1
|
Kimball TN, Tack RW, Chen A, Prapiadou S, Senff JR, Tan BY, Singh SD, van Veluw SJ, Greenberg SM, Rosand J, Anderson CD. Genetics of intracerebral hemorrhage. J Cereb Blood Flow Metab 2025:271678X241310401. [PMID: 39763366 DOI: 10.1177/0271678x241310401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Spontaneous intracerebral hemorrhage(ICH) represents a life-threatening form of stroke, marked by its impact on survival and quality of life. ICH can be categorized from monogenic disorders linked to causal germline variants in ICH-related genes to complex sporadic cases, highlighting the interaction among lifestyle factors, environmental influences, and genetic components in determining risk. Among sporadic ICH, the influence of these factors varies across ICH subtypes, evidenced by heritability rates of up to 73% for lobar ICH versus 34% for non-lobar ICH. This review presents an outline of the genetic landscape of ICH, covering both monogenic and sporadic forms. It highlights associations between ICH risk and genetic variants, including rare and common variants in genes such as COL4A1, COL4A2, APOE, ACE, MTHFR, and PMF1. However, replication has been constrained, and most findings originate from single-candidate gene studies, largely due to ancestry heterogeneity, small sample sizes, and scarce subtype-specific data. To bridge this gap, collaborative efforts like the International Stroke Genetic Consortium have been established. Additionally, the review discusses the emerging role of polygenic risk scores, Mendelian randomization, and the potential of genetic and omics research to elucidate causal pathobiology. Such insights could lead to preventive measures and personalized ICH treatment strategies.
Collapse
Affiliation(s)
- Tamara N Kimball
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Reinier Wp Tack
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna Chen
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Savvina Prapiadou
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jasper R Senff
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Yq Tan
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjula D Singh
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Rosand
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Tang L, Wang L, Jin F, Hao Y, Zhao T, Zheng W, He Z. Inflammatory regulation by restraining M2 microglial polarization: Neurodestructive effects of Kallikrein-related peptidase 8 activation in intracerebral hemorrhage. Int Immunopharmacol 2023; 124:110855. [PMID: 37678029 DOI: 10.1016/j.intimp.2023.110855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease. Kallikrein-related peptidase 8 (KLK8) is a serine peptidase, while its role in ICH remains unclarified. Western blot (WB) showed that KLK8 was upregulated in rat perihematomal tissues 24 h following autologous blood injection. KLK8 overexpression aggravated behavioral deficits and increased water content and Fluoro-Jade B (FJB)-positive neuron numbers in brain tissue of rats. Immunofluorescence (IF) assay showed that overexpressed-KLK8 promoted Iba-1 and iNOS expression in perihematomal tissue of rats. Overexpressed-KLK8 increased COX-2, iNOS, and Arg-1 expression and the content of IL-6, IL-1β, and TNF-α in perihematomal tissue of rats, confirmed by WB and ELISA. IF staining confirmed the expression of CCR5 was co-expressed with Iba-1, and the WB results shown increased CCR5 expression and decreased p-PKA and p-CREB expression in perihematomal tissue. Maraviroc (MVC, CCR5 inhibitor) administration rescued KLK8-induced behavioral deficits and brain injury (decreased water content and FJB-positive neuron numbers) in rats. Additionally, MVC suppressed p-PKA and p-CREB expression and the content of IL-6, IL-1β, and TNF-α in perihematomal tissue, induced by overexpressed-KLK8. Co-IP confirmed the binding of CCR5 and CCL14 in HMC3 cells. Transwell assay shown that KLK8 plus CCL4 promoted the chemotactic activity of cells, which was rescued by MVC. The biological function of KLK8/CCL14/CCR5 axis in ICH injury was also proved by MVC administration in HMC3 cells. Overall, our work revealed that KLK8 overexpression aggravated ICH process and involved in microglial activation. KLK8 might activate CCL14 thereby turning on downstream CCR5/PKA/CREB pathway, providing a theoretical basis for future therapy.
Collapse
Affiliation(s)
- Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Liyuan Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Feng Jin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yuehan Hao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tianming Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, Dalian, Liaoning, PR China.
| | - Zhiyi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Lin J, Xu Y, Guo P, Chen YJ, Zhou J, Xia M, Tan B, Liu X, Feng H, Chen Y. CCL5/CCR5-mediated peripheral inflammation exacerbates blood‒brain barrier disruption after intracerebral hemorrhage in mice. J Transl Med 2023; 21:196. [PMID: 36918921 PMCID: PMC10015963 DOI: 10.1186/s12967-023-04044-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Owing to metabolic disequilibrium and immune suppression, intracerebral hemorrhage (ICH) patients are prone to infections; according to a recent global analysis of stroke cases, approximately 10 million new-onset ICH patients had experienced concurrent infection. However, the intrinsic mechanisms underlying the effects of infection related peripheral inflammation after ICH remain unclear. METHODS Lipopolysaccharide (LPS) was intraperitoneally injected into ICH model mice to induce peripheral inflammation. Neurobehavioral deficits, blood‒brain barrier (BBB) disruption, and the expression of CCR5, JAK2, STAT3, and MMP9 were evaluated after treatment with recombinant CCL5 (rCCL5) (a CCR5 ligand), maraviroc (MVC) (an FDA-approved selective CCR5 antagonist), or JAK2 CRISPR plasmids. RESULTS Our study revealed that severe peripheral inflammation increased CCL5/CCR5 axis activation in multiple inflammatory cell types, including microglia, astrocytes, and monocytes, and aggravated BBB disruption and neurobehavioral dysfunction after ICH, possibly in part through the JAK2/STAT3 signaling pathway. CONCLUSIONS CCR5 might be a potential target for the clinical treatment of infection-induced exacerbation of BBB disruption following ICH.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yù-Jié Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiru Zhou
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Binbin Tan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Liu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Feng X, Li X, Feng J, Xia J. Intracranial hemorrhage management in the multi-omics era. Heliyon 2023; 9:e14749. [PMID: 37101482 PMCID: PMC10123201 DOI: 10.1016/j.heliyon.2023.e14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a devastating disorder. Neuroprotective strategies that prevent tissue injury and improve functional outcomes have been identified in multiple animal models of ICH. However, these potential interventions in clinical trials produced generally disappointing results. With progress in omics, studies of omics data, including genomics, transcriptomics, epigenetics, proteomics, metabolomics, and the gut microbiome, may help promote precision medicine. In this review, we focused on introducing the applications of all omics in ICH and shed light on all of the considerable advantages to systematically analyze the necessity and importance of multiple omics technology in ICH.
Collapse
Affiliation(s)
- Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Neurology, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, China
| |
Collapse
|
5
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Lei B, Ho Kim Y, Qi W, Berta T, Covington A, Lusk JB, Warner DS, Ji RR, James ML. In vivo single microglial cell isolation after intracerebral hemorrhage in mice. Neurosci Lett 2022; 787:136822. [DOI: 10.1016/j.neulet.2022.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
7
|
Wang Y, Tian M, Tan J, Pei X, Lu C, Xin Y, Deng S, Zhao F, Gao Y, Gong Y. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2022; 19:82. [PMID: 35392928 PMCID: PMC8988353 DOI: 10.1186/s12974-022-02438-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Neuroinflammation is a crucial factor in the development of secondary brain injury after intracerebral hemorrhage (ICH). Irisin is a newly identified myokine that confers strong neuroprotective effects in experimental ischemic stroke. However, whether this myokine can exert neuroprotection effects after ICH remains unknown. This study aimed to investigate the impact of irisin treatment on neuroinflammation and neuronal apoptosis and the underlying mechanism involving integrin αVβ5/AMPK pathway after ICH.
Methods Two hundred and eighty-five adult (8-week-old) male C57BL/6 mice were randomly assigned to sham and ICH surgery groups. ICH was induced via intrastriatal injection of autologous blood. Irisin was administered intranasally at 30 min after ICH. To elucidate the underlying mechanism, cilengitide (a selective integrin αVβ5 inhibitor) and dorsomorphin (a selective phosphorylated AMPK inhibitor) were administered before irisin treatment. The short- and long-term neurobehavior tests, brain edema, quantitative-PCR, western blotting, Fluoro-Jade C, TUNEL, and immunofluorescence staining were performed to assess the neurofunctional outcome at the level of molecular, cell, histology, and function.
Results Endogenous irisin and its receptor, integrin αVβ5, were increased, peaked at 24 h after ICH. irisin post-treatment improved both short- and long-term neurological functions, reduced brain edema after ICH. Interestingly, integrin αVβ5 was mainly located in the microglia after ICH, and irisin post-treatment inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization. Moreover, irisin treatment inhibited neutrophil infiltration and suppressed neuronal apoptotic cell death in perihematomal areas after ICH. Mechanistically, irisin post-treatment significantly increased the expression of integrin αVβ5, p-AMPK and Bcl-2, and decreased the expression of IL-1β, TNF-α, MPO, and Bax following ICH. The neuroprotective effects of irisin were abolished by both integrin αVβ5 inhibitor cilengitide and AMPK inhibitor dorsomorphin. Conclusions This study demonstrated that irisin post-treatment ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the integrin αVβ5/AMPK signaling pathway after ICH. Thus, irisin post-treatment may provide a promising therapeutic approach for the early management of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02438-6.
Collapse
Affiliation(s)
- Yao Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chaocheng Lu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Xiao Z, Shen D, Lan T, Wei C, Wu W, Sun Q, Luo Z, Chen W, Zhang Y, Hu L, Zhang C, Wang Y, Lu Y, Wang P, Yang F, Li Q. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 2022; 50:102256. [PMID: 35131600 PMCID: PMC8829351 DOI: 10.1016/j.redox.2022.102256] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic hyperglycemia aggravates the prognosis of intracerebral hemorrhagic stroke (ICH) in the clinic. In addition to hematoma expansion and increased inflammation, how diabetic hyperglycemia affects the outcomes of ICH is still unclear. We found that streptozotocin-induced diabetic hyperglycemia not only increased neutrophil infiltration, but also changed the gene expression profile of neutrophils, including lactoferrin (Ltf) encoding gene Ltf. Peroxisome proliferator-activated receptor γ (PPARγ) transcribed Ltf and the lack of neutrophilic Ltf transcription and secretion exacerbated neuronal ferroptosis by accumulating intraneuronal iron. Furthermore, the administration of recombinant Ltf protected against neuronal ferroptosis and improved neurobehavior in hyperglycemic ICH mice, and vice versa. These results indicate that supplementing Ltf or inhibiting neuronal ferroptosis are promising potential strategies to improve the acute outcomes of diabetic ICH in the clinic. Neutrophil infiltration and ICH prognosis are aggravated in hyperglycemic mice. Hyperglycemia impairs PPAR-γ activity and decreases Ltf expression in neutrophils. The lack of neutrophilic Ltf fails to decrease intraneuronal iron and ferroptosis. rLtf eases neuronal ferroptosis and neurologic deficits in hyperglycemic ICH mice.
Collapse
Affiliation(s)
- Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Yan J, Xu W, Lenahan C, Huang L, Ocak U, Wen J, Li G, He W, Le C, Zhang JH, Mo L, Tang J. Met-RANTES preserves the blood–brain barrier through inhibiting CCR1/SRC/Rac1 pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2022; 19:7. [PMID: 35062973 PMCID: PMC8781527 DOI: 10.1186/s12987-022-00305-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background C–C chemokine receptor type 1 (CCR1) and its endogenous ligand, CCL5, participate in the pathogenesis of neuroinflammatory diseases. However, much remains unknown regarding CCL5/CCR1 signaling in blood–brain barrier (BBB) permeability after intracerebral hemorrhage (ICH). Methods A total of 250 CD1 male mice were used and ICH was induced via autologous whole blood injection. Either Met-RANTES, a selective CCR1 antagonist, or Met-RANTES combined with a Rac1 CRISPR activator was administered to the mice 1 h after ICH. Post-ICH assessments included neurobehavioral tests, brain water content, BBB integrity, hematoma volume, Western blot, and immunofluorescence staining. The CCR1 ligand, rCCL5, and SRC CRISPR knockout in naïve mice were used to further elucidate detrimental CCL5/CCR1/SRC signaling. Results Brain endogenous CCR1 and CCL5 were upregulated after ICH in mice with a peak at 24 h, and CCR1 was expressed in endothelial cells, astrocytes, and neurons. Met-R treatment reduced brain edema and neurobehavioral impairment, as well as preserved BBB integrity and tight junction protein expression in ICH mice. Met-R treatment decreased expression of p-SRC, Rac1, albumin, and MMP9, but increased claudin-5, occludin, and ZO-1 tight junction proteins after ICH. These effects were regressed using the Rac1 CRISPR activator. Administration of rCCL5 in naïve mice increased expression of p-SRC, Rac1, albumin, and MMP9, but decreased levels of claudin-5, occludin, and ZO-1 tight junction proteins. These effects in naïve mice were reversed with SRC CRISPR (KO). Conclusions Our findings demonstrate that CCR5 inhibition by Met-R improves neurological deficits after ICH by preserving BBB integrity through inhibiting CCR1/SRC/Rac1 signaling pathway in mice. Thus, Met-R has therapeutic potential in the management of ICH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00305-3.
Collapse
|
10
|
Integrated Multiomics Analysis Identifies a Novel Biomarker Associated with Prognosis in Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2510847. [PMID: 36226158 PMCID: PMC8691985 DOI: 10.1155/2021/2510847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Existing treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study. The collagenase model of ICH was employed, 3 days after ICH animals were tested neurological. After it, animals were euthanized and perihematomal brain tissues were collected for transcriptome and TMT labeling-based quantitative proteome analyses. Protein-protein interaction (PPI) network, Gene Set Enrichment Analysis (GSEA), and regularized Canonical Correlation Analysis (rCCA) were performed to integrated multiomics data. For validation of hub genes and proteins, qRT-PCR and Western blot were carried out. The candidate biomarkers were further measured by ELISA in the plasma of ICH patients and the controls. A total of 2218 differentially expressed genes (DEGs) and 353 differentially expressed proteins (DEPs) between the ICH model group and control group were identified. GSEA revealed that immune-related gene sets were prominently upregulated and significantly enriched in pathways of inflammasome complex, negative regulation of interleukin-12 production, and pyroptosis during the ICH process. The rCCA network presented two highly connective clusters which were involved in the sphingolipid catabolic process and inflammatory response. Among ten hub genes screened out by integrative analysis, significantly upregulated Itgb2, Serpina3n, and Ctss were validated in the ICH group by qRT-PCR and Western blot. Plasma levels of human SERPINA3 (homologue of murine Serpina3n) were elevated in ICH patients compared with the healthy controls (SERPINA3: 13.3 ng/mL vs. 11.2 ng/mL, p = 0.015). Within the ICH group, higher plasma SERPINA3 levels with a predictive threshold of 14.31 ng/mL (sensitivity = 64.3%; specificity = 80.8%; AUC = 0.742, 95% CI: 0.567-0.916) were highly associated with poor outcome (mRS scores 4-6). Taken together, the results of our study exhibited molecular changes related to ICH-induced brain injury by multidimensional analysis and effectively identified three biomarker candidates in a mouse ICH model, as well as pointed out that Serpina3n/SERPINA3 was a potential biomarker associated with poor functional outcome in ICH patients.
Collapse
|
11
|
Yan J, Xu W, Lenahan C, Huang L, Wen J, Li G, Hu X, Zheng W, Zhang JH, Tang J. CCR5 Activation Promotes NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB Pathway After Intracerebral Hemorrhage. Stroke 2021; 52:4021-4032. [PMID: 34719258 PMCID: PMC8607924 DOI: 10.1161/strokeaha.120.033285] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal pyroptosis is a type of regulated cell death triggered by proinflammatory signals. CCR5 (C-C chemokine receptor 5)-mediated inflammation is involved in the pathology of various neurological diseases. This study investigated the impact of CCR5 activation on neuronal pyroptosis and the underlying mechanism involving cAMP-dependent PKA (protein kinase A)/CREB (cAMP response element binding)/NLRP1 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 1) pathway after experimental intracerebral hemorrhage (ICH). METHODS A total of 194 adult male CD1 mice were used. ICH was induced by autologous whole blood injection. Maraviroc (MVC)-a selective antagonist of CCR5-was administered intranasally 1 hour after ICH. To elucidate the underlying mechanism, a specific CREB inhibitor, 666-15, was administered intracerebroventricularly before MVC administration in ICH mice. In a set of naive mice, rCCL5 (recombinant chemokine ligand 5) and selective PKA activator, 8-Bromo-cAMP, were administered intracerebroventricularly. Short- and long-term neurobehavioral assessments, Western blot, Fluoro-Jade C, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunofluorescence staining were performed. RESULTS The brain expression of CCL5 (chemokine ligand 5), CCR5, PKA-Cα (protein kinase A-Cα), p-CREB (phospho-cAMP response element binding), and NLRP1 was increased, peaking at 24 hours after ICH. CCR5 was expressed on neurons, microglia, and astrocytes. MVC improved the short- and long-term neurobehavioral deficits and decreased neuronal pyroptosis in ipsilateral brain tissues at 24 hours after ICH, which were accompanied by increased PKA-Cα and p-CREB expression, and decreased expression of NLRP1, ASC (apoptosis-associated speck-like protein containing a CARD), C-caspase-1, GSDMD (gasdermin D), and IL (interleukin)-1β/IL-18. Such effects of MVC were abolished by 666-15. At 24 hours after injection in naive mice, rCCL5 induced neurological deficits, decreased PKA-Cα and p-CREB expression in the brain, and upregulated NLRP1, ASC, C-caspase-1, N-GSDMD, and IL-1β/IL-18 expression. Those effects of rCCL5 were reversed by 8-Bromo-cAMP. CONCLUSIONS CCR5 activation promoted neuronal pyroptosis and neurological deficits after ICH in mice, partially through the CCR5/PKA/CREB/NLRP1 signaling pathway. CCR5 inhibition with MVC may provide a promising therapeutic approach in managing patients with ICH.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China (J.Y.)
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (W.X.)
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM (C.L.)
| | - Lei Huang
- Department of Neurosurgery (L.H., J.H.Z.), Loma Linda University, CA
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China (J.W.)
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China (G.L.)
| | - Xin Hu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China (X.H.)
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China (W.Z.)
| | - John H. Zhang
- Department of Neurosurgery (L.H., J.H.Z.), Loma Linda University, CA
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
- Department of Anesthesiology (J.H.Z.), Loma Linda University, CA
| | - Jiping Tang
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
| |
Collapse
|
12
|
Pan R, Yu S, Zhang H, Timmins GS, Weaver J, Yang Y, Zhou X, Liu KJ. Endogenous zinc protoporphyrin formation critically contributes to hemorrhagic stroke-induced brain damage. J Cereb Blood Flow Metab 2021; 41:3232-3247. [PMID: 34187233 PMCID: PMC8669275 DOI: 10.1177/0271678x211028475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemorrhagic stroke is a leading cause of death. The causes of intracerebral hemorrhage (ICH)-induced brain damage are thought to include lysis of red blood cells, hemin release and iron overload. These mechanisms, however, have not proven very amenable to therapeutic intervention, and so other mechanistic targets are being sought. Here we report that accumulation of endogenously formed zinc protoporphyrin (ZnPP) also critically contributes to ICH-induced brain damage. ICH caused a significant accumulation of ZnPP in brain tissue surrounding hematoma, as evidenced by fluorescence microscopy of ZnPP, and further confirmed by fluorescence spectroscopy and supercritical fluid chromatography-mass spectrometry. ZnPP formation was dependent upon both ICH-induced hypoxia and an increase in free zinc accumulation. Notably, inhibiting ferrochelatase, which catalyzes insertion of zinc into protoporphyrin, greatly decreased ICH-induced endogenous ZnPP generation. Moreover, a significant decrease in brain damage was observed upon ferrochelatase inhibition, suggesting that endogenous ZnPP contributes to the damage in ICH. Our findings reveal a novel mechanism of ICH-induced brain damage through ferrochelatase-mediated formation of ZnPP in ICH tissue. Since ferrochelatase can be readily inhibited by small molecules, such as protein kinase inhibitors, this may provide a promising new and druggable target for ICH therapy.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Song Yu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
13
|
Koduri S, Keep RF, Hua Y, Chaudhary N, Pandey AS, Xi G. The Two Faces of Estrogen in Experimental Hemorrhagic Stroke. Transl Stroke Res 2021; 13:362-363. [PMID: 34528179 PMCID: PMC8924015 DOI: 10.1007/s12975-021-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA. .,University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA. .,University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
14
|
Liu Q, Zhao W, Zou X, Xing Y, Zhou G, Li X. Sex Differences in Outcomes After Spontaneous Intracerebral Hemorrhage Among Patients With Low Total Cholesterol Levels. Am J Med Sci 2021; 362:462-471. [PMID: 33992602 DOI: 10.1016/j.amjms.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/21/2020] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Low total cholesterol (TC) levels were shown to be an independent predictor of intracerebral hemorrhagic stroke in previous studies. However, the role of sex in risk and outcome of patients with ICH and low TC levels is unclear. Therefore, the objective of our study was to assess the sex differences in the risk factors and outcomes after spontaneous intracerebral hemorrhage (ICH) in patients with low TC levels in China. METHODS This study recruited consecutive patients diagnosed with ICH who were admitted to the Stroke Registry System in Tianjin between May 2005 and May 2018. Patients with low TC levels (defined as TC<200mg/dl) were analyzed in this study. Sex differences in clinical features, risk factors, and outcomes at hospital discharge, 3 months, and 12 months after ICH were evaluated. RESULTS Of the 824 patients with low TC levels, 610 men (74%) and 214 women (26%). The mean age at ICH onset was younger in men than in women (60.93±12.54 vs. 64.5±12.28, P<0.001), and men were more likely to have higher educational levels than women. There were higher prevalence rates of hypertension, current smoking status, and alcohol consumption in men. Urinary tract infections were more prevalent in women, and hepatic/renal dysfunctions were more prevalent in men. Women had significantly higher neurological function deficits. With lower Barthel indices (BIs) and higher modified Rankin scale (mRS) scores at admission; but there was no significant difference between men and women in National Institutes of Health Stroke Scale (NIHSS) scores. The study showed that there was no significant difference in mortality and dependency rates at hospital discharge, 3 months, and 12 months after ICH. CONCLUSIONS Our study showed that there were no sex differences in clinical outcomes of patients with ICH and low TC levels, which suggests that the effect of low cholesterol as a risk factor for cerebral hemorrhage is the same on patients of different sexs. The possible mechanisms need larger, prospective, multicenter studies to further research.
Collapse
Affiliation(s)
- Qian Liu
- The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China.
| | - Wenjuan Zhao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Xuan Zou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Yonghong Xing
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Guanen Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Xin Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
15
|
Diaz Diaz AC, Shearer JA, Malone K, Waeber C. Acute Treatment With Fingolimod Does Not Confer Long-Term Benefit in a Mouse Model of Intracerebral Haemorrhage. Front Pharmacol 2021; 11:613103. [PMID: 33488389 PMCID: PMC7821021 DOI: 10.3389/fphar.2020.613103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Intracerebral haemorrhage (ICH) has no specific treatment, but accounts for up to 15% of all strokes and has the highest mortality. Fingolimod (FTY720) is an immunomodulator approved for the management of multiple sclerosis, with abundant evidence of efficacy in experimental ischemic stroke, and more limited evidence in experimental ICH. The goal of this study was to confirm the efficacy of fingolimod in experimental ICH using rigorous and statistically well-powered studies. ICH was induced in C57BL/6JOlaHsd male and female mice by intrastriatal bacterial collagenase injection. Fingolimod (0.5 mg/kg) or saline was administered intraperitoneally after 0.5, 24 and 72 h, in a randomized and blinded manner. Functional improvement with cylinder, wire hanging, and foot fault tests was evaluated one and two weeks later. Lesion volume and hemispheric atrophy were quantified at the 14-day endpoint. There was a higher mortality in saline-treated females compared to fingolimod-treated females and saline-treated males. There was no treatment- or gender-related difference in the behavioural tests. Histological outcome measures did not differ between any of the groups. These results, contrasting with those of previous studies of fingolimod in experimental ICH, emphasize the importance of rigorous testing of this agent in models more representative of the clinical situation.
Collapse
Affiliation(s)
| | | | - Kyle Malone
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun 2021; 91:615-626. [PMID: 33035633 DOI: 10.1016/j.bbi.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in proinflammatory processes in the central nervous system by modulating microglia activation. The aim of this study was to explore the anti-inflammatory effects and neurological function improvement of LPA1 inhibition after intracerebral haemorrhage (ICH) in mice and to determine whether prostaglandin E2 (PGE2), E-type prostaglandin receptor 2 (EP2), and NADPH oxidase 2 (NOX2) signalling are involved in LPA1-mediated neuroinflammation. ICH was induced in CD1 mice by autologous whole blood injection. AM966, a selective LPA1 antagonist, was administered by oral gavage 1 h and 12 h after ICH. The LPA1 endogenous ligand, LPA was administered to verify the effect of LPA1 activation. To elucidate potential inflammatory mechanisms of LPA1, the selective EP2 activator butaprost was administered by intracerebroventricular injection with either AM966 or LPA1 CRISPR knockout (KO). Water content of the brain, neurobehavior, immunofluorescence staining, and western blot were performed. After ICH, EP2 was expressed in microglia whereas LPA1 was expressed in microglia, neurons, and astrocytes, which peaked after 24 h. AM966 inhibition of LPA1 improved neurologic function, reduced brain oedema, and suppressed perihematomal inflammatory cells after ICH. LPA administration aggravated neurological deficits after ICH. AM966 treatment and LPA1 CRISPR KO both decreased the expressions of PGE2, EP2, NOX2, NF-κB, TNF-α, IL-6, and IL-1β expressions after ICH, which was reversed by butaprost. This study demonstrated that inhibition of LPA1 attenuated neuroinflammation caused by ICH via PGE2/EP2/NOX2 signalling pathway in mice, which consequently improved neurobehavioral functions and alleviated brain oedema. LPA1 may be a promising therapeutic target to attenuate ICH-induced secondary brain injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Affiliated Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Li Peng
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shucai Xie
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| |
Collapse
|
17
|
Fang Y, Shi H, Ren R, Huang L, Okada T, Lenahan C, Gamdzyk M, Travis ZD, Lu Q, Tang L, Huang Y, Zhou K, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood-Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2020; 17:1954-1972. [PMID: 32918234 PMCID: PMC7851266 DOI: 10.1007/s13311-020-00925-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brain edema is a vital contributor to early brain injury after subarachnoid hemorrhage (SAH), which is responsible for prolonged hospitalization and poor outcomes. Pharmacological therapeutic targets on edema formation have been the focus of research for decades. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to participate in neural development and brain injury. Here, we used PACAP knockout CRISPR to demonstrate that endogenous PACAP plays an endogenous neuroprotective role against brain edema formation after SAH in rats. The exogenous PACAP treatment provided both short- and long-term neurological benefits by preserving the function of the blood-brain barrier and glymphatic system after SAH. Pretreatment of inhibitors of PACAP receptors showed that the PACAP-involved anti-edema effect and neuroprotection after SAH was facilitated by the selective PACAP receptor (PAC1). Further administration of adenylyl cyclase (AC) inhibitor and sulfonylurea receptor 1 (SUR1) CRISPR activator suggested that the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) axis participated in PACAP signaling after SAH, which inhibited the expression of edema-related proteins, SUR1 and aquaporin-4 (AQP4), through SUR1 phosphorylation. Thus, PACAP may serve as a potential clinical treatment to alleviate brain edema in patients with SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Takeshi Okada
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Marcin Gamdzyk
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Zachary D Travis
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lihui Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Yi Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Keren Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
18
|
Xiao H, Chen H, Jiang R, Zhang L, Wang L, Gan H, Jiang N, Zhao J, Zhai X, Liang P. NLRP6 contributes to inflammation and brain injury following intracerebral haemorrhage by activating autophagy. J Mol Med (Berl) 2020; 98:1319-1331. [PMID: 32783081 DOI: 10.1007/s00109-020-01962-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Inflammation is a crucial factor contributing to secondary brain injury after intracerebral haemorrhage (ICH). NLRP6, a member of nod-like receptors (NLRs) family, has been reported to participate in inflammation and host-defence in multiple diseases. Distinct from the other NLR family members, NLRP6 regulates inflammation in an inflammasome-dependent as well as an inflammasome-independent pathway. However, the role of NLRP6 in regulating signalling pathways during ICH is poorly understood. In the present study, we demonstrated that NLRP6 expression was upregulated after ICH, both in humans and in rats. Subsequently, we developed a rat model of ICH and found that NLRP6 knockdown reduced brain injury, alleviated inflammation, and suppressed autophagy following ICH. Further, results indicated that autophagy involved in NLRP6 mediated inflammation after ICH. Moreover, we found that NLRP6 mediated regulation of autophagy and inflammation was inflammasome-dependent. This study revealed the underlying molecular mechanism of NLRP6 in inflammation and highlights the therapeutic potential of targeting NLRP6 in secondary brain injury after ICH. KEY MESSAGES: • NLRP6 was upregulated following ICH in humans and rats. • NLRP6 knockdown reduced brain injury, alleviated inflammation, and suppressed autophagy following ICH. • NLRP6 aggravated inflammation after ICH by activating autophagy. • NLRP6 regulated inflammation and autophagy after ICH by activating inflammasome pathway.
Collapse
Affiliation(s)
- Han Xiao
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Hui Gan
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Jing Zhao
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Yan J, Zuo G, Sherchan P, Huang L, Ocak U, Xu W, Travis ZD, Wang W, Zhang JH, Tang J. CCR1 Activation Promotes Neuroinflammation Through CCR1/TPR1/ERK1/2 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics 2020; 17:1170-1183. [PMID: 31898284 PMCID: PMC7609528 DOI: 10.1007/s13311-019-00821-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activation of C-C chemokine receptor type 1 (CCR1) has been shown to be pro-inflammatory in several animal models of neurological diseases. The objective of this study was to investigate the activation of CCR1 on neuroinflammation in a mouse model of intracerebral hemorrhage (ICH) and the mechanism of CCR1/tetratricopeptide repeat 1 (TPR1)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway in CCR1-mediated neuroinflammation. Adult male CD1 mice (n = 210) were used in the study. The selective CCR1 antagonist Met-RANTES was administered intranasally at 1 h after autologous blood injection. To elucidate potential mechanism, a specific ERK1/2 activator (ceramide C6) was administered prior to Met-RANTES treatment; CCR1 activator (recombinant CCL5, rCCL5) and TPR1 CRISPR were administered in naïve mouse. Neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. The endogenous expressions of CCR1, CCL5, TPR1, and p-ERK1/2 were increased in the brain after ICH. CCR1 were expressed on microglia, neurons, and astrocytes. The inhibition of CCR1 with Met-RANTES improved neurologic function, decreased brain edema, and suppressed microglia/macrophage activations and neutrophil infiltration after ICH. Met-RANTES treatment decreased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β, which was reversed by ceramide C6. The brain CCR1 activation by rCCL5 injection in naïve mouse resulted in neurological deficits and increased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β. These detrimental effects of rCCL5 were reversed by TPR1 knockdown using TPR1 CRISPR. Our study demonstrated that CCR1 activation promoted neuroinflammation through CCR1/TPR1/ERK1/2 signaling pathway after ICH in mice. CCR1 inhibition with Met-RANTES attenuated neuroinflammation, thereby reducing brain edema and improving neurobehavioral functions. Targeting CCR1 activation may provide a promising therapeutic approach in the management of ICH patients.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, 215400, Jiangsu, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
20
|
Ocak U, Eser Ocak P, Huang L, Xu W, Zuo Y, Li P, Gamdzyk M, Zuo G, Mo J, Zhang G, Zhang JH. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J Neuroinflammation 2020; 17:144. [PMID: 32366312 PMCID: PMC7199326 DOI: 10.1186/s12974-020-01808-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cardiac arrest survivors suffer from neurological dysfunction including cognitive impairment. Cerebral mast cells, the key regulators of neuroinflammation contribute to neuroinflammation-associated cognitive dysfunction. Mast cell tryptase was demonstrated to have a proinflammatory effect on microglia via the activation of microglial protease-activated receptor-2 (PAR-2). This study investigated the potential anti-neuroinflammatory effect of mast cell tryptase inhibition and the underlying mechanism of PAR-2/p-p38/NFκB signaling following asphyxia-induced cardiac arrest in rats. Methods Adult male Sprague-Dawley rats resuscitated from 10 min of asphyxia-induced cardiac arrest were randomized to four separate experiments including time-course, short-term outcomes, long-term outcomes and mechanism studies. The effect of mast cell tryptase inhibition on asphyxial cardiac arrest outcomes was examined after intranasal administration of selective mast cell tryptase inhibitor (APC366; 50 μg/rat or 150 μg/rat). AC55541 (selective PAR-2 activator; 30 μg/rat) and SB203580 (selective p38 inhibitor; 300 μg/rat) were used for intervention. Short-term neurocognitive functions were evaluated using the neurological deficit score, number of seizures, adhesive tape removal test, and T-maze test, while long-term cognitive functions were evaluated using the Morris water maze test. Hippocampal neuronal degeneration was evaluated by Fluoro-Jade C staining. Results Mast cell tryptase and PAR-2 were dramatically increased in the brain following asphyxia-induced cardiac arrest. The inhibition of mast cell tryptase by APC366 improved both short- and long-term neurological outcomes in resuscitated rats. Such behavioral benefits were associated with reduced expressions of PAR-2, p-p38, NFκB, TNF-α, and IL-6 in the brain as well as less hippocampal neuronal degeneration. The anti-neuroinflammatory effect of APC366 was abolished by AC55541, which when used alone, indeed further exacerbated neuroinflammation, hippocampal neuronal degeneration, and neurologic deficits following cardiac arrest. The deleterious effects aggregated by AC55541 were minimized by p38 inhibitor. Conclusions The inhibition of mast cell tryptase attenuated neuroinflammation, led to less hippocampal neuronal death and improved neurological deficits following cardiac arrest. This effect was at least partly mediated via inhibiting the PAR-2/p-p38/NFκB signaling pathway. Thus, mast cell tryptase might be a novel therapeutic target in the management of neurological impairment following cardiac arrest.
Collapse
Affiliation(s)
- Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Uludag University School of Medicine, 16069, Bursa, Turkey
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Suzhou, Taicang, 215400, Jiangsu, China
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
21
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral hemorrhage induces monocyte-related gene expression within six hours: Global transcriptional profiling in swine ICH. Metab Brain Dis 2019; 34:763-774. [PMID: 30796715 PMCID: PMC6910870 DOI: 10.1007/s11011-019-00399-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Our prior research identified a significant association with monocyte level and ICH mortality. To advance our understanding, we sought to identify gene expression after ICH using a swine model to test the hypothesis that ICH would induce peripheral blood mononuclear cell (PBMC) gene expression. In 10 pigs with ICH, two PBMC samples were drawn from each with the first immediately prior to ICH induction and the second six hours later. RNA-seq was performed with subsequent bioinformatics analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity® Pathway Analysis (IPA). There were 182 significantly upregulated and 153 significantly down-regulated differentially expressed genes (DEGs) after ICH. Consistent with findings in humans, significant GO and KEGG pathways were primarily related to inflammation and the immune response. Five genes, all upregulated post-ICH and known to be associated with monocyte activation, were repeatedly DEGs in the significant KEGG pathways: CD14, TLR4, CXCL8, IL-18, and CXCL2. In IPA, the majority of upregulated disease/function categories were related to inflammation and immune cell activation. TNF and LPS were the most significantly activated upstream regulators, and ERK was the most highly connected node in the top network. ICH induced changes in PBMC gene expression within 6 h of onset related to inflammation, the immune response, and, more specifically, monocyte activation. Further research is needed to determine if these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA.
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA
| |
Collapse
|
22
|
Zhao L, Zhang JH, Sherchan P, Krafft PR, Zhao W, Wang S, Chen S, Guo Z, Tang J. Administration of rCTRP9 Attenuates Neuronal Apoptosis Through AdipoR1/PI3K/Akt Signaling Pathway after ICH in Mice. Cell Transplant 2019; 28:756-766. [PMID: 30642187 PMCID: PMC6686438 DOI: 10.1177/0963689718822809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting neuronal apoptosis after intracerebral hemorrhage (ICH) may be an important therapeutic strategy for ICH patients. Emerging evidence indicates that C1q/TNF-Related Protein 9 (CTRP9), a newly discovered adiponectin receptor agonist, exerts neuroprotection in cerebrovascular disease. The aim of this study was to investigate the anti-apoptotic role of CTRP9 after experimental ICH and to explore the underlying molecular mechanisms. ICH was induced in mice via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administrated intranasally at 1 h after ICH. To elucidate the underlying mechanisms, adiponectin receptor1 small interfering ribonucleic acid (AdipoR1 siRNA) and selective PI3 K inhibitor LY294002 were administered prior to rCTRP9 treatment. Western blots, neurofunctional assessments, immunofluorescence staining, and Fluoro-Jade C (FJC) staining experiments were performed. Administration of rCTRP9 significantly improved both short- and long-term neurofunctional behavior after ICH. RCTRP9 treatment significantly increased the expression of AdipoR1, PI3 K, p-Akt, and Bcl-2, while at the same time was found to decrease the expression of Bax in the brain, which was reversed by inhibition of AdipoR1 and PI3 K. The neuroprotective effect of rCTRP9 after ICH was mediated by attenuation of neuronal apoptosis via the AdipoR1/PI3K/Akt signaling pathway; therefore, rCTRP9 should be further evaluated as a potential therapeutic agent for ICH patients.
Collapse
Affiliation(s)
- Lianhua Zhao
- 1 Department of Neurology, Tianjin TEDA Hospital, Tianjin, China.,2 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 2 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Prativa Sherchan
- 2 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- 3 Department of Neurological Surgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Wei Zhao
- 1 Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Sa Wang
- 4 Department of Neurology, Affilicated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Shengpan Chen
- 2 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5 Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Zaiyu Guo
- 1 Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Jiping Tang
- 2 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|