1
|
Zhao Y, Xu Y, Xu Q, He N, Zhao J, Liu Y. p23 protects against ferroptosis of brain microvascular endothelial cells in ischemic stroke. Int J Mol Med 2025; 55:64. [PMID: 39981897 PMCID: PMC11878478 DOI: 10.3892/ijmm.2025.5505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025] Open
Abstract
Ferroptosis is a type of iron‑dependent regulated cell death that differs from apoptosis, autophagy or necrosis. p23 serves as a co‑chaperone and performs a unique biological function in various diseases by binding to client proteins to modulate their biological functions; however, its effect on ferroptosis remains largely unknown. In the present study, the effects of cerebral ischemia/reperfusion (I/R) injury (CIRI) or oxygen‑glucose deprivation/reoxygenation on the blood‑brain barrier (BBB) and ferroptosis in brain microvascular endothelial cells (BMECs), as well as the expression of p23, were examined. Subsequently, the effects of p23 on CIRI‑induced BBB dysfunction and BMEC ferroptosis were determined. Finally, the role of glutathione peroxidase 4 (GPX4) in the regulatory effects of p23 on ferroptosis was detected. The results revealed that p23 protected against BBB injury caused by CIRI by inhibiting ferroptosis in BMECs. The effect of p23 on ferroptosis was then explored, and it was found that the expression of GPX4, a major regulator of ferroptosis, was promoted by p23. Furthermore, molecular docking and co‑immunoprecipitation experiments revealed that p23 could bind to GPX4 through its N‑terminal domain (1‑90aa), enhance the stability of GPX4 and inhibit the degradation of GPX4 by cycloheximide. Finally, a cerebral I/R animal model was established using GPX4 conditional knockout mice (GPX4 FosCreERT2/+), and it was revealed that the protective effect of p23 overexpression on the BBB in GPX4 FosCreERT2/+ mice was attenuated compared with that in GPX4 FosCreERT2/‑ mice. In conclusion, p23 may serve a protective role against cerebral I/R‑induced BBB injury by inhibiting ferroptosis in BMECs through enhancing the stability of GPX4, providing a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
2
|
Tavares WR, Seca AML, Barreto MC. Exploring the Therapeutic Potential of Artemisia and Salvia Genera in Cancer, Diabetes, and Cardiovascular Diseases: A Short Review of Clinical Evidence. J Clin Med 2025; 14:1028. [PMID: 39941696 PMCID: PMC11818717 DOI: 10.3390/jcm14031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic syndrome, a cluster of metabolic disorders comprising dyslipidemia, insulin resistance, elevated blood pressure, and abdominal obesity, is a silent epidemic that may lead to outcomes such as cardiovascular disease, diabetes, and cancer. Due to the increase in the prevalence of these pathologies, the search for better treatments and more efficient drugs is imperative. Species of Artemisia and Salvia genera are excellent examples of noteworthy sources of bioactive products with health applications, their therapeutic properties being well known both in popular medicine and in the scientific community. There are reports of plant extracts or compounds from species belonging to either of these genera, which were able to combat cancer, diabetes, and cardiovascular pathologies. For instance, dihydroartemisinin (analog of artemisin extracted from Artemisia annua L.) can reduce tumor markers p53 and Ki-67 expression levels, leading to a reduction in tumor proliferation. Salvia officinalis L. has antihyperglycemic and lipid profile-improving effects since it decreases total cholesterol, glycosylated hemoglobin, fasting glucose, low-density lipoprotein cholesterol, and triglyceride levels while increasing high-density lipoprotein cholesterol levels. Clinical trials using mixtures (dried powdered plants or extracts) of known medicinal plants are recurrent in published works, in contrast with the scarce clinical trial studies with isolated compounds. Salvia miltiorrhiza Bunge. was by far the most targeted plant in the clinical trials analyzed here. Regarding clinical trials concerning Artemisia, there are more studies aiming to see its effect on diabetes, but the studies about cancer are more advanced. This review aims to give a critical summary of the most interesting and promising results from clinical trials. The abundance of studies with limited statistically significant clinical evidence hinders progress in clinical therapy. This situation demands far greater rigor from the scientific community, researchers, regulatory agencies, editors, and reviewers in conducting and publishing clinical studies.
Collapse
Affiliation(s)
- Wilson R. Tavares
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
| | - Ana M. L. Seca
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Carmo Barreto
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
| |
Collapse
|
3
|
Szymczyk P, Majewska M, Nowak J. Proteins and DNA Sequences Interacting with Tanshinones and Tanshinone Derivatives. Int J Mol Sci 2025; 26:848. [PMID: 39859562 PMCID: PMC11765770 DOI: 10.3390/ijms26020848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
Tanshinones, biologically active diterpene compounds derived from Salvia miltiorrhiza, interact with specific proteins and DNA sequences, influencing signaling pathways in animals and humans. This study highlights tanshinone-protein interactions observed at concentrations achievable in vivo, ensuring greater physiological relevance compared to in vitro studies that often employ supraphysiological ligand levels. Experimental data suggest that while tanshinones interact with multiple proteomic targets, only a few enzymes are significantly affected at biologically relevant concentrations. This apparent paradox may be resolved by tanshinones' ability to bind DNA and influence enzymes involved in gene expression or mRNA stability, such as RNA polymerase II and human antigen R protein. These interactions trigger secondary, widespread changes in gene expression, leading to complex proteomic alterations. Although the current understanding of tanshinone-protein interactions remains incomplete, this study provides a foundation for deciphering the molecular mechanisms underlying the therapeutic effects of S. miltiorrhiza diterpenes. Additionally, numerous tanshinone derivatives have been developed to enhance pharmacokinetic properties and biological activity. However, their safety profiles remain poorly characterized, limiting comprehensive insights into their medicinal potential. Further investigation is essential to fully elucidate the therapeutic and toxicological properties of both native and modified tanshinones.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Małgorzata Majewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Jadwiga Nowak
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| |
Collapse
|
4
|
Quan YZ, Wang JH, Zhang SH, Jin GN, Lu JM, Liu YM, Gao HY, Zhou JY, Wang BZ, Xin Y, Cui YX, Xu X, Piao LX. The intervention mechanism of Tanshinone IIA in alleviating neuronal injury induced by HMGB1 or TNF-α-mediated microglial activation. Toxicol In Vitro 2024; 101:105950. [PMID: 39357688 DOI: 10.1016/j.tiv.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from Salvia miltiorrhiza, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing-He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Si-Hui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong-Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Bing-Zhe Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yan Xin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue-Xian Cui
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
5
|
Chen N, Gao J, Zhao H, Liu S, Zhou Y, Liu Y, Zhang Z, Yang S. Stratifying by Blood Glucose Levels to Predict Hemorrhagic Transformation Risk Post-Rt-PA in Acute Ischemic Stroke. Clin Interv Aging 2024; 19:1807-1818. [PMID: 39525875 PMCID: PMC11550918 DOI: 10.2147/cia.s482060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Stroke is a leading cause of disability and mortality worldwide, posing a significant public health challenge. While treatment of acute ischemic stroke (AIS) with recombinant tissue plasminogen activator (rt-PA) is effective but increases the risk of hemorrhagic transformation (HT). This study aimed to explore the determinants of HT in AIS patients treated with rt-PA and investigate the association between blood glucose levels and HT risk. Methods We conducted a prospective cohort study at the First Affiliated Hospital of Harbin Medical University from January 2018 to December 2021. Patients with AIS and who received rt-PA within 4.5 hours of symptom onset were included. Demographic, clinical, laboratory, and imaging data were collected. Results Of the 426 patients, 15% experienced HT post-rt-PA, occurred more frequently in patients with a history of cardiac embolism, higher prethrombolysis NIHSS scores, and elevated fasting blood glucose (FBG) levels. The frequency of HT was higher in non-diabetic patients with FBG levels ≥7.0 mmol/L compared to diabetic patients. Elevated blood glucose levels were significantly associated with HT, regardless of diabetes history. Conclusion The findings suggest importance of precise glycemic control during AIS management to improve patient outcomes, particularly in non-diabetic patients. Future protocols for AIS treatment should incorporate these findings to reduce HT risks. Further large-scale studies are needed to confirm these associations and guide clinical practices.
Collapse
Affiliation(s)
- Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Jiadi Gao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Sihan Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Yubing Zhou
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Yushuang Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Shanshan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| |
Collapse
|
6
|
Zeng JY, Wang Y, Hong FY, Miao M, Jiang YY, Qiao ZX, Wang YT, Bao XR. Tanshinone IIA is superior to paricalcitol in ameliorating tubulointerstitial fibrosis through regulation of VDR/Wnt/β-catenin pathway in rats with diabetic nephropathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3959-3977. [PMID: 37991543 PMCID: PMC11111530 DOI: 10.1007/s00210-023-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Glomerulosclerosis and tubulointerstitial fibrosis (TIF) are closely involved in the development of diabetic nephropathy (DN). Moreover, the development of TIF is closely related to epithelial-to-mesenchymal transition (EMT). Tanshinone IIA (Tan) has various pharmacological effects, especially the anti-fibrotic effect. And it is mainly used in the clinical treatment of cardiovascular diseases. Currently, the protective effect of Tan on DN and its possible mechanism have not been clearly elucidated. Our previous studies illustrated that Tan could improve the EMT of HK-2 cells induced by high glucose by regulating the vitamin D receptor (VDR)/Wnt/β-catenin pathway. Here, we collected demographic information and laboratory results from the National Health and Nutrition Examination Survey (NHANES) database in order to investigate the relationship between VD and DN. Then, we established a DN model and treated DN rats with Tan and paricalcitol (Par) for 6 weeks. We subsequently compared the changes in general condition, renal function, pathological changes, and TIF-related protein expression levels of control rats, DN rats induced by STZ, DN rats with Tan at 5.4 mg/kg, DN rats with Tan at 10.8 mg/kg, and DN rats with Par at 0.054 µg/kg, to explore the effect and mechanism of Tan and Par on DN rats. The results showed that VD had a protective effect against DN in diabetic patients. And we found that Tan had a protective effect on renal fibrosis in DN rats, which was superior to Par in improving the symptoms of "three more and one less," reducing fasting blood glucose level, improving renal index, BUN/SCr, and UACR, reducing histopathological damage of kidney, and improving the expression of fibrosis-related proteins in kidney tissue by regulating VDR/Wnt/β-catenin pathway. Tan was superior to Par in ameliorating tubulointerstitial fibrosis by regulating VDR/Wnt/β-catenin pathway in rats with diabetic nephropathy.
Collapse
Affiliation(s)
- Jing-Yi Zeng
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yu Wang
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Fu-Yuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Miao Miao
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yu-Ying Jiang
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zi-Xuan Qiao
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yun-Tao Wang
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Chen H, Yue H, Yan Y, Wu N, Wu D, Sun P, Hu W, Yang Z. Design, synthesis and biological evaluation of tanshinone IIA derivatives as NLRP3 inflammasome inhibitors. Bioorg Med Chem Lett 2024; 104:129725. [PMID: 38555073 DOI: 10.1016/j.bmcl.2024.129725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Natural product structures have long provided valuable pharmacophores and even candidates for drug discovery. Tanshinone scaffold showed moderately inhibitory activity in NLRP3 inflammasome/IL-1β pathway. Herein, we designed a series of derivatives on different regions of Tanshinone IIA (TNA) scaffold. The biological evaluation identified compound T10, a scaffold hybrid of TNA and salicylic acid, as a potent NLRP3 inflammasome inhibitor. Mechanistically, T10 inhibits the production of ROS and prevents NLRP3 inflammasome-dependent IL-1β production. In addition, treatment with T10 significantly attenuated inflammatory response in DSS-induced peritonitis. Our work describes a potential tanshinone-based derivative, which needs to be further structurally optimized as NLRP3 inflammasome inhibitors for treating inflammatory disorders.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hu Yue
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuyun Yan
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Nannan Wu
- Department of Pharmacy, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, China
| | - Dan Wu
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ping Sun
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wenhui Hu
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Zhongjin Yang
- Key Laboratory of Molecular Target, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
8
|
Liang HB, Chen X, Zhao R, Li SJ, Huang PS, Tang YH, Cui GH, Liu JR. Simultaneous ischemic regions targeting and BBB crossing strategy to harness extracellular vesicles for therapeutic delivery in ischemic stroke. J Control Release 2024; 365:1037-1057. [PMID: 38109946 DOI: 10.1016/j.jconrel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSC-EVs) hold great promise for ischemic stroke treatment, but their therapeutic efficacy is greatly limited due to insufficient targeting ability. Previous reports focused on single ischemic targeting or blood-brain barrier (BBB) penetration, precise delivery to the brain parenchyma has not been fully considered. This study leveraged the targeting ability of RGD peptide and the cell penetrating ability of Angiopep-2 peptide to deliver ADSC-EVs precisely to the impaired brain parenchyma. We found that dual-modified EVs (RA-EVs) significantly enhanced the transcellular permeability across BBB in vitro, and not only targeted ischemic blood vessels but also achieved rapid accumulation in the ischemic lesion area after intravenous administration in vivo. RA-EVs further decreased the infarct volume, apoptosis, BBB disruption, and neurobehavioral deficits. RNA sequencing revealed the molecular regulation mechanism after administration. These findings demonstrate that dual-modification optimizes brain parenchymal targeting and highlights the significance of recruitment and penetration as a previously unidentified strategy for harnessing EVs for therapeutic delivery in ischemic stroke.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen-Jie Li
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Sheng Huang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Arefnezhad R, Nejabat A, Behjati F, Torkamanche M, Zarei H, Yekkehbash M, Afsharmanesh F, Niknam Z, Jamialahmadi T, Sahebkar A. Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents. Mini Rev Med Chem 2024; 24:1701-1709. [PMID: 38482618 DOI: 10.2174/0113895575299721240227070032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 08/28/2024]
Abstract
Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Ma Z, Wu Y, Xu J, Cao H, Du M, Jiang H, Qiu F. Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy. Neurochem Res 2023; 48:3378-3390. [PMID: 37436612 DOI: 10.1007/s11064-023-03985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Sodium tanshinone IIA sulfonate (STS) has shown significant clinical therapeutic effects in cerebral ischemic stroke (CIS), but the molecular mechanisms of neuroprotection remain partially known. The purpose of this study was to explore whether STS plays a protective role in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by regulating microglia autophagy and inflammatory activity. Co-cultured microglia and neurons were subjected to OGD/R injury, an in vitro model of ischemia/reperfusion (I/R) injury with or without STS treatment. Expression of protein phosphatase 2 A (PP2A) and autophagy-associated proteins Beclin 1, autophagy related 5 (ATG5), and p62 in microglia was determined by Western blotting. Autophagic flux in microglia was observed with confocal laser scanning microscopy. Neuronal apoptosis was measured by flow cytometric and TUNEL assays. Neuronal mitochondrial function was determined via assessments of reactive oxygen species generation and mitochondrial membrane potential integrity. STS treatment markedly induced PP2A expression in microglia. Forced overexpression of PP2A increased levels of Beclin 1 and ATG5, decreased the p62 protein level, and induced autophagic flux. Silencing of PP2A or administration of 3-methyladenine inhibited autophagy and decreased the production of anti-inflammatory factors (IL-10, TGF-β and BDNF) and induced the release of proinflammatory cytokines (IL-1β, IL-2 and TNF-α) by STS-treated microglia, thereby inducing mitochondrial dysfunction and apoptosis of STS-treated neurons. STS exerts protection against neuron injury, and the PP2A gene plays a crucial role in improving mitochondrial function and inhibiting neuronal apoptosis by regulating autophagy and inflammation in microglia.
Collapse
Affiliation(s)
- Zhi Ma
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Yue Wu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Haibo Jiang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Feng Qiu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China.
| |
Collapse
|
12
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
13
|
Shen Y, Xiong Y, Cao Q, Li Y, Xiang W, Wang L, Nie Q, Tang B, Yang Y, Hong D. Construction and validation of a nomogram model to predict symptomatic intracranial hemorrhage after intravenous thrombolysis in severe white matter lesions. J Thromb Thrombolysis 2023:10.1007/s11239-023-02828-4. [PMID: 37193832 DOI: 10.1007/s11239-023-02828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
Cerebral white matter lesions (WMLs) increase the risk of bleeding after intravenous thrombolysis (IVT) but are also considered to require IVT. Its risk factors and predictive models are still poorly studied. The aim of this study is to develop a clinically applicable model for post-IVT haemorrhage. It offers the possibility to prevent symptomatic intracranial hemorrhage (sICH) in patients with IVT in severe WMLs. A large single-center observational study conducted a retrospective analysis of IVT in patients with severe WMLs from January 2018 to December 2022. Univariate and multi-factor logistic regression results were used to construct nomogram model, and a series of validations were performed on the model. More than 2,000 patients with IVT were screened for inclusion in this study after cranial magnetic resonance imaging evaluation of 180 patients with severe WMLs, 28 of whom developed sICH. In univariate analysis, history of hypertension (OR 3.505 CI 2.257-4.752, p = 0.049), hyperlipidemia (OR 4.622 CI 3.761- 5.483, p < 0.001), the NIHSS score before IVT (OR 41.250 CI 39.212-43.288, p < 0.001), low-density lipoprotein levels (OR 1.995 CI 1.448-2.543, p = 0.013), cholesterol levels (OR 1.668 CI 1.246-2.090, p = 0.017), platelet count (OR 0.992 CI 0.985-0.999, p = 0.028), systolic blood pressure (OR 1.044 CI 1.022-1.066, p < 0.001), diastolic blood pressure (OR 1.047 CI 1.024-1.070, p < 0.001) were significantly associated with sICH. In a multifactorial analysis, the NIHSS score before IVT (OR 94.743 CI 92.311-97.175, p < 0.001), and diastolic blood pressure (OR 1.051 CI 1.005-1.097, p = 0.033) were considered to be significantly associated with sICH after IVT as risk factors for the occurrence of sICH. The four most significant factors from logistic regression are subsequently fitted to create a predictive model. The accuracy was verified using ROC curves, calibration curves, decision curves, and clinical impact curves, and the model was considered to have high accuracy (AUC 0.932, 95% 0.888-0.976). The NHISS score before IVT and diastolic blood pressure are independent risk factors for sICH after IVT in patients with severe WMLs. The models based on hyperlipidemia, the NIHSS score before IVT, low-density lipoprotein and diastolic blood pressure are highly accurate and can be applied clinically to provide a reliable predictive basis for IVT in patients with severe WMLs.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Qian Cao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - YanPing Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - WenWen Xiang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - LuLu Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Quirui Nie
- Department of Gerontology, Nanchang First Hospital, Nanchang, China
| | - BoJi Tang
- Department of Neurology, Xiamen Fifth People's Hospital, Xiamen, China
| | - YiRong Yang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
14
|
Shen X, Li M, Shao K, Li Y, Ge Z. Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front Mol Neurosci 2023; 16:1076016. [PMID: 37078089 PMCID: PMC10106693 DOI: 10.3389/fnmol.2023.1076016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
An ischemic stroke occurs when the blood supply is obstructed to the vascular basin, causing the death of nerve cells and forming the ischemic core. Subsequently, the brain enters the stage of reconstruction and repair. The whole process includes cellular brain damage, inflammatory reaction, blood–brain barrier destruction, and nerve repair. During this process, the proportion and function of neurons, immune cells, glial cells, endothelial cells, and other cells change. Identifying potential differences in gene expression between cell types or heterogeneity between cells of the same type helps to understand the cellular changes that occur in the brain and the context of disease. The recent emergence of single-cell sequencing technology has promoted the exploration of single-cell diversity and the elucidation of the molecular mechanism of ischemic stroke, thus providing new ideas and directions for the diagnosis and clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Yongnan Li,
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Zhaoming Ge,
| |
Collapse
|
15
|
Kan Z, Yan W, Yang M, Gao H, Meng D, Wang N, Fang Y, Wu L, Song Y. Effects of sodium tanshinone IIA sulfonate injection on inflammatory factors and vascular endothelial function in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A systematic review and meta-analysis of randomized clinical trials. Front Pharmacol 2023; 14:1144419. [PMID: 36959861 PMCID: PMC10027702 DOI: 10.3389/fphar.2023.1144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: Patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) therapy may experience further damage to the vascular endothelium, leading to increased inflammatory response and in-stent thrombosis. In many clinical studies, sodium tanshinone IIA sulfonate injection (STS) has been found to reduce inflammatory factors and enhance vascular endothelial function in patients with ACS while improving the prognosis of PCI. However, to date, there has been no systematic review assessing the effectiveness and safety of STS on inflammatory factors and vascular endothelial function. Purpose: The aim of this study is to systematically review the effects of STS on inflammatory factors and endothelial function in patients with ACS treated with PCI. Methods: Until October 2022, eight literature databases and two clinical trial registries were searched for randomized controlled trials (RCTs) investigating STS treatment for ACS patients undergoing PCI. The quality of the included studies was assessed using the Cochrane Risk Assessment Tool 2.0. Meta-analysis was performed using RevMan 5.4 software. Results: Seventeen trials met the eligibility criteria, including 1,802 ACS patients undergoing PCI. The meta-analysis showed that STS significantly reduced high-sensitivity C-reactive protein (hs-CRP) levels (mean difference [MD = -2.35, 95% CI (-3.84, -0.86), p = 0.002], tumor necrosis factor-alpha (TNF-α) levels (standard mean difference [SMD = -3.29, 95%CI (-5.15, -1.42), p = 0,006], matrix metalloproteinase-9 (MMP-9) levels [MD = -16.24, 95%CI (-17.24, -15.24), p < 0.00001], and lipid peroxidation (LPO) levels [MD = -2.32, 95%CI (-2.70, -1.93), p < 0.00001], and increased superoxide dismutase (SOD) levels [SMD = 1.46, 95%CI (0.43, 2.49), p = 0,006] in patients with ACS. In addition, STS significantly decreased the incidence of major adverse cardiovascular events (relative risk = 0.54, 95%CI [0.44, 0.66], p < 0.00001). The quality of evidence for the outcomes was assessed to be very low to medium. Conclusion: STS can safely and effectively reduce the levels of hs-CRP, TNF-α, MMP-9, and LPO and increase the level of SOD in patients with ACS treated with PCI. It can also reduce the incidence of adverse cardiovascular events. However, these findings require careful consideration due to the small number of included studies, high risk of bias, and low to moderate evidence. In the future, more large-scale and high-quality RCTs will be needed as evidence in clinical practice.
Collapse
Affiliation(s)
- Zunqi Kan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenli Yan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengqi Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huanyu Gao
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Meng
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqing Fang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingyu Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yongmei Song,
| |
Collapse
|
16
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
18
|
Kaiser EE, Waters ES, Yang X, Fagan MM, Scheulin KM, Sneed SE, Cheek SR, Jeon JH, Shin SK, Kinder HA, Kumar A, Platt SR, Duberstein KJ, Park HJ, Xie J, West FD. Tanshinone IIA-Loaded Nanoparticle and Neural Stem Cell Therapy Enhances Recovery in a Pig Ischemic Stroke Model. Stem Cells Transl Med 2022; 11:1061-1071. [PMID: 36124817 PMCID: PMC9585947 DOI: 10.1093/stcltm/szac062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022] Open
Abstract
Induced pluripotent stem cell-derived neural stem cells (iNSCs) are a multimodal stroke therapeutic that possess neuroprotective, regenerative, and cell replacement capabilities post-ischemia. However, long-term engraftment and efficacy of iNSCs is limited by the cytotoxic microenvironment post-stroke. Tanshinone IIA (Tan IIA) is a therapeutic that demonstrates anti-inflammatory and antioxidative effects in rodent ischemic stroke models and stroke patients. Therefore, pretreatment with Tan IIA may create a microenvironment that is more conducive to the long-term survival of iNSCs. In this study, we evaluated the potential of Tan IIA drug-loaded nanoparticles (Tan IIA-NPs) to improve iNSC engraftment and efficacy, thus potentially leading to enhanced cellular, tissue, and functional recovery in a translational pig ischemic stroke model. Twenty-two pigs underwent middle cerebral artery occlusion (MCAO) and were randomly assigned to a PBS + PBS, PBS + iNSC, or Tan IIA-NP + iNSC treatment group. Magnetic resonance imaging (MRI), modified Rankin Scale neurological evaluation, and immunohistochemistry were performed over a 12-week study period. Immunohistochemistry indicated pretreatment with Tan IIA-NPs increased iNSC survivability. Furthermore, Tan IIA-NPs increased iNSC neuronal differentiation and decreased iNSC reactive astrocyte differentiation. Tan IIA-NP + iNSC treatment enhanced endogenous neuroprotective and regenerative activities by decreasing the intracerebral cellular immune response, preserving endogenous neurons, and increasing neuroblast formation. MRI assessments revealed Tan IIA-NP + iNSC treatment reduced lesion volumes and midline shift. Tissue preservation and recovery corresponded with significant improvements in neurological recovery. This study demonstrated pretreatment with Tan IIA-NPs increased iNSC engraftment, enhanced cellular and tissue recovery, and improved neurological function in a translational pig stroke model.
Collapse
Affiliation(s)
- Erin E Kaiser
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Environmental Health Science Department, College of Public Health, Athens, GA, USA
| | - Xueyuan Yang
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Madison M Fagan
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Kelly M Scheulin
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | | | - Julie Heejin Jeon
- Nutritional Sciences Department, College of Family and Consumer Sciences, Athens, GA, USA
| | - Soo K Shin
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Small Animal Medicine and Surgery Department, College of Veterinary Medicine, Athens, GA, USA
| | - Holly A Kinder
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Anil Kumar
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Simon R Platt
- Regenerative Bioscience Center, Athens, GA, USA
- Interdisciplinary Toxicology Program, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Kylee J Duberstein
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Hea Jin Park
- Nutritional Sciences Department, College of Family and Consumer Sciences, Athens, GA, USA
| | - Jin Xie
- Regenerative Bioscience Center, Athens, GA, USA
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Small Animal Medicine and Surgery Department, College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
19
|
Wang J, Cao B, Sun R, Chen Y, Feng J. Retraction notice: Exosome-transported Long Non-coding Ribonucleic Acid H19 Induces Blood–brain Barrier Disruption in Cerebral Ischemic Stroke Via the H19/micro Ribonucleic Acid-18a/Vascular Endothelial Growth factor Axis. Neuroscience 2022; 500:41-51. [PMID: 35931357 DOI: 10.1016/j.neuroscience.2022.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). The authors of this article would like to retract it after having conducted a thorough review of all the original recordings and repeating the protocols. They found that some data were not correct and there are some mistakes in the processes of experimental protocols, which makes the interpretation of the data, and the conclusions presented in this article inconsistent. They apologize to the editors, referees, and readers for any inconvenience this issue may have caused.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
20
|
Wang Z, Sun Y, Bian L, Zhang Y, Zhang Y, Wang C, Tian J, Lu T. The crosstalk signals of Sodium Tanshinone ⅡA Sulfonate in rats with cerebral ischemic stroke: Insights from proteomics. Biomed Pharmacother 2022; 151:113059. [PMID: 35561426 DOI: 10.1016/j.biopha.2022.113059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Stroke could cause long-term disability, even mortality around the world. Recently, Sodium tanshinone IIA sulfonate (STS), identified from Salvia miltiorrhiza Bunge and was found to have unique efficiency in clinical practice as a potential therapeutic agent for ischemic cerebral infarction. However, systematic investigation about the biological mechanism is still lacking. Herein, we utilized high-throughput proteomics approach to identify the underlying targets for the treatment of STS in stroke. METHODS We investigated the effect of STS on stroke outcomes on rat model of the Middle Cerebral Artery Occlusion and Reperfusion (MCAO/R), assessing by Z-Longa score, infarct volume and HE staining. Pharmacoproteomic profiling of ischemic penumbra in cortical (IPC) was performed using DIA-based label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Bioinformatics analysis was processed for further investigation. The expression of core proteins was semi-quantified by DIA, and the major protein correlating with stroke was examined using parallel reaction monitoring (PRM). RESULTS Rats in the MCAO/R group showed neurological function deterioration, which was improved by STS. There were 423 differentially expressed proteins (DEPs) in IPC being detected and quantified in both the sham group and the MCAO/R group. Meanwhile, 285 proteins were significantly changed in the STS treated group, compared to the MCAO/R model. Protein-protein interaction (PPI) network, pathway and biological function enrichment were processed for the DEPs across each two groups, the results of which were integrated for analysis. Alb, mTOR, Dync1h1, Stxbp1, Cltc, and Sptan1 were contained as the core proteins. Altered molecules were discovered to be enriched in 18 signal pathways such as phosphatidylinositol signaling system, PI3K/AKT signal pathway and HIF-1 signal pathway. The results also showed the correlation with sleep disturbances and depression post-stroke. CONCLUSIONS We concluded that STS could prevent penumbra from progressively ongoing damage and improve neurological deficits in MCAO/R model rats. The intersected pathways and protein networks predicted by proteomics might provide much more detailed information for the therapeutic mechanisms of STS in the treatment of CIS.
Collapse
Affiliation(s)
- Zheyi Wang
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China; Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100026, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lihua Bian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejing 32500, China
| | - Yiling Zhang
- Xiamen Municipal Health Commission, Xiamen, Fujian 361000, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100026, China
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinzhou Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100026, China.
| |
Collapse
|
21
|
Wang P, Ren Q, Shi M, Liu Y, Bai H, Chang YZ. Overexpression of Mitochondrial Ferritin Enhances Blood–Brain Barrier Integrity Following Ischemic Stroke in Mice by Maintaining Iron Homeostasis in Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11071257. [PMID: 35883748 PMCID: PMC9312053 DOI: 10.3390/antiox11071257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Blood–brain barrier (BBB) breakdown, a characteristic feature of ischemic stroke, contributes to poor patient outcomes. Brain microvascular endothelial cells (BMVECs) are a key component of the BBB and dysfunction or death of these cells following cerebral ischemia reperfusion (I/R) injury can disrupt the BBB, leading to leukocyte infiltration, brain edema and intracerebral hemorrhage. We previously demonstrated that mitochondrial ferritin (FtMt) can alleviate I/R-induced neuronal ferroptosis by inhibiting inflammation-regulated iron deposition. However, whether FtMt is involved in BBB disruption during cerebral I/R is still unknown. In the present study, we found that FtMt expression in BMVECs is upregulated after I/R and overexpression of FtMt attenuates I/R-induced BBB disruption. Mechanistically, we found that FtMt prevents tight junction loss and apoptosis by inhibiting iron dysregulation and reactive oxygen species (ROS) accumulation in I/R-treated BMVECs. Chelating excess iron with deferoxamine alleviates apoptosis in the brain endothelial cell line bEnd.3 under oxygen glucose deprivation followed by reoxygenation (OGD/R) insult. In summary, our data identify a previously unexplored effect for FtMt in the BBB and provide evidence that iron-mediated oxidative stress in BMVECs is an early cause of BMVECs damage and BBB breakdown in ischemic stroke.
Collapse
Affiliation(s)
- Peina Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
- Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Mengtong Shi
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Yuanyuan Liu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
- Correspondence: ; Tel./Fax: +86-311-80787539
| |
Collapse
|
22
|
Ye Y, Zhu YT, Xin XY, Zhang JC, Zhang HL, Li D. Efficacy of Chinese herbal medicine for tPA thrombolysis in experimental stroke: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154072. [PMID: 35349833 DOI: 10.1016/j.phymed.2022.154072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tissue-type plasminogen activator (tPA) remains the sole FDA approved thrombolytic drug for ischemic stroke. But delayed thrombolytic therapy with tPA may increase the risk of hemorrhagic transformation. Many Chinese herbal medicines have been used as tPA helpers to enhance the capacity of tPA and minimize the risk of hemorrhagic transformation. The efficacy of Chinese herbal medicines on tPA thrombolysis is not systematically analyzed. METHODS We searched the following three databases up to January 2022: Web of Science, PubMed, and Scopus. Studies that reported the efficacy and safety of Chinese herbal medicines on tPA thrombolysis in experimental stroke were included. The efficacy outcomes were neurological score and infarct volume, the safety outcomes were cerebral hemorrhage and blood brain barrier (BBB) damage. We used the checklist of CAMARADES to assess the quality of included studies. Standardized mean difference (SMD) with 95% confidence intervals were used to assess all the outcomes. Subgroup analyses were performed to explore the sources of heterogeneity. Trim and fill method and Egger's test were used to assess the potential publication bias. Sensitivity analyses were used to identify the stability of the results. RESULTS A total of nine studies including 11 Chinese herbal medicines fulfilled the inclusion criteria and were subsequently analyzed. The pooled data demonstrated that Chinese herbal medicines improved neurological score (2.23 SMD, 1.42-3.04), infarct volume (1.08 SMD, 0.62-1.54), attenuated cerebral hemorrhage (1.87 SMD, 1.34-2.4), and BBB dysfunction (1.9 SMD, 1.35-2.45) following tPA thrombolysis in experimental stroke. Subgroup analysis indicated that the route of drug delivery, dosage of tPA, and stroke model used may be factors inducing heterogeneity and influencing the efficacy. CONCLUSION Treatment with Chinese herbal medicines significantly improved neurological score and infarct volume, reduced cerebral hemorrhage and BBB damage after tPA thrombolysis. This study supports Chinese herbal medicine as an adjuvant therapy in reducing the side effects of tPA thrombolysis after acute ischemic stroke. The results should be interpreted with more caution since this article was based on animal studies.
Collapse
Affiliation(s)
- Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Jia-Cheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
23
|
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in Breast Cancer Treatment: A Review of Its Phytochemistry, Derivatives, Nanoparticles, and Potential Mechanisms. Front Pharmacol 2022; 13:872085. [PMID: 35600860 PMCID: PMC9117704 DOI: 10.3389/fphar.2022.872085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liang
- *Correspondence: Yi Liang, ; Guoyin Kai,
| | - Guoyin Kai
- *Correspondence: Yi Liang, ; Guoyin Kai,
| |
Collapse
|
24
|
Ma HH, Wan C, Zhang LD, Zhang RR, Peng D, Qiao LJ, Zhang SJ, Cai YF, Huang HQ. Sodium tanshinone IIA sulfonate improves cognitive impairment via regulating Aβ transportation in AD transgenic mouse model. Metab Brain Dis 2022; 37:989-1001. [PMID: 35080687 DOI: 10.1007/s11011-022-00911-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a most common neurodegenerative disease. Sodium Tanshinone IIA Sulfonate (STS) has been reported to ameliorate AD pathology. However, the underlying mechanism is still unclear. In this study, AD transgenic mouse model (APP/PS1) was used to explore the potential mechanism of STS against AD. Morris water maze and Y-maze tests showed that administration of STS improved learning and memory abilities of APP/PS1 mice. STS reduced the levels of reactive oxygen species and malondialdehyde, while improved the activity of superoxide dismutase in both hippocampus and cortex in APP/PS1 mice. STS inhibited the activity of acetylcholinesterase, while improved the activity of choline acetyltransferase in APP/PS1 mice. In addition, STS elevated the protein expressions of neurotrophic factors and synapse-related proteins in both the hippocampus and cortex in APP/PS1 mice. At last, STS improved the protein expressions of glucose transporter 1 (GLUT1) and low-density lipoprotein receptor-related protein 1 (LRP1). These results indicated that the potential mechanism of STS on AD might be related to Aβ transportation function via GLUT1/LRP1 pathway. HIGHLIGHTS: STS improves cognitive impairment of APP/PS1 mice. STS ameliorates the oxidative stress damage and improves the cholinergic system. STS protects against neuronal dysfunction and enhances the synaptic plasticity. STS mediates the Aβ transportation of BMECs.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu-Di Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong-Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Peng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Hong-Qiang Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
26
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Liu L, Gao H, Wen T, Gu T, Zhang S, Yuan Z. Tanshinone IIA attenuates AOM/DSS-induced colorectal tumorigenesis in mice via inhibition of intestinal inflammation. PHARMACEUTICAL BIOLOGY 2021; 59:89-96. [PMID: 33535870 PMCID: PMC8871617 DOI: 10.1080/13880209.2020.1865412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Tanshinone IIA is a natural extract derived from a Chinese medicinal herb with multiple bioactivities; however, whether and how tanshinone IIA protects against colorectal cancer (CRC) are uncertain. OBJECTIVE We investigated the potential beneficial effects of tanshinone IIA in a colitis-associated colorectal tumorigenesis mouse model and its underlying mechanisms. MATERIALS AND METHODS Male C57BL/6 mice were treated with azoxymethane (AOM) 10 mg/kg body weight and dextran sulphate sodium (2.5% DSS) to induce a colitis-associated cancer model. Tanshinone IIA (200 mg/kg body weight) was given to the mice intraperitoneally. After 12 weeks, all mice were sacrificed to measure tumour formation, intestinal permeability, neutrophil infiltration, and colonic inflammation. In addition, whether tanshinone IIA has inhibitory effects on neutrophil activation was determined through in vitro investigations. RESULTS We observed that tanshinone IIA significantly decreased tumour formation in AOM/DSS-treated mice compared to AOM/DSS-treated alone mice (0.266 ± 0.057 vs. 0.78 ± 0.153, p = 0.013). Tanshinone IIA also decreased intestinal permeability compared to that in AOM/DSS-treated alone mice (3.12 ± 0.369 vs. 5.06 ± 0.597, p = 0.034) and consequently reduced neutrophil infiltration of the colonic mucosa (53.25 ± 8.85 vs. 107.6 ± 13.09, p = 0.014) as well as intestinal inflammation in mice. Mechanistically, tanshinone IIA downregulated the NF-κB signalling pathway in the colonic tumours of AOM/DSS-treated mice. In vitro assays further validated that tanshinone IIA suppressed LPS-induced neutrophil activation. CONCLUSION These data suggest that tanshinone IIA alleviates colorectal tumorigenesis through inhibition of intestinal inflammation. Tanshinone IIA may have a therapeutic potential for CRC in clinical practice.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Hanjing Gao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Radiation Oncology, Tianjin 4TH Centre Hospital, Tianjin, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Shuang Zhang
- Department of Cardiology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- CONTACT Zhiyong Yuan Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Hexi District, Tianjin300060, China
| |
Collapse
|
28
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
30
|
Bian HJ, Xu SY, Li HQ, Jia JQ, Ye L, Shu S, Xia SN, Gu Y, Zhu X, Xu Y, Cao X. JLX001 ameliorates cerebral ischemia injury by modulating microglial polarization and compromising NLRP3 inflammasome activation via the NF-κB signaling pathway. Int Immunopharmacol 2021; 101:108325. [PMID: 34740080 DOI: 10.1016/j.intimp.2021.108325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a devastating disease with high morbidity and mortality rates, and the proinflammatory microglia-mediated inflammatory response directly affects stroke outcome. Previous studies have reported that JLX001, a novel compound with a structure similar to that of cyclovirobuxine D (CVB-D), exerts antiapoptotic, anti-inflammatory and antioxidative effects on ischemia-induced brain injury. However, the role of JLX001 in microglial polarization and nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome regulation after ischemic stroke has not been fully investigated. In this study, we used the middle cerebral artery occlusion (MCAO) method to establish a focal cerebral ischemia model and found that JLX001 attenuated the brain infarct size and improved cerebral damage. Moreover, the expression levels of proinflammatory cytokines (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were significantly reduced while those of the anti-inflammatory cytokine IL-10 were increased in the JLX001-treated group. Immunofluorescence staining and flow cytometry revealed an increased number of anti-inflammatory phenotypic microglia and a reduced number of proinflammatory phenotypic microglia in JLX001-treated MCAO mice. Western blotting analysis showed that JLX001 inhibited the expression of NLRP3 and proteins related to the NLRP3 inflammasome axis in vivo. Furthermore, JLX001 reduced the number of NLRP3/Iba1 cells in ischemic penumbra tissues. Finally, mechanistic analysis revealed that JLX001 significantly inhibited the expression of proteins related to the NF-κB signaling pathway. Additionally, pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, ameliorated cerebral ischemia-reperfusion injury by suppressing microglial polarization towards the proinflammatory phenotype and NLRP3 activation in vivo, further suggesting that these protective effects of JLX001 were mediated by inhibition of the NF-κB signaling pathway. These results suggest that JLX001 is a promising therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Hui-Jie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Hui-Qin Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Jun-Qiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Xiong Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| |
Collapse
|
31
|
Mulder IA, van Bavel ET, de Vries HE, Coutinho JM. Adjunctive cytoprotective therapies in acute ischemic stroke: a systematic review. Fluids Barriers CNS 2021; 18:46. [PMID: 34666786 PMCID: PMC8524879 DOI: 10.1186/s12987-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
With the introduction of endovascular thrombectomy (EVT), a new era for treatment of acute ischemic stroke (AIS) has arrived. However, despite the much larger recanalization rate as compared to thrombolysis alone, final outcome remains far from ideal. This raises the question if some of the previously tested neuroprotective drugs warrant re-evaluation, since these compounds were all tested in studies where large-vessel recanalization was rarely achieved in the acute phase. This review provides an overview of compounds tested in clinical AIS trials and gives insight into which of these drugs warrant a re-evaluation as an add-on therapy for AIS in the era of EVT. A literature search was performed using the search terms "ischemic stroke brain" in title/abstract, and additional filters. After exclusion of papers using pre-defined selection criteria, a total of 89 trials were eligible for review which reported on 56 unique compounds. Trial compounds were divided into 6 categories based on their perceived mode of action: systemic haemodynamics, excitotoxicity, neuro-inflammation, blood-brain barrier and vasogenic edema, oxidative and nitrosative stress, neurogenesis/-regeneration and -recovery. Main trial outcomes and safety issues are summarized and promising compounds for re-evaluation are highlighted. Looking at group effect, drugs intervening with oxidative and nitrosative stress and neurogenesis/-regeneration and -recovery appear to have a favourable safety profile and show the most promising results regarding efficacy. Finally, possible theories behind individual and group effects are discussed and recommendation for promising treatment strategies are described.
Collapse
Affiliation(s)
- I A Mulder
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - E T van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J M Coutinho
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Shen Y, Li D, Tang B, Cao Q, Hou Z, Xu L. Factors associated with symptomatic intracranial haemorrhage after intravenous thrombolysis in severe white matter lesions: a retrospective analysis. Postgrad Med J 2021; 98:842-847. [PMID: 37063039 DOI: 10.1136/postgradmedj-2021-140886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE White matter lesions (WMLs) are thought to cause damage to the blood-brain barrier, thereby aggravating bleeding after intravenous thrombolysis. However, the risk factors for symptomatic cerebral haemorrhage after thrombolysis are still unclear. This study explored the risk factors for bleeding in patients with severe WMLs after intravenous thrombolysis to prevent bleeding as soon as possible. METHODS A large single-centre observational study conducted a retrospective analysis of intravenous thrombolysis in patients with severe WMLs from January 2018 to March 2021. According to whether symptomatic cerebral haemorrhage occurred, the patients were divided into two groups, and then statistical analysis was performed. RESULTS After a retrospective analysis of the data of nearly 1000 patients with intravenous thrombolysis and excluding invalid information, 146 patients were included, of which 23 (15.8%) patients had symptomatic cerebral haemorrhage. Univariate analysis showed that a history of hypertension (20% vs 4.9%, p=0.024), hyperlipidaemia (38.7% vs 9.6%, p<0.001), the National Institutes of Health Stroke Scale (NIHSS) score before thrombolysis (median 17 vs 6, p<0.001), low-density lipoprotein levels (median 2.98 vs 2.44, p=0.011), cholesterol levels (mean 4.74 vs 4.22, p=0.033), platelet count (median 161 vs 191, p=0.031), platelet distribution width (median 15.2 vs 12.1, p=0.001) and sodium ion levels (median 139.81 vs 138.67, p=0.043) were significantly associated with symptomatic cerebral haemorrhage. Further multivariate logistic regression analysis showed that hyperlipidaemia (OR=9.069; 95% CI 2.57 to 32.07; p=0.001) and the NIHSS score before thrombolysis (OR=1.33; 95% CI 1.16 to 1.52; p<0.001) were comprehensive risk factors for symptomatic cerebral haemorrhage. CONCLUSION Hyperlipidaemia and the NIHSS score before thrombolysis are independent risk factors for bleeding after intravenous thrombolysis in patients with severe WMLs. Delaying the onset of white matter and preventing risk factors for bleeding will help improve the prognosis of cerebral infarction and reduce mortality. These risk factors need to be further evaluated in future studies.
Collapse
Affiliation(s)
- Yu Shen
- Neurology, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - DeFu Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University School of Public Health, Nanchang, Jiangxi, China
| | - BoJi Tang
- Neurology, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - Qian Cao
- Neurology, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - Zhuo Hou
- Neurology, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - LiJun Xu
- Neurology, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Xu J, Zhang P, Chen Y, Xu Y, Luan P, Zhu Y, Zhang J. Sodium tanshinone IIA sulfonate ameliorates cerebral ischemic injury through regulation of angiogenesis. Exp Ther Med 2021; 22:1122. [PMID: 34504576 PMCID: PMC8383733 DOI: 10.3892/etm.2021.10556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular remodeling and neuroprotection are two major adaptable methods for treating ischemic stroke. Edaravone is a protective agent for the treatment of stroke and was used as a positive control in the present study. Sodium tanshinone IIA sulfonate (STS) has demonstrated therapeutic clinical effects in cerebral infarction in China, while its mechanisms of action in ischemic stroke have remained elusive. The angiogenesis and neuroprotective effects of STS were evaluated in a rat model induced by middle cerebral artery occlusion and 3 days of reperfusion. When used at the same dose, the magnitude of the therapeutic effect of STS was similar to that of edaravone in terms of decreased blood-brain barrier damage as indicated by reduced Evans blue leakage, improved neurological deficits, alleviated cerebral edema and inhibition of histopathological changes caused by ischemia/reperfusion. The TUNEL assay demonstrated that the ability of STS to inhibit neuronal apoptosis was equivalent to that of edaravone. Immunofluorescence detection of CD31 and α-smooth muscle actin indicated that the vascular density was significantly reduced in the vehicle group compared with that in the sham operation group, STS increased the microvessel density in the ischemic area. Furthermore, in the vehicle group the protein expression of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR) as determined by fluorescence microscopy and immunohistochemistry was significantly reduced compared with that in the sham group. However, STS promoted their expression compared to the vehicle group respectively, and increaed the mRNA expression of VEGF, VEGFR, CD31 and angiopoietin-1 as determined by reverse transcription-quantitative PCR, but these changes were not significant or not present for edaravone apart from Ang-1. In conclusion, STS protected against ischemic brain injury by promoting angiogenesis in ischemic areas and inhibiting neuronal apoptosis. These results provide a potential treatment for stroke recovery.
Collapse
Affiliation(s)
- Jiazhen Xu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Pei Zhang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yao Chen
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yulan Xu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pengwei Luan
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuying Zhu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jiange Zhang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
34
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Xu SY, Bian HJ, Shu S, Xia SN, Gu Y, Zhang MJ, Xu Y, Cao X. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci Ther 2021; 27:1224-1237. [PMID: 34156153 PMCID: PMC8446221 DOI: 10.1111/cns.13699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aims Ischemic stroke is a life‐threatening disease with limited therapeutic strategies. Blood‐brain barrier (BBB) disruption is a critical pathological process that contributes to poor outcomes in ischemic stroke. We previously showed that the microglial inhibition of the inflammasome sensor absent in melanoma 2 (AIM2) suppressed the inflammatory response and protected against ischemic stroke. However, whether AIM2 is involved in BBB disruption during cerebral ischemia is unknown. Methods Middle cerebral artery occlusion (MCAO) and oxygen‐glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice and brain microvascular endothelial cells (HBMECs), respectively. The infarct volume, neurological deficits, and BBB permeability were measured in mice after MCAO. Transendothelial electrical resistance (TEER) and neutrophil adhesion to the HBMEC monolayer were assessed after OGD/R treatment. Western blot and immunofluorescence analyses were conducted to evaluate the expression of related proteins. Results AIM2 was shown to be expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. AIM2 deletion reduced the infarct volume, improved neurological and motor functions, and decreased BBB disruption. In vitro, OGD/R significantly increased the protein levels of AIM2 and ICAM‐1 and decreased those of the tight junction (TJ) proteins ZO‐1 and occludin. AIM2 knockdown effectively protected BBB integrity by promoting the expression of TJ proteins and decreasing ICAM‐1 expression and neutrophil adhesion. Mechanistically, AIM2 knockdown reversed the OGD/R‐induced increases in ICAM‐1 expression and STAT3 phosphorylation in brain endothelial cells. Furthermore, treatment with the p‐STAT3 inhibitor AG490 mitigated the effect of AIM2 on BBB breakdown. Conclusion Our findings indicated that inhibiting AIM2 preserved the BBB integrity after ischemic stroke, at least partially by modulating STAT3 activation and that AIM2 may be a promising therapeutic target for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hui-Jie Bian
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Mei-Juan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|
36
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
37
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Ye X, Peng X, Song Q, Zeng T, Xiong X, Huang Y, Cai X, Zhang C, Wang C, Wang B. Borneol-modified tanshinone IIA liposome improves cerebral ischemia reperfusion injury by suppressing NF-κB and ICAM-1 expression. Drug Dev Ind Pharm 2021; 47:609-617. [PMID: 33834937 DOI: 10.1080/03639045.2021.1908331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the metabolism and brain tissue distribution of borneol-modified tanshinone IIA liposome (BO-TA-Lip) and its effect on NF-κB and ICAM-1 in cerebral ischemia reperfusion rats, thereby exploring the ameliorative mechanism of BO-TA-Lip on ischemic encephalopathy. METHODS Particle size, entrapment efficiency, drug loading were measured to evaluate the preparation comprehensively. Metabolism and brain tissue distributions in vivo were measured by HPLC, and the pharmacokinetic parameters were calculated. In addition, 24 SD rats were randomly divided into sham, model, STS (sodium tanshinone IIA sulfonate, 30 mg/kg) and BO-TA-Lip groups (44 mg/kg). The middle cerebral artery occlusion (MCAO) rats were constructed with thread embolism method. Neurological deficits were scored using Zea Longa scoring standard. TTC and HE staining were used for the cerebral infarction and histopathological examination, respectively. The protein expression was examined by immunohistochemistry and Western blot. RESULTS The average particle size, encapsulation efficiency and drug loading of BO-TA-Lip were (135.33 ± 7.25) nm, (85.95 ± 3.20)% and (4.06 ± 0.31)%, respectively. Both in the pharmacokinetic analysis of plasma and brain tissue, in BO-TA-Lip group, the peak concentration and the area under the curve increased, and the clearance rate decreased. The neurological deficit scores and infarct area of the BO-TA-Lip group were significantly lower than that of the model and STS groups. Besides, BO-TA-Lip reduced the protein expression of NF-κB, ICAM-1, IL-1β, TNF-α and IL-6 in the brain tissue. CONCLUSION BO-TA-Lip had higher bioavailability and better absorption in brain tissue, and could improve cerebral ischemia reperfusion injury, which might be related to the inhibitory effect of BO-TA-Lip in expression of NF-κB and ICAM-1.
Collapse
Affiliation(s)
- Xiaoli Ye
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueying Peng
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Song
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Taohui Zeng
- First Affiliated Hospital, Gannan Medical College, Ganzhou, China
| | | | - Yuye Huang
- The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinjun Cai
- Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Hangzhou Lin'an district People's Hospital, Hangzhou, Zhejiang, China
| | - Congyao Wang
- The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Binhui Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
39
|
Zhao J, Sun Y, Fang Y, Liu X, Ji F, Liu H. Alteplase improves acute cerebral infarction by improving neurological function and cerebral hemodynamics. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1898052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jibo Zhao
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Yao Sun
- Department of Neurology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, People’s Republic of China
| | - Yanyu Fang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Xiaokai Liu
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, People’s Republic of China
| | - Fangchao Ji
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Hongbin Liu
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, People’s Republic of China
| |
Collapse
|
40
|
Classical Active Ingredients and Extracts of Chinese Herbal Medicines: Pharmacokinetics, Pharmacodynamics, and Molecular Mechanisms for Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8868941. [PMID: 33791075 PMCID: PMC7984881 DOI: 10.1155/2021/8868941] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, and approximately 87% of cases are attributed to ischemia. The main factors that cause ischemic stroke include excitotoxicity, energy metabolism disorder, Ca+ overload, oxidative damage, apoptosis, autophagy, and inflammation. However, no effective drug is currently available for the comprehensive treatment of ischemic stroke in clinical applications; thus, there is an urgent need to find and develop comprehensive and effective drugs to treat postischemic stroke. Traditional Chinese medicine (TCM) has unique advantages in treating ischemic stroke, with overall regulatory effects at multiple levels and on multiple targets. Many researchers have studied the effective components of TCMs and have achieved undeniable results. This paper reviews studies on the anticerebral ischemia effects of TCM monomers such as tetramethylpyrazine (TMP), dl-3-n-butylphthalide (NBP), ginsenoside Rg1 (Rg1), tanshinone IIA (TSA), gastrodin (Gas), and baicalin (BA) as well as effective extracts such as Ginkgo biloba extract (EGB). Research on the anticerebral ischemia effects of TCMs has focused mostly on their antioxidative stress, antiapoptotic, anti-inflammatory, proangiogenic, and proneurogenic effects. However, the research on the use of TCM to treat ischemic stroke remains incompletely characterized. Thus, we summarized and considered this topic from the perspective of pharmacokinetics, pharmacological effects, and mechanistic research, and we have provided a reference basis for future research and development on anticerebral ischemia TCM drugs.
Collapse
|
41
|
Guo K, Luo J, Feng D, Wu L, Wang X, Xia L, Tao K, Wu X, Cui W, He Y, Wang B, Zhao Z, Zhang Z. Single-Cell RNA Sequencing With Combined Use of Bulk RNA Sequencing to Reveal Cell Heterogeneity and Molecular Changes at Acute Stage of Ischemic Stroke in Mouse Cortex Penumbra Area. Front Cell Dev Biol 2021; 9:624711. [PMID: 33692998 PMCID: PMC7937629 DOI: 10.3389/fcell.2021.624711] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
Stroke has been the leading cause of adult morbidity and mortality over the past several years. After an ischemic stroke attack, many dormant or reversibly injured brain cells exist in the penumbra area. However, the pathological processes and unique cell information in the penumbra area of an acute ischemic stroke remain elusive. We applied unbiased single cell sequencing in combination with bulk RNA-seq analysis to investigate the heterogeneity of each cell type in the early stages of ischemic stroke and to detect early possible therapeutic targets to help cell survival. We used these analyses to study the mouse brain penumbra during this phase. Our results reveal the impact of ischemic stroke on specific genes and pathways of different cell types and the alterations of cell differentiation trajectories, suggesting potential pathological mechanisms and therapeutic targets. In addition to classical gene markers, single-cell genomics demonstrates unique information on subclusters of several cell types and metabolism changes in an ischemic stroke. These findings suggest that Gadd45b in microglia, Cyr61 in astrocytes, and Sgk3 in oligodendrocytes may play a subcluster-specific role in cell death or survival in the early stages of ischemic stroke. Moreover, RNA-scope multiplex in situ hybridization and immunofluorescence staining were applied to selected target gene markers to validate and confirm the existence of these cell subtypes and molecular changes during acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Kang Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wu
- Department of The Central Laboratory, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Xia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Tao
- Department of Neurosurgery, West Theater General Hospital, Chengdu, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixuan He
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenwei Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2021; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
44
|
Zhou ZY, Zhao WR, Xiao Y, Zhang J, Tang JY, Lee SMY. Mechanism Study of the Protective Effects of Sodium Tanshinone IIA Sulfonate Against Atorvastatin-Induced Cerebral Hemorrhage in Zebrafish: Transcriptome Analysis. Front Pharmacol 2020; 11:551745. [PMID: 33123006 PMCID: PMC7567336 DOI: 10.3389/fphar.2020.551745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hemorrhage stroke is a severe vascular disease of the brain with a high mortality rate in humans. Salvia miltiorrhiza Bunge (Danshen) is a well-known Chinese Materia Medica for treating cerebral vascular and cardiovascular diseases in traditional Chinese medicine. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, which is the main active ingredient of Danshen. In our previous study, we established a zebrafish model of cerebral hemorrhage and found that STS dramatically decreased both the hemorrhage rate and hemorrhage area, although the underlying mechanism was not fully elucidated. We conducted a transcriptome analysis of the protective effect of STS against atorvastatin (Ator)-induced cerebral hemorrhage in zebrafish using RNA-seq technology. RNA-seq revealed 207 DEGs between the Ator-treated group and control group; the expression levels of 53 DEGs between the Ator-treated group and control group were reversed between the STS + Ator-treated group and Ator-treated group. GO enrichment analysis indicated that these 53 DEGs encode proteins with roles in hemoglobin complexes, oxygen carrier activity and oxygen binding, etc. KEGG analysis suggested that these 53 DEGs were most enriched in three items, namely, porphyrin and chlorophyll metabolism, ferroptosis, and the HIF-1 signaling pathway. The PPI network analysis identified 12 hub genes, and we further verified that Ator elevated the mRNA expression levels of hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and hbbe3), carbonic anhydrase (cahz), HIF-1 (hif1al2) and Na+/H+ exchanger (slc4a1a and slc9a1) genes, while STS significantly suppressed these genes. In addition, we found that pharmacological inhibition of PI3K/Akt, MAPKs, and mTOR signaling pathways by specific inhibitors partially attenuated the protective effect of STS against Ator-induced cerebral hemorrhage in zebrafish, regardless of mTOR inhibition. We concluded that hemoglobin, carbonic anhydrase, Na+/H+ exchanger and HIF-1 genes might be potential biomarkers of Ator-induced cerebral hemorrhage in zebrafish, as well as pharmacological targets of STS. Moreover, HIF-1 and its regulators, i.e., the PI3K/Akt and MAPK signaling pathways, were involved in the protective effect of STS against Ator-induced cerebral hemorrhage. This study also provided evidence of biomarkers involved in hemorrhage stroke and improved understanding of the effects of HMG-COA reductase inhibition on vascular permeability and cerebral hemorrhage.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
45
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
46
|
Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020; 334:113456. [PMID: 32889008 DOI: 10.1016/j.expneurol.2020.113456] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes elevates the risk of stroke, promotes inflammation, and exacerbates vascular and white matter damage post stroke, thereby hindering long term functional recovery. Here, we investigated the neurorestorative effects and the underlying therapeutic mechanisms of treatment of stroke in type 2 diabetic rats (T2DM) using exosomes harvested from bone marrow stromal cells obtained from T2DM rats (T2DM-MSC-Exo). METHODS T2DM was induced in adult male Wistar rats using a combination of high fat diet and Streptozotocin. Rats were subjected to transient 2 h middle cerebral artery occlusion (MCAo) and 3 days later randomized to one of the following treatment groups: 1) phosphate-buffered-saline (PBS, i.v), 2) T2DM-MSC-Exo, (3 × 1011, i.v), 3) T2DM-MSC-Exo with miR-9 over expression (miR9+/+-T2DM-MSC-Exo, 3 × 1011, i.v) or 4) MSC-Exo derived from normoglycemic rats (Nor-MSC-Exo) (3 × 1011, i.v). T2DM sham control group is included as reference. Rats were sacrificed 28 days after MCAo. RESULTS T2DM-MSC-Exo treatment does not alter blood glucose, lipid levels, or lesion volume, but significantly improves neurological function and attenuates post-stroke weight loss compared to PBS treated as well as Nor-MSC-Exo treated T2DM-stroke rats. Compared to PBS treatment, T2DM-MSC-Exo treatment of T2DM-stroke rats significantly 1) increases tight junction protein ZO-1 and improves blood brain barrier (BBB) integrity; 2) promotes white matter remodeling indicated by increased axon and myelin density, and increases oligodendrocytes and oligodendrocyte progenitor cell numbers in the ischemic border zone as well as increases primary cortical neuronal axonal outgrowth; 3) decreases activated microglia, M1 macrophages, and inflammatory factors MMP-9 (matrix mettaloproteinase-9) and MCP-1 (monocyte chemoattractant protein-1) expression in the ischemic brain; and 4) decreases miR-9 expression in serum, and increases miR-9 target ABCA1 (ATP-binding cassette transporter 1) and IGFR1 (Insulin-like growth factor 1 receptor) expression in the brain. MiR9+/+-T2DM-MSC-Exo treatment significantly increases serum miR-9 expression compared to PBS treated and T2DM-MSC-Exo treated T2DM stroke rats. Treatment of T2DM stroke with miR9+/+-T2DM-MSC-Exo fails to improve functional outcome and attenuates T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory effects in T2DM stroke rats. CONCLUSIONS T2DM-MSC-Exo treatment for stroke in T2DM rats promotes neurorestorative effects and improves functional outcome. Down regulation of miR-9 expression and increasing its target ABCA1 pathway may contribute partially to T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory responses.
Collapse
|
47
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
48
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020; 24:8918-8929. [PMID: 32657030 PMCID: PMC7417697 DOI: 10.1111/jcmm.15641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia‐ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN‐induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro‐inflammatory and anti‐inflammatory responses, blood‐brain barrier maintenance and anti‐apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Sheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
50
|
Gong Y, Zhang YL, Wang Z, Song HH, Liu YC, Lv AW, Tian LL, Zhu WL, Fu Y, Ding XL, Cui LJ, Yan YP. Tanshinone IIA alleviates brain damage in a mouse model of neuromyelitis optica spectrum disorder by inducing neutrophil apoptosis. J Neuroinflammation 2020; 17:198. [PMID: 32586353 PMCID: PMC7318433 DOI: 10.1186/s12974-020-01874-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD), an autoimmune astrocytopathic disease associated with the anti-aquaporin-4 (AQP4) antibody, is characterized by extensive necrotic lesions primarily located on the optic nerves and spinal cord. Tanshinone IIA (TSA), an active natural compound extracted from Salvia miltiorrhiza Bunge, has profound immunosuppressive effects on neutrophils. Objective The present study aimed to evaluate the effect of TSA on NMOSD mice and explore the underlying mechanisms. Mice were initially administered TSA (pre-TSA group, n = 20) or vehicle (vehicle group, n = 20) every 8 h for 3 days, and then NMOSD model was induced by intracerebral injection of NMOSD-immunoglobulin G (NMO-IgG) and human complement (hC). In addition, post-TSA mice (n = 10) were administered equal dose of TSA at 8 h and 16 h after model induction. At 24 h after intracerebral injection, histological analysis was performed to assess the inhibitory effects of TSA on astrocyte damage, demyelination, and neuroinflammation in NMOSD mice, and western blotting was conducted to clarify the effect of TSA on the NF-κB and MAPK signaling pathways. Furthermore, flow cytometry and western blotting were conducted to verify the proapoptotic effects of TSA on neutrophils in vitro. Results There was a profound reduction in astrocyte damage and demyelination in the pre-TSA group and post-TSA group. However, prophylactic administration of TSA induced a better effect than therapeutic treatment. The number of infiltrated neutrophils was also decreased in the lesions of NMOSD mice that were pretreated with TSA. We confirmed that prophylactic administration of TSA significantly promoted neutrophil apoptosis in NMOSD lesions in vivo, and this proapoptotic effect was mediated by modulating the caspase pathway in the presence of inflammatory stimuli in vitro. In addition, TSA restricted activation of the NF-κB signaling pathway in vivo. Conclusion Our data provide evidence that TSA can act as a prophylactic agent that reduces NMO-IgG-induced damage in the mouse brain by enhancing the resolution of inflammation by inducing neutrophil apoptosis, and TSA may serve as a promising therapeutic agent for neutrophil-associated inflammatory disorders, such as NMOSD.
Collapse
Affiliation(s)
- Ye Gong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Ya-Ling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Beijing, 100053, China
| | - Huan-Huan Song
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Yuan-Chu Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Ao-Wei Lv
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, China
| | - Li-Li Tian
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, China
| | - Wen-Li Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, China
| | - Ying Fu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Xiao-Li Ding
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China
| | - Lang-Jun Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.
| | - Ya-Ping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, China.
| |
Collapse
|