1
|
Sun E, Lu S, Yang C, Li Z, Qian Y, Chen Y, Chen S, Ma X, Deng Y, Shan X, Chen B. Hypothermia protects the integrity of corticospinal tracts and alleviates mitochondria injury after intracerebral hemorrhage in mice. Exp Neurol 2024; 377:114803. [PMID: 38679281 DOI: 10.1016/j.expneurol.2024.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Disruption of corticospinal tracts (CST) is a leading factor for motor impairments following intracerebral hemorrhage (ICH) in the striatum. Previous studies have shown that therapeutic hypothermia (HT) improves outcomes of ICH patients. However, whether HT has a direct protection effect on the CST integrity and the underlying mechanisms remain largely unknown. In this study, we employed a chemogenetics approach to selectively activate bilateral warm-sensitive neurons in the preoptic areas to induce a hypothermia-like state. We then assessed effects of HT treatment on the integrity of CST and motor functional recovery after ICH. Our results showed that HT treatment significantly alleviated axonal degeneration around the hematoma and the CST axons at remote midbrain region, ultimately promoted skilled motor function recovery. Anterograde and retrograde tracing revealed that HT treatment protected the integrity of the CST over an extended period. Mechanistically, HT treatment prevented mitochondrial swelling in degenerated axons around the hematoma, alleviated mitochondrial impairment by reducing mitochondrial ROS accumulation and improving mitochondrial membrane potential in primarily cultured cortical neurons with oxyhemoglobin treatment. Serving as a proof of principle, our study provided novel insights into the application of HT to improve functional recovery after ICH.
Collapse
Affiliation(s)
- Eryi Sun
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Siyuan Lu
- Department of Radiological, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zheng Li
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yu Qian
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yue Chen
- Chengdu Bio-HT Company Limited, Chengdu 610000, Sichuan, China
| | - Siyuan Chen
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Xiaodong Ma
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yan Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiuhong Shan
- Department of Radiological, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Bo Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
2
|
Xu W, Geng X, Fayyaz AI, Ding Y. The Modulatory Role of Hypothermia in Poststroke Brain Inflammation: Mechanisms and Clinical Implications. Cerebrovasc Dis 2024; 53:776-788. [PMID: 38286123 PMCID: PMC11633906 DOI: 10.1159/000536384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Acute ischemic stroke remains a major contributor to mortality and disability worldwide. The use of hypothermia has emerged as a promising neuroprotective strategy, with proven effectiveness in cardiac arrest and neonatal hypoxic-ischemic injury. SUMMARY This review explores the therapeutic potential of hypothermia in ischemic stroke by examining its impact on poststroke inflammatory responses. We synthesized evidence from basic and clinical studies to illustrate the inhibitory effects of hypothermia on poststroke brain inflammation. The underlying mechanisms include modulation of microglial activation and polarization; downregulation of key inflammatory pathways such as MAPKs, NF-KB, and JAK/STAT; protection of the blood-brain barrier integrity; and reduction of immune cell infiltration into the brain. We also discuss the current limitations of hypothermia treatment in clinical practice and highlight future research directions for optimizing protocols and evaluating its clinical efficacy in stroke patients. KEY MESSAGES Therapeutic hypothermia (TH) has evolved significantly with advancements in medical technologies, especially with the introduction of automated cooling devices, both intravascular and surface based. However, a refined, highly individualized, and effective hypothermia protocol may stand robust against the devastating consequences of ischemic stroke, and we think it should become the future development goal.
Collapse
Affiliation(s)
- Wei Xu
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China,
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China,
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aminah I Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Cao D, Li B, Cao C, Zhang J, Li X, Li H, Yu Z, Shen H, Ye M. Caveolin-1 aggravates neurological deficits by activating neuroinflammation following experimental intracerebral hemorrhage in rats. Exp Neurol 2023; 368:114508. [PMID: 37598879 DOI: 10.1016/j.expneurol.2023.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-β, and NF-κB. RESULTS The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-β in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-β/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurosurgery, Yancheng City No.1 People's Hospital, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, Jiangsu Province, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Ming Ye
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
4
|
Pei H, Du R, He Z, Yang Y, Wu S, Li W, Sheng J, Lv Y, Han C. Protection of a novel velvet antler polypeptide PNP1 against cerebral ischemia-reperfusion injury. Int J Biol Macromol 2023; 247:125815. [PMID: 37451382 DOI: 10.1016/j.ijbiomac.2023.125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
AIM We isolated a novel polypeptide PNP1 from velvet antler and investigated the role of PNP1 in ischemia reperfusion and its associated mechanism. METHODS We built the ischemia reperfusion mouse model by the middle cerebral artery occlusion (MCAO) approach. Thereafter, PNP-1 was injected via the tail vein, and neurological function was scored. Meanwhile, the tissue injury level was detected through hematoxylin & eosin (HE) and immunohistochemical (IHC) staining, inflammatory factor levels were determined with enzyme-linked immunosorbent assay (ELISA), while protein levels through Western blotting. In addition, vascular endothelial cells were used to construct the oxygen-glucose deprivation (OGD) injury model in vitro, so as to detect the intervention effect of PNP1 on endothelial injury. Additionally, microglial cells were utilized to construct the inflammatory injury model to examine the impact of PNP1 on the polarization of microglial cells. RESULTS PNP1 suppressed hypoxic cerebral injury in MCAO mice, decreased the tissue inflammatory factors, promoted tissue angiogenesis, and reduced the ischemic penumbra area. Experimental results in vitro demonstrated that, PNP1 suppressed vascular endothelial cell injury, and inhibited microglial M1 polarization as well as inflammatory response. CONCLUSION Velvet antler polypeptide PNP1 isolated in this study has the anti-ischemic cerebral injury effect, and its mechanism is associated with suppressing vascular endothelial cell injury and microglial cell inflammatory response.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yi Yang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Shasha Wu
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Wenyan Li
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Yahui Lv
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Chenyang Han
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
5
|
Zhai L, Pei H, Shen H, Guan Q, Sheng J. Mechanism of neocryptotanshinone in protecting against cerebral ischemic injury: By suppressing M1 polarization of microglial cells and promoting cerebral angiogenesis. Int Immunopharmacol 2023; 116:109815. [PMID: 36773571 DOI: 10.1016/j.intimp.2023.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
AIM This study explored the protective function and mechanism of neocryptotanshinone (NEO) on cerebral ischemia. METHODS Lipopolysaccharide/γ-interferon(LPS/IFN-γ)was employed to mimic the polarization of mouse microglial cells BV2. After NEO treatment, the M1 polarization level of BV2 cells was identified using flow cytometry (FCM), fluorescent cell staining and enzyme linked immunosorbent assay(ELISA). Moreover, the mouse endothelial cells bEnd.3 were applied to be the study objects, which were intervened with NEO under the hypoxic condition. Thereafter, based on in-vitro tubule formation assay and fluorescence staining, the in-vitro tubule formation ability of bEnd.3 cells was detected. By adopting middle cerebral artery occlusion(MCAO) method, we constructed the mouse model of cerebral ischemia. After NEO intervention, the pathological changes of brain tissues were identified, while CD34 expression was measured by immunohistochemical (IHC) staining, nerve injury was detected by Nissl staining, and the changes in neurological behaviors of mice were also detected. RESULTS Our results showed that NEO suppressed M1 polarization of BV2 cells, which exerted its effect through suppressing NF-κB and STAT3 signals, thereby decreasing the levels of iNOS, CD11b and inflammatory factors. NEO stimulated tubule formation in bEnd.3 cells based on the hypoxic situation, which exerted its effect through activating the Vascularendothelial growth factor-Vascular Endothelial Growth Factor Receptor 2-Notch homolog 1(VFGF-VEGFR2-Notch1) signal. Furthermore, NEO suppressed cerebral ischemia in mice and lowered the ischemic penumbra. NEO also improved the neurological behaviors of mice, increased the CD34 levels and decreased the expression of inflammatory factors. CONCLUSION NEO has well protective effect against cerebral ischemia, and its mechanisms are related to suppressing M1 polarization of microglial cells and promoting cerebral angiogenesis, which are the mechanisms of NEO in treating ischemic encephalopathy.
Collapse
Affiliation(s)
- Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Heping Shen
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| | - Jian Sheng
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
6
|
You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol 2022; 13:951586. [PMID: 36262833 PMCID: PMC9575992 DOI: 10.3389/fneur.2022.951586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has shown promise as a means to improving neurological outcomes at several neurological conditions. At the clinical level, it has been shown to improve outcomes in comatose survivors of cardiac arrest and in neonatal hypoxic ischemic encephalopathy, but has yet to be convincingly demonstrated in stroke. While numerous preclinical studies have shown benefit in stroke models, translating this to the clinical level has proven challenging. Major obstacles include cooling patients with typical stroke who are awake and breathing spontaneously but often have significant comorbidities. Solutions around these problems include selective brain cooling and cooling to lesser depths or avoiding hyperthermia. This review will cover the mechanisms of protection by therapeutic hypothermia, as well as recent progress made in selective brain cooling and the neuroprotective effects of only slightly lowering brain temperature. Therapeutic hypothermia for stroke has been shown to be feasible, but has yet to be definitively proven effective. There is clearly much work to be undertaken in this area.
Collapse
Affiliation(s)
- Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, The San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Midori A. Yenari
| |
Collapse
|
7
|
Huang SS, Su HH, Chien SY, Chung HY, Luo ST, Chu YT, Wang YH, MacDonald IJ, Lee HH, Chen YH. Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol. J Neuroinflammation 2022; 19:192. [PMID: 35897101 PMCID: PMC9327358 DOI: 10.1186/s12974-022-02553-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Background No reports exist as to neuroprotective effects associated with topical activation of transient receptor potential melastatin 8 (TRPM8), a noted cold receptor. In the present study, we identified whether activating peripheral TRPM8 can be an adjuvant therapy for ischemic stroke.
Methods Menthol, an agonist of TRPM8, was applied orally or topically to all paws or back of the mouse after middle cerebral artery occlusion (MCAO). We used Trpm8 gene knockout (Trpm8−/−) mice or TRPM8 antagonist and lidocaine to validate the roles of TRPM8 and peripheral nerve conduction in menthol against ischemic stroke. Results Application of menthol 16% to paw derma attenuated infarct volumes and ameliorated sensorimotor deficits in stroke mice induced by MCAO. The benefits of topically applied menthol were associated with reductions in oxidative stress, neuroinflammation and infiltration of monocytes and macrophages in ischemic brains. Antagonizing TRPM8 or Trpm8 knockout dulls the neuroprotective effects of topically application of menthol against MCAO. Immunohistochemistry analyses revealed significantly higher TRPM8 expression in skin tissue samples obtained from the paws compared with skin from the backs, which was reflected by significantly smaller infarct lesion volumes and better sensorimotor function in mice treated with menthol on the paws compared with the back. Blocking conduction of peripheral nerve in the four paws reversed the neuroprotective effects of topical menthol administrated to paws. On the other hand, oral menthol dosing did not assist with recovery from MCAO in our study. Conclusion Our results suggested that activation of peripheral TRPM8 expressed in the derma tissue of limbs with sufficient concentration of menthol is beneficial to stroke recovery. Topical application of menthol on hands and feet could be a novel and simple-to-use therapeutic strategy for stroke patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02553-4.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Hsin Wang
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan. .,Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan. .,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan. .,Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
8
|
Zhang Y, Liu G, Tang L. Research progress in core body temperature measurement during target temperature management. JOURNAL OF INTEGRATIVE NURSING 2022. [DOI: 10.4103/jin.jin_40_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|