liver, adipose tissue, and brain is necessarily limited. Nonetheless, the available data are already unveiling new, intriguing, and ample scenarios in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mohsin Khan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Gabriele Monasterio, Pisa, Italy
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
43
|
Fei L, Zhang N, Zhang J. Mechanism of miR-126 in hypoxia-reoxygenation-induced cardiomyocyte pyroptosis by regulating HMGB1 and NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:500-509. [PMID: 35297734 DOI: 10.1080/08923973.2022.2054819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Pyroptosis refers to the programmed cell death. This study evaluated the mechanism of miR-126 in hypoxia-reoxygenation (HR)-induced cardiomyocyte pyroptosis. METHODS The HR rat cardiomyocyte models were established. The cell viability, cytotoxicity, and levels of miR-126, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, gasdermin D (GSDMD), and GSDMD-N were detected. The cells were transfected with miR-126 mimics to verify the effect on rat cardiomyocyte pyroptosis, and added with HMGB1 inhibitor (Glycyrrhizin) or NLRP3 inhibitor (S3680) to explore the regulatory mechanisms on rat cardiomyocyte pyroptosis. The binding relationship of miR-126 and HMGB1 was explored. The regulatory effect of miR-126 and HMGB1 on HR-stimulated cardiomyocytes was verified through co-transfection with miR-126 mimics and pcDNA3.1-HMGB1. RESULTS HR treatment inhibited rat cardiomyocyte viability and increased cytotoxicity. After HR treatment, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, GSDMD, and GSDMD-N were elevated in rat cardiomyocytes, while miR-126 was evidently downregulated in rat cardiomyocytes. miR-126 overexpression, and inhibition of HMGB1 or NLRP3 partially reversed HR-induced rat cardiomyocyte cytotoxicity and pyroptosis. miR-126 targeted HMGB1 and HMGB1 overexpression partly reversed the inhibition of miR-126 overexpression on HR-induced cardiomyocyte pyroptosis. CONCLUSION miR-126 inhibits HMGB1/NLRP3 activity and the caspase-1/11 activation and reduces the GSDMD-N cleaved from GSDMD, ultimately inhibiting HR-induced cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Ling Fei
- Department of Cardiovascular, Tian Jin Medical University, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Ning Zhang
- Department of Cardiovascular, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Jun Zhang
- Department of Cardiovascular, Cang Zhou Central Hospital, Tian Jin Medical University, Cang Zhou, 061011, China
| |
Collapse
|
44
|
Wang F, Liu J, Wang D, Yao Y, Jiao X. Knockdown of circ_0007290 alleviates oxygen-glucose deprivation-induced neuronal injury by regulating miR-496/PDCD4 axis. Metab Brain Dis 2022; 37:807-818. [PMID: 35032277 DOI: 10.1007/s11011-021-00900-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are highly enriched in the brain and involved in many types of central nervous system pathologies. Herein, this study aimed to investigate the role and mechanism of circ_0007290 in ischemic stroke. The oxygen-glucose deprivation (OGD) model was established with the HCN-2 cells in vitro. Levels of genes and proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. In vitro experiments were conducted using cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2'-deoxyuridine) assay, flow cytometry and ELISA, respectively. The levels of lactate dehydrogenase (LDH) were measured using the commercial kit. RNA pull-down and dual-luciferase reporter assay were used to identify the target relationship between miR-496 and circ_0007290 or PDCD4 (programmed cell death protein 4). Circ_0007290 expression was elevated in acute ischemic stroke (AIS) patients and OGD-induced cell injury model. OGD stimulation induced neuronal apoptosis, promoted LDH release, and enhanced inflammation in HCN-2 cells, which all were reversed by the knockdown of circ_0007290. Mechanistically, circ_0007290 served as a sponge for miR-496 to relieve the repression of miR-496 on the expression of its target PDCD4. Moreover, miR-496 inhibition or PDCD4 overexpression abolished the inhibitory effects of circ_0007290 knockdown OGD-evoked neuronal injury. Knockdown of circ_0007290 alleviated OGD-induced neuronal injury by regulating miR-496/PDCD4 axis, providing a novel insight into the pathology of ischemic stroke.
Collapse
Affiliation(s)
- Fengjuan Wang
- Department of Anesthesiology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Jie Liu
- Nursing Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Dan Wang
- Operation Room, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Yu Yao
- Department of Anesthesiology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Xuhua Jiao
- Department of Anesthesia and Pain, Gaomi People's Hospital, 77 Zhenfu Street, Gaomi City, Shandong Province , 261500, China.
| |
Collapse
|
45
|
Angiogenesis in diabetic mouse model with critical limb ischemia; cell and gene therapy. Microvasc Res 2022; 141:104339. [DOI: 10.1016/j.mvr.2022.104339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/13/2023]
|
46
|
Wu R, Yun Q, Zhang J, Wang Z, Zhang X, Bao J. Knockdown of circular RNA tousled-like kinase 1 relieves ischemic stroke in middle cerebral artery occlusion mice and oxygen-glucose deprivation and reoxygenation-induced N2a cell damage. Bioengineered 2022; 13:3434-3449. [PMID: 35067172 PMCID: PMC8973970 DOI: 10.1080/21655979.2021.2024684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is an essential contributor to the neurological morbidity and mortality throughout the world. The significance of circular RNA tousled-like kinase 1 (circTLK1) in IS has been documented. This study set out to explore the mechanism of circTLK1 in IS. Middle cerebral artery occlusion (MCAO) mouse models in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) cell models in vitro were first established, followed by evaluation of infarct volume and neurological impairment, and cell viability and apoptosis. The expression patterns of circTLK1, miR-26a-5p, phosphatase and tensin homolog (PTEN), insulin-like growth factor type 1 receptor (IGF-1 R), and glucose transporter type 1 (GLUT1) were detected by RT-qPCR and Western blotting. Co-localization of circTLK1 and miR-26a-5p in N2a cells was tested by fluorescence in situ hybridization assay. The binding relationships among circTLK1, PTEN, and miR-26a-5p were verified by dual-luciferase assay and RNA pull-down. circTLK1 and PTEN were highly expressed while miR-26a-5p was under-expressed in IS models. circTLK1 knockdown decreased infarct volume and neurological impairment in MCAO mouse models and relieved OGD/R-induced neuronal injury in vitro. circTLK1 and miR-26a-5p were co-located in the N2a cell cytoplasm. circTLK1 regulated PTEN as a sponge of miR-26a-5p. PTEN positively regulated IGF-1 R and GLUT1 expressions. miR-26a-5p inhibitor annulled the repressive effects of circTLK1 silencing on OGD/R-induced neuronal injury. sh-PTEN partially annulled the effects of the miR-26a-5p inhibitor on OGD/R-induced neuronal injury. In conclusion, circTLK1 knockdown relieved IS via the miR-26a-5p/PTEN/IGF-1 R/GLUT1 axis. These results may provide a new direction to IS potential therapeutic targets.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhong Wang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
47
|
Vornholz L, Nienhaus F, Gliem M, Alter C, Henning C, Lang A, Ezzahoini H, Wolff G, Clasen L, Rassaf T, Flögel U, Kelm M, Gerdes N, Jander S, Bönner F. Acute Heart Failure After Reperfused Ischemic Stroke: Association With Systemic and Cardiac Inflammatory Responses. Front Physiol 2022; 12:782760. [PMID: 34992548 PMCID: PMC8724038 DOI: 10.3389/fphys.2021.782760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with acute ischemic stroke (AIS) present an increased incidence of systemic inflammatory response syndrome and release of Troponin T coinciding with cardiac dysfunction. The nature of the cardiocirculatory alterations remains obscure as models to investigate systemic interferences of the brain-heart-axis following AIS are sparse. Thus, this study aims to investigate acute cardiocirculatory dysfunction and myocardial injury in mice after reperfused AIS. Ischemic stroke was induced in mice by transient right-sided middle cerebral artery occlusion (tMCAO). Cardiac effects were investigated by electrocardiograms, 3D-echocardiography, magnetic resonance imaging (MRI), invasive conductance catheter measurements, histology, flow-cytometry, and determination of high-sensitive Troponin T (hsTnT). Systemic hemodynamics were recorded and catecholamines and inflammatory markers in circulating blood and myocardial tissue were determined by immuno-assay and flow-cytometry. Twenty-four hours following tMCAO hsTnT was elevated 4-fold compared to controls and predicted long-term survival. In parallel, systolic left ventricular dysfunction occurred with impaired global longitudinal strain, lower blood pressure, reduced stroke volume, and severe bradycardia leading to reduced cardiac output. This was accompanied by a systemic inflammatory response characterized by granulocytosis, lymphopenia, and increased levels of serum-amyloid P and interleukin-6. Within myocardial tissue, MRI relaxometry indicated expansion of extracellular space, most likely due to inflammatory edema and a reduced fluid volume. Accordingly, we found an increased abundance of granulocytes, apoptotic cells, and upregulation of pro-inflammatory cytokines within myocardial tissue following tMCAO. Therefore, reperfused ischemic stroke leads to specific cardiocirculatory alterations that are characterized by acute heart failure with reduced stroke volume, bradycardia, and changes in cardiac tissue and accompanied by systemic and local inflammatory responses.
Collapse
Affiliation(s)
- Lilian Vornholz
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Fabian Nienhaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carina Henning
- Department of Biology, Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hakima Ezzahoini
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Georg Wolff
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lukas Clasen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Ulrich Flögel
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
48
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4763-4781. [DOI: 10.1093/cercor/bhab515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
|
49
|
Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S. Role of Exosomal MicroRNAs in Cell-to-Cell Communication. Methods Mol Biol 2022; 2257:269-292. [PMID: 34432284 DOI: 10.1007/978-1-0716-1170-8_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exosomes, a type of extracellular vesicle, are small vesicles (30-100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.
Collapse
Affiliation(s)
- Bora Tastan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Tarakcioglu
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Yelda Birinci
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Yongsoo Park
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Sermin Genc
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey. .,Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
50
|
GrpEL1 Regulates Mitochondrial Unfolded Protein Response after Experimental Subarachnoid Hemorrhage in vivo and in vitro. Brain Res Bull 2022; 181:97-108. [DOI: 10.1016/j.brainresbull.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
|