1
|
Vaquero MP, García-Maldonado E, Gallego-Narbón A, Zapatera B, Alcorta A, Martínez-Suárez M. Iron Deficiency Is Associated with Elevated Parathormone Levels, Low Vitamin D Status, and Risk of Bone Loss in Omnivores and Plant-Based Diet Consumers. Int J Mol Sci 2024; 25:10290. [PMID: 39408619 PMCID: PMC11477403 DOI: 10.3390/ijms251910290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
A cross-sectional study was performed in healthy adults (mean age 28 y, 67% women) whose habitual diet was an omnivore, lacto-ovo vegetarian, or vegan diet. The total sample (n = 297) was divided into two groups according to the parathormone (PTH) cut-off value of 65 pg/mL of either normal-PTH (n = 228) or high-PTH (n = 69). Vitamin D status (25-hydroxycholecalciferol, 25-OHD), PTH, and bone formation (bone alkaline phosphatase, BAP) and bone resorption (N-telopeptides of type I collagen, NTx) markers were determined. Hematocrit, erythrocytes, hemoglobin, platelets, serum iron, serum transferrin, transferrin saturation, and serum ferritin were also measured. In the total sample, 25-OHD and PTH were negatively correlated, and all subjects with high PTH presented vitamin D insufficiency (25-OHD < 75 nmol/L). High bone remodeling was observed in the high-PTH group, with significantly higher NTx and marginally higher BAP compared to the normal-PTH group. Hematocrit and ferritin were significantly lower in the high-PTH compared to the normal-PTH group. However, serum iron was higher in the high-PTH group, which was only observed for the lacto-ovo vegetarian and vegan subjects. It is concluded that both low vitamin D and low iron status are associated with elevated PTH and bone resorption, more in vegetarians than omnivores, which is in line with the hypothesis that chronic iron deficiency in adulthood mainly predisposes to osteoporosis in postmenopausal women and the elderly.
Collapse
Affiliation(s)
- M. Pilar Vaquero
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
| | - Elena García-Maldonado
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
| | - Angélica Gallego-Narbón
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
- Biology Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Belén Zapatera
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
| | - Alexandra Alcorta
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
| | - Miriam Martínez-Suárez
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, 28040 Madrid, Spain (A.G.-N.); (B.Z.)
| |
Collapse
|
2
|
O'Leary TJ, Jackson S, Izard RM, Walsh NP, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Iron status is associated with tibial structure and vitamin D metabolites in healthy young men. Bone 2024; 186:117145. [PMID: 38838798 DOI: 10.1016/j.bone.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The influence of iron on collagen synthesis and vitamin D metabolism has implications for bone health. This cross-sectional observational study investigated associations between markers of iron status and tibial structure, vitamin D metabolites, and circulating biochemical markers of bone metabolism in young healthy men. A total of 343 male British Army recruits participated (age 22 ± 3 y, height 1.77 ± 0.06 m, body mass 75.5 ± 10.1 kg). Circulating biochemical markers of iron status, vitamin D metabolites, and bone metabolism, and tibial structure and density by high-resolution peripheral quantitative computed tomography scans (HRpQCT) were measured in participants during week 1 of basic military training. Associations between markers of iron status and HRpQCT outcomes, bone metabolism, and vitamin D metabolites were tested, controlling for age, height, lean body mass, and childhood exercise volume. Higher ferritin was associated with higher total, trabecular, and cortical volumetric bone mineral density, trabecular volume, cortical area and thickness, stiffness, and failure load (all p ≤ 0.037). Higher soluble transferrin receptor (sTfR) was associated with lower trabecular number, and higher trabecular thickness and separation, cortical thickness, and cortical pore diameter (all p ≤ 0.033). Higher haemoglobin was associated with higher cortical thickness (p = 0.043). Higher ferritin was associated with lower βCTX, PINP, total 25(OH)D, and total 24,25(OH)2D, and higher 1,25(OH)2D:24,25(OH)2D ratio (all p ≤ 0.029). Higher sTfR was associated with higher PINP, total 25(OH)D, and total 24,25(OH)2D (all p ≤ 0.025). The greater density, size, and strength of the tibia, and lower circulating concentrations of markers of bone resorption and formation with better iron stores (higher ferritin) are likely as a result of the direct role of iron in collagen synthesis.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Rachel M Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, United Kingdom
| | - Neil P Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alexander T Carswell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Samuel J Oliver
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
3
|
Courbon G, David V. Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism. Curr Opin Nephrol Hypertens 2024; 33:368-374. [PMID: 38661434 DOI: 10.1097/mnh.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Guillaume Courbon
- INSERM U1059 SAINBIOSE, University of St Etienne, Mines St Etienne, St Etienne, France
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Venter E, Zandberg L, Venter PVZ, Smuts CM, Kruger HS, Baumgartner J. Female rats consuming an iron and omega-3 fatty acid deficient diet preconception require combined iron and omega-3 fatty acid supplementation for the prevention of bone impairments in offspring. J Dev Orig Health Dis 2024; 15:e6. [PMID: 38653729 DOI: 10.1017/s2040174424000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We previously showed in rats that pre- and postnatal deficiencies in iron and omega-3 (n-3) fatty acids can impair bone development, with additive and potentially irreversible effects when combined. This study aimed to investigate, in female rats consuming a combined iron and n-3 fatty acid deficient (ID + n-3 FAD) diet preconception, whether supplementation with iron and docosahexaenoic/eicosapentaenoic acid (DHA/EPA), alone and in combination, can prevent bone impairments in offspring. Using a 2 × 2 factorial design, female Wistar rats consuming an ID + n-3 FAD diet preconception were randomised to receive an: 1) iron supplemented (Fe + n-3 FAD), 2) DHA/EPA supplemented (ID + DHA/EPA), 3) Fe + DHA/EPA, or 4) ID + n-3 FAD diet from gestational day 10 throughout pregnancy and lactation. Post-weaning, offspring (n = 24/group; male:female = 1:1) remained on the respective experimental diets for three weeks until postnatal day 42-45. Offspring born to female rats consuming a control diet preconception and an Fe+DHA/EPA diet throughout pregnancy and lactation served as non-deficient reference group (Control+Fe+DHA/EPA). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and bone strength using three-point bending tests. Only offspring in the Fe+DHA/EPA group had significantly higher spine and femur BMD, and higher femur stiffness than offspring in the ID + n-3 FAD group, and had similar spine BMD and femur stiffness as the Control + Fe + DHA/EPA group. Offspring in the Fe + DHA/EPA group further had significantly higher femur strength (ultimate load) than the other experimental groups, and a similar femur strength as the Control + Fe + DHA/EPA group. This study shows that only combined iron and DHA/EPA supplementation can prevent bone impairments in offspring of female rats consuming an iron and n-3 FA deficient diet preconception.
Collapse
Affiliation(s)
- Estelle Venter
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Philip vZ Venter
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Herculina S Kruger
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
5
|
O’Leary TJ, Jackson S, Izard RM, Walsh NP, Coombs CV, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Sex differences in iron status during military training: a prospective cohort study of longitudinal changes and associations with endurance performance and musculoskeletal outcomes. Br J Nutr 2024; 131:581-592. [PMID: 37732392 PMCID: PMC10803825 DOI: 10.1017/s0007114523001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
This study investigated sex differences in Fe status, and associations between Fe status and endurance and musculoskeletal outcomes, in military training. In total, 2277 British Army trainees (581 women) participated. Fe markers and endurance performance (2·4 km run) were measured at the start (week 1) and end (week 13) of training. Whole-body areal body mineral density (aBMD) and markers of bone metabolism were measured at week 1. Injuries during training were recorded. Training decreased Hb in men and women (mean change (-0·1 (95 % CI -0·2, -0·0) and -0·7 (95 % CI -0·9, -0·6) g/dl, both P < 0·001) but more so in women (P < 0·001). Ferritin decreased in men and women (-27 (95 % CI -28, -23) and -5 (95 % CI -8, -1) µg/l, both P ≤ 0·001) but more so in men (P < 0·001). Soluble transferrin receptor increased in men and women (2·9 (95 % CI 2·3, 3·6) and 3·8 (95 % CI 2·7, 4·9) nmol/l, both P < 0·001), with no difference between sexes (P = 0·872). Erythrocyte distribution width increased in men (0·3 (95 % CI 0·2, 0·4)%, P < 0·001) but not in women (0·1 (95 % CI -0·1, 0·2)%, P = 0·956). Mean corpuscular volume decreased in men (-1·5 (95 % CI -1·8, -1·1) fL, P < 0·001) but not in women (0·4 (95 % CI -0·4, 1·3) fL, P = 0·087). Lower ferritin was associated with slower 2·4 km run time (P = 0·018), sustaining a lower limb overuse injury (P = 0·048), lower aBMD (P = 0·021) and higher beta C-telopeptide cross-links of type 1 collagen and procollagen type 1 N-terminal propeptide (both P < 0·001) controlling for sex. Improving Fe stores before training may protect Hb in women and improve endurance and protect against injury.
Collapse
Affiliation(s)
- Thomas J. O’Leary
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
| | - Rachel M. Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, Porton, UK
| | - Neil P. Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | | | - Alexander T. Carswell
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Health Sciences, University of East Anglia, Norwich, UK
| | | | - Jonathan C. Y. Tang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Julie P. Greeves
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Ahmed J, Reza MA, Thomas L, Qasim SSB, Alazemi A. Enhancing vitamin D 3 - iron blends via twin-screw dry granulation: Microstructural properties and cellular uptake analysis of vitamin D 3. Food Chem 2024; 431:137154. [PMID: 37595382 DOI: 10.1016/j.foodchem.2023.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The aim of this study was to develop vitamin D3 (VD3) and iron (Fe) blended granules using Neusilin® US2 as an excipient. A central composite design of experiments was used for the continuous manufacturing process, considering VD3 and iron as independent variables and the bulk density, flow index, oil holding capacity, and color difference as response variables. The addition of VD3 had a significant effect on the powder flow properties. The X-ray diffraction and Scanning electron microscopy-energy dispersive X-ray analysis validated the presence of VD3 and Fe in the granules, whereas the variations in porosity and roughness were demonstrated by tomography and atomic force microscopy, respectively. The in vitro cellular uptake profile confirmed the absorption of VD3 in the breast cancer cell line MCF-7 with apparent apoptosis. These results could help in scaling up the process from laboratory to pilot scale in twin-screw granulation and boost the intervention of VitD3/iron deficiencies.
Collapse
Affiliation(s)
- Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Mohammed Arshad Reza
- Faculty of Medicine Research Core Facility, Kuwait University, P.O Box 24923, Safat 13110, Kuwait
| | - Linu Thomas
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Syed S Bin Qasim
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O Box 24923, Safat 13110, Kuwait
| | - Abdullah Alazemi
- Department of Mechanical Engineering, Faculty of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
7
|
Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci 2023; 24:ijms24086891. [PMID: 37108056 PMCID: PMC10138976 DOI: 10.3390/ijms24086891] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is one of the essential mineral elements for the human body and this nutrient deficiency is a worldwide public health problem. Iron is essential in oxygen transport, participates in many enzyme systems in the body, and is an important trace element in maintaining basic cellular life activities. Iron also plays an important role in collagen synthesis and vitamin D metabolism. Therefore, decrease in intracellular iron can lead to disturbance in the activity and function of osteoblasts and osteoclasts, resulting in imbalance in bone homeostasis and ultimately bone loss. Indeed, iron deficiency, with or without anemia, leads to osteopenia or osteoporosis, which has been revealed by numerous clinical observations and animal studies. This review presents current knowledge on iron metabolism under iron deficiency states and the diagnosis and prevention of iron deficiency and iron deficiency anemia (IDA). With emphasis, studies related to iron deficiency and bone loss are discussed, and the potential mechanisms of iron deficiency leading to bone loss are analyzed. Finally, several measures to promote complete recovery and prevention of iron deficiency are listed to improve quality of life, including bone health.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
8
|
Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res 2023; 11:12. [PMID: 36854703 PMCID: PMC9975200 DOI: 10.1038/s41413-023-00247-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023] Open
Abstract
Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis, particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.
Collapse
|
9
|
Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3112388. [PMID: 35941905 PMCID: PMC9356861 DOI: 10.1155/2022/3112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in 2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury, cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.
Collapse
|
10
|
Ultrasound-Assisted Extraction of Micro- and Macroelements in Fruit Peel Powder Mineral Supplement for Osteoporosis Patients and Their Determination by Flame Atomic Absorption Spectrometry. J CHEM-NY 2021. [DOI: 10.1155/2021/5151560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a worldwide disease depicted by the reduced bone mass, an adequate supply of minerals is needed to support bone remodeling, and their deficiency causes bone-related diseases, osteoporosis in particular, and has osteoprotective effects. The aim of this recent research was to quantify the micro- (Mn, Fe, Cu, and Zn) and macroelements (Mg, K, and Ca) in the peel powder of some common fruits (pomegranate, orange, lemon, mango, and grapefruit) by flame atomic absorption spectrometer (FAAS). The extraction of micro- and macroelements in peel powder was done by using dilute acids in an ultrasonic bath. Apple leaves were used as standard reference material (SRM, NIST 1515) to optimize the ultrasound-assisted extraction (UAE) method at varied operating parameters. Maximum response was obtained for extracting of minerals in 500 mg SRM at 60°C temperature, setting a vortexing time of 5 min while using 5.0 mL extracting agent HNO3 (0.5 M)-H2O2 (10%) at 90% sonication amplitude of ultrasound bath for 6 min. While analyzing the SRM, the percentage recovery was obtained in a range between 96.8 and 102.7% to assure the accuracy whereas repeatability (n = 10) study in terms of % RSD yielding ≤2.29 supports well the precision of the proposed method, and limits of quantitation (μg/g) were 0.034, 0.061, 0.065, 0.057, 0.017, 0.175, and 0.053 for Mn, Fe, Cu, Zn, Mg, K, and Ca, respectively. The proposed UAE method was reliable, efficient, and advantageous over the conventionally employed acid digestion method with regard to less consumption of reagents and short analysis time for the determination of micro- and macroelements in fruit peel powder.
Collapse
|
11
|
Gönen MS, Alaylıoğlu M, Durcan E, Özdemir Y, Şahin S, Konukoğlu D, Nohut OK, Ürkmez S, Küçükece B, Balkan İİ, Kara HV, Börekçi Ş, Özkaya H, Kutlubay Z, Dikmen Y, Keskindemirci Y, Karras SN, Annweiler C, Gezen-Ak D, Dursun E. Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID-19 (SARS-CoV-2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients 2021; 13:4047. [PMID: 34836309 PMCID: PMC8618389 DOI: 10.3390/nu13114047] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We aimed to establish an acute treatment protocol to increase serum vitamin D, evaluate the effectiveness of vitamin D3 supplementation, and reveal the potential mechanisms in COVID-19. METHODS We retrospectively analyzed the data of 867 COVID-19 cases. Then, a prospective study was conducted, including 23 healthy individuals and 210 cases. A total of 163 cases had vitamin D supplementation, and 95 were followed for 14 days. Clinical outcomes, routine blood biomarkers, serum levels of vitamin D metabolism, and action mechanism-related parameters were evaluated. RESULTS Our treatment protocol increased the serum 25OHD levels significantly to above 30 ng/mL within two weeks. COVID-19 cases (no comorbidities, no vitamin D treatment, 25OHD <30 ng/mL) had 1.9-fold increased risk of having hospitalization longer than 8 days compared with the cases with comorbidities and vitamin D treatment. Having vitamin D treatment decreased the mortality rate by 2.14 times. The correlation analysis of specific serum biomarkers with 25OHD indicated that the vitamin D action in COVID-19 might involve regulation of INOS1, IL1B, IFNg, cathelicidin-LL37, and ICAM1. CONCLUSIONS Vitamin D treatment shortened hospital stay and decreased mortality in COVID-19 cases, even in the existence of comorbidities. Vitamin D supplementation is effective on various target parameters; therefore, it is essential for COVID-19 treatment.
Collapse
Affiliation(s)
- Mustafa Sait Gönen
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (M.S.G.); (E.D.); (S.Ş.); (H.Ö.)
| | - Merve Alaylıoğlu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Emre Durcan
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (M.S.G.); (E.D.); (S.Ş.); (H.Ö.)
| | - Yusuf Özdemir
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (Y.Ö.); (İ.İ.B.)
| | - Serdar Şahin
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (M.S.G.); (E.D.); (S.Ş.); (H.Ö.)
| | - Dildar Konukoğlu
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Okan Kadir Nohut
- Fikert Biyal Biochemistry Laboratory, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Seval Ürkmez
- Department of Anesthesiology and Reanimation, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (S.Ü.); (Y.D.)
| | - Berna Küçükece
- Cerrahpasa Hospital Pharmacy Unit, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - İlker İnanç Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (Y.Ö.); (İ.İ.B.)
| | - H. Volkan Kara
- Department of Thoracic Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Şermin Börekçi
- Department of Pulmonary Diseases, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Hande Özkaya
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (M.S.G.); (E.D.); (S.Ş.); (H.Ö.)
| | - Zekayi Kutlubay
- Dermatology and Venerology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Yalım Dikmen
- Department of Anesthesiology and Reanimation, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (S.Ü.); (Y.D.)
| | - Yılmaz Keskindemirci
- General Directorate of Hospitals, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
- Department of Medical Services and Techniques, Health Services Vocational School, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | | | - Cedric Annweiler
- Division of Geriatric Medicine, Department of Neuroscience, Angers University Hospital, 49035 Angers, France;
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
- Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
12
|
The Ideal Time for Iron Administration in Anemia Secondary to Blood Loss-An Experimental Animal Model. Life (Basel) 2021; 11:life11090898. [PMID: 34575047 PMCID: PMC8471997 DOI: 10.3390/life11090898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anemia and iron deficiency are two of the main public health problems worldwide, associated with negative outcomes in surgical patients. This experimental study aimed to create a model of acute iron deficiency with anemia through blood loss and extensive surgery. Afterwards, intravenous iron was administered to correct the iron deficiency and to improve the hematological parameters in distinct moments regarding the surgical time. To assess the optimum time for therapeutic intervention, experimental subjects were compared, performing clinical, paraclinical, and histological examinations, as well. METHODS Male rats (n = 35), aged 11-13 months, were randomly designated into six groups. Anemia and iron deficiency were obtained through a 15% blood volume loss, followed by major surgical intervention (femur fracture and osteosynthesis using Kirschner wire). Therapeutic intervention was obtained with an intravenous ferric carboxymaltose infusion, as follows: group II: intraoperative (n = 7), group III: 48 h after surgery (n = 7), group IV: 48 h before surgery (n = 5), and group V: seven days before surgery (n = 6). Group I (n = 5) was left anemic, while group 0 (n = 5) was nonanemic without therapeutic intervention. RESULTS AND DISCUSSION In group I, serum iron lower than in group 0 (27.04 ± 6.92 μg/dL versus 60.5 ± 2.34 μg/dL), as well as hemoglobin (10.4 ± 0.54 g/dL versus 14.32 ± 2.01 g/dL) and ferritin values (22.52 ± 0.53 ng/mL versus 29.86 ± 3.97 ng/mL), validated the experimental model. Regarding wound healing after surgical trauma, we observed that neovascularization was more significant in group III, followed by group V, with fewer neutrophils, a well-represented and rich in lymphomonocytes inflammatory infiltrate associated with the biggest collagen fiber dimensions. The periosteal reaction and callus area presented thicker trabeculae in groups II and III compared to the anemic group. CONCLUSIONS This original experimental study assessed the effect of perioperative intravenous iron administration at a specific time by comparing the weight, hematological, and iron status-defining parameters, as well as histological characteristics of the included subjects. The present findings highlight that correcting the iron deficiency in emergency settings through intravenous iron administration intraoperatively or 48 h postoperatively could determine the improved bioumoral parameters, as well as a better evolution of the postoperative wound and bone healing compared to the anemic group or subjects that received therapeutic intervention 48 h before surgery.
Collapse
|
13
|
The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev 2021; 50:100866. [PMID: 34284901 DOI: 10.1016/j.blre.2021.100866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Iron is indispensable for human life. However, it is also potentially toxic, since it catalyzes the formation of harmful oxidative radicals in unbound form and may facilitate pathogen growth. Therefore, iron homeostasis needs to be tightly regulated. Rapid growth and development require large amounts of iron, while (especially young) children are vulnerable to infections with iron-dependent pathogens due to an immature immune system. Moreover, unbalanced iron status early in life may have effects on the nervous system, immune system and gut microbiota that persist into adulthood. In this narrative review, we assess the critical roles of iron for growth and development and elaborate how the body adapts to physiologically high iron demands during the journey from fetus to adolescent. As a first step towards the development of clinical guidelines for the management of iron disorders in children, we summarize the unmet needs regarding the developmental aspects of iron homeostasis.
Collapse
|
14
|
Abiri B, Vafa M, Azizi-Soleiman F, Safavi M, Kazemi SM, Salehi M, Zaeri F, Sadeghi H. Changes in Bone Turnover, Inflammatory, Oxidative Stress, and Metabolic Markers in Women Consuming Iron plus Vitamin D Supplements: a Randomized Clinical Trial. Biol Trace Elem Res 2021; 199:2590-2601. [PMID: 32975739 DOI: 10.1007/s12011-020-02400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022]
Abstract
We aimed to investigate whether combination of vitamin D and iron supplementation, comparing vitamin D alone, could modify bone turnover, inflammatory, oxidative stress, and metabolic markers. Eighty-seven women with hemoglobin (Hb) ≤ 12.7 g/dL and 25OHD ≤ 29 ng/mL vitamin D deficiency/insufficiency aged 18-45 years were randomly assigned into two groups: (1) receiving either 1000 IU/day vitamin D3 plus 27 mg/day iron (D-Fe); (2) vitamin D3 plus placebo supplements (D-P), for 12 weeks. In D-Fe group, significant decrease in red blood cells (RBC) (P = 0.001) and hematocrit (Hct) (P = 0.004) and increases in mean corpuscular hemoglobin concentration (MCHC) (P = 0.001), 25OHD (P < 0.001), osteocalcin (P < 0.001), high-density cholesterol (HDL) (P = 0.041), and fasting blood sugar (FBS) (P < 0.001) were observed. D-P group showed significant decrease in RBC (P < 0.001), Hb (P < 0.001), Hct (P < 0.001), mean corpuscular volume (MCV) (P = 0.004), mean corpuscular hemoglobin (MCH) (P < 0.001), MCHC (P = 0.005), serum ferritin (P < 0.001), and low-density cholesterol (LDL) (P = 0.016) and increases of 25OHD (P < 0.001), osteocalcin (P < 0.001), C-terminal telopeptide (CTX) (P = 0.025), triglyceride (TG) (P = 0.004), FBS (P < 0.001), and interleukin-6 (IL-6) (P = 0.001) at week 12. After the intervention, the D-P group had between-group increases in mean change in the osteocalcin (P = 0.007) and IL-6 (P = 0.033), and decreases in the RBC (P < 0.001), Hb (P < 0.001), Hct (P < 0.001), and MCV (P = 0.001), compared with the D-Fe group. There were significant between-group changes in MCH (P < 0.001), MCHC (P < 0.001), ferritin (P < 0.001), and serum iron (P = 0.018). Iron-vitamin D co-supplementation does not yield added benefits for improvement of bone turnover, inflammatory, oxidative stress, and metabolic markers, whereas, vitamin D alone may have some detrimental effects on inflammatory and metabolic markers. IRCT registration number: IRCT201409082365N9.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, P.O.BOX: 1449614535, Iran.
| | - Fatemeh Azizi-Soleiman
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Safavi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Morteza Kazemi
- Bone, Joint, and Related Tissue Research Center, Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Zaeri
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Sadeghi
- School of Public Health, Department of Nutrition and Food Science, Texas Woman's University, Denton Campus, Denton, TX, 76204, USA
| |
Collapse
|
15
|
Wu Z, Yuan Y, Tian J, Long F, Luo W. The associations between serum trace elements and bone mineral density in children under 3 years of age. Sci Rep 2021; 11:1890. [PMID: 33479410 PMCID: PMC7820346 DOI: 10.1038/s41598-021-81501-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
We examined the associations of age and serum magnesium, iron, lead, copper, and zinc levels with bone mineral density (BMD) in 2412 children under 3 years of age in order to find a tool to monitor BMD in children without the use of expensive imaging techniques. One-way ANOVA and chi-square tests were used to determine the associations of age and serum trace elements with BMD. Multivariable logistic regression analysis was used to test the correlation of five serum trace elements with BMD after adjustments for potential confounding factors in children under 3 years of age. Significant associations between age and four serum trace elements and BMD were found. Compared to the group with the lowest serum levels detected, the adjusted odds ratio (OR) for the incidence of normal bone mineral density in the third magnesium concentration tertile, the third iron concentration tertile, the fifth copper concentration quintile, the third zinc concentration quintile, and the fifth zinc concentration quintile were 1.30 (95% confidence interval (CI) 1.02–1.67), 1.43 (95% CI 1.11–1.84), 1.42 (95% CI 1.04–1.94), 1.46 (95% CI 1.05–2.04), and 1.48 (95% CI 1.06–2.06), respectively. However, there was no significant correlation between serum lead level and BMD in this study. Age and serum magnesium, iron, copper, and zinc levels are positively associated with BMD in children under 3 years old.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
16
|
Zhang S, Sun L, Zhang J, Liu S, Han J, Liu Y. Adverse Impact of Heavy Metals on Bone Cells and Bone Metabolism Dependently and Independently through Anemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000383. [PMID: 33042736 PMCID: PMC7539179 DOI: 10.1002/advs.202000383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Mounting evidence is revealing that heavy metals can incur disordered bone homeostasis, leading to the development of degenerative bone diseases, including osteoporosis, osteoarthritis, degenerative disk disease, and osteomalacia. Meanwhile, heavy metal-induced anemia has been found to be intertwined with degenerative bone diseases. However, the relationship and interplay among these adverse outcomes remain elusive. Thus, it is of importance to shed light on the modes of action (MOAs) and adverse outcome pathways (AOPs) responsible for degenerative bone diseases and anemia under exposure to heavy metals. In the current Review, the epidemiological and experimental findings are recapitulated to interrogate the contributions of heavy metals to degenerative bone disease development which may be attributable dependently and independently to anemia. A few likely mechanisms are postulated for anemia-independent degenerative bone diseases, including dysregulated osteogenesis and osteoblastogenesis, imbalanced bone formation and resorption, and disturbed homeostasis of essential trace elements. By contrast, remodeled bone microarchitecture, inhibited erythropoietin production, and disordered iron homeostasis are speculated to account for anemia-associated degenerative bone disorders upon heavy metal exposure. Together, this Review aims to elaborate available literature to fill in the knowledge gaps in understanding the detrimental effects of heavy metals on bone cells and bone homeostasis through different perspectives.
Collapse
Affiliation(s)
- Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Yajun Liu
- Beijing Jishuitan HospitalPeking University Health Science CenterBeijing100035China
| |
Collapse
|
17
|
Goldstein ER, Fukuda DH. Connecting Energy Availability and Iron Deficiency with Bone Health: Implications for the Female Athlete. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Fernandez-Jimenez MC, Moreno G, Wright I, Shih PC, Vaquero MP, Remacha AF. Iron Deficiency in Menstruating Adult Women: Much More than Anemia. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2020; 1:26-35. [PMID: 33786470 PMCID: PMC7784796 DOI: 10.1089/whr.2019.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Background: Iron deficiency anemia (IDA) is highly prevalent in women of child-bearing age. However, their nonhematological symptoms have been overlooked. This study aims to analyze the nonhematological features and symptoms of IDA in a group of women of reproductive age and the changes occurred during iron therapy. Materials and Methods: IDA women underwent dietary, physical activity, menstrual blood loss, and cognitive function assessment at baseline. Hematological and biochemical parameters were analyzed. Executive attention was tested by the flanker task and working memory by the 2-back task. Oral iron therapy (ferrous sulfate) was given to 35 women for 8 weeks and the changes in iron status, biochemical markers, cognitive function, and nonhematological symptoms were evaluated. Results: Patients presented nonhematological symptoms: pica, 32.4%; cheilitis, 20.6%; restless legs syndrome (RLS), 20.6%; diffuse hair loss, 55.9%; and ungual alterations, 38.2%. Two or more symptoms were present in 58.8% of women. Serum iron and working memory were correlated at baseline. Multivariate analyses show associations (odds ratio [OR], 95% confidence interval [CI]) between pica and reaction time in the working memory test (OR 2.14, 95% CI 1.19-3.87, p = 0.012); RLS with total serum protein (OR 0.08, 95% CI 0.06-0.92, p = 0.043); and cheilitis with mean corpuscular hemoglobin (OR 0.388, 95% CI 0.189-0.799, p = 0.01). Pica, cheilitis, and RLS completely resolved with iron therapy, and ungual alterations and hair loss improved in 92.3% and 84.2% of women, respectively. Better performance in executive attention and working memory was observed after iron therapy. Conclusions: More attention should be given to the nonhematological manifestations of IDA to improve the quality of life of menstruating women.
Collapse
Affiliation(s)
| | - Gemma Moreno
- Hematology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Ione Wright
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pei-Chun Shih
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Pilar Vaquero
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Angel F. Remacha
- Hematology Laboratory Department, Hospital Sant Pau, Barcelona, Spain
| |
Collapse
|
19
|
EL-Adawy EH, Zahran FE, Shaker GA, Seleem A. Vitamin D Status in Egyptian Adolescent Females with Iron Deficiency Anemia and Its Correlation with Serum Iron Indices. Endocr Metab Immune Disord Drug Targets 2019; 19:519-525. [DOI: 10.2174/1871530318666181029160242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 01/20/2023]
Abstract
Background:
In Egypt, it seems that adolescent girls are a candidate for Vitamin D Deficiency
(VDD), mostly due to inadequate sun exposure as a result of the culture and social dress codes
and dietary factors. Currently, there is growing evidence that VDD is associated with Iron Deficiency
Anemia (IDA).
Aim:
To investigate the frequency of VDD in adolescent females with IDA in comparison to healthy
control and demonstrate whether VD level was correlated with serum iron indices.
Subjects and Methods:
Forty adolescent females with known cases of IDA (group 1) and 30 healthy
females matched for age as a control (group 2) were selected. We compared the differences between
the two groups to determine the degree of VD level; where VDD was defined as 25-hydroxyvitamin D
[25(OH)D] ≤20 ng/mL, vitamin D insufficiency (VDI) as 25(OH) D of 20-30 ng/mL, and vitamin D
sufficiency (VDS) as 25(OH)D >30 ng/mL. Body mass index (BMI), complete blood count (CBC),
serum iron, total iron binding capacity (TIBC), serum ferritin, serum creatinine, ionized calcium and
25(OH)D were measured for all participants.
Results:
We found that subnormal vitamin D (VDD and VDI) was more frequent in the IDA group
(75%) than control (40%), (p = 0.025); where 19 adolescent female patients (47.5%) were VDD, 11
(27.5%) were VDI and 10 (25%) were VDS, while in the control group, VDD was present in 4 (20%),
VDI in 4 (20%) and VDS in 12 (60%) respectively. There was not any significant correlation between
serum VD and serum iron indices (r =0.168, p < 0.05) and Hb (r = 0.360, p < 0.001). There was no
significant difference in serum hemoglobin level between IDA patients with subnormal VD and those
with VDS. The mean level of serum 25(OH) D was significantly lower in winter months than summer
in both groups; (16.87 vs. 31.57 mg/dL, p < 0.001) and (31.9 vs. 35.04 mg/dL, p < 0.001) respectively.
BMI, Iron, TIBC and seasonal variation were not predictors of 25(OH) D levels in adolescent girls
with IDA.
Conclusion:
VDD has a higher frequency in Egyptian adolescent females with IDA than healthy control.
However, vitamin D levels were not significantly correlated with iron indices. Our result might
direct the attention for measuring vitamin D level in patients with IDA with the possibility of VD supplementation
with iron.
Collapse
Affiliation(s)
- Eman H. EL-Adawy
- Department of Internal Medicine, Endocrinology Unit, Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
| | - Fawkia E. Zahran
- Department of Internal Medicine, Alazhar Hospital, Alazhar University, Cairo, Egypt
| | - Gehan A. Shaker
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal Seleem
- Department of Biochemistry, Mansour University Hospital, Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
20
|
Gaffney-Stomberg E. The Impact of Trace Minerals on Bone Metabolism. Biol Trace Elem Res 2019; 188:26-34. [PMID: 30467628 DOI: 10.1007/s12011-018-1583-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active tissue that responds to alterations in dietary intake and nutritional status. It is ~ 35% protein, mostly collagen which provides an organic scaffolding for bone mineral. The mineral is the remaining ~ 65% of bone tissue and composed mostly of calcium and phosphate in a form that is structurally similar to mineral within the apatite group. The skeletal tissue is constantly undergoing turnover through resorption by osteoclasts coupled with formation by osteoblasts. In this regard, the overall bone balance is determined by the relative contribution of each of these processes. In addition to macro minerals such as calcium, phosphorus, and magnesium which have well-known roles in bone health, trace elements such as boron, iron, zinc, copper, and selenium also impact bone metabolism. Effects of trace elements on skeletal metabolism and tissue properties may be indirect through regulation of macro mineral metabolism, or direct by affecting osteoblast or osteoclast proliferation or activity, or finally through incorporation into the bone mineral matrix. This review focuses on the skeletal impact of the following trace elements: boron, iron, zinc, copper, and selenium, and overviews the state of the evidence for each of these minerals.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, 01760, USA.
| |
Collapse
|
21
|
Blanco-Rojo R, Vaquero MP. Iron bioavailability from food fortification to precision nutrition. A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Petkus DL, Murray-Kolb LE, De Souza MJ. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med 2018; 47:1721-1737. [PMID: 28290159 DOI: 10.1007/s40279-017-0706-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the severity and prevalence of iron deficiency in exercising women, few published reports have explored how iron deficiency interacts with another prevalent and severe condition in exercising women: the 'female athlete triad.' This review aims to describe how iron deficiency may interact with each component of the female athlete triad, that is, energy status, reproductive function, and bone health. The effects of iron deficiency on energy status are discussed in regards to thyroid function, metabolic fuel availability, eating behaviors, and energy expenditure. The interactions between iron deficiency and reproductive function are explored by discussing the potentially impaired fertility and hyperprolactinemia due to iron deficiency and the alterations in iron metabolism due to menstrual blood loss and estrogen exposure. The interaction of iron deficiency with bone health may occur via dysregulation of the growth hormone/insulin-like growth factor-1 axis, hypoxia, and hypothyroidism. Based on these discussions, several future directions for research are presented.
Collapse
Affiliation(s)
- Dylan L Petkus
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
24
|
The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018; 10:nu10020167. [PMID: 29385099 PMCID: PMC5852743 DOI: 10.3390/nu10020167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/31/2022] Open
Abstract
Vitamin D may influence iron metabolism and erythropoiesis, whereas iron is essential for vitamin D synthesis. We examined whether vitamin D deficiencies (VDD) are associated with reduced iron status and whether progressive iron deficiency (ID) is accompanied by inferior vitamin D status. The study included 219 healthy female (14–34 years old) athletes. VDD was defined as a 25(OH)D concentration < 75 nmol/L. ID was classified based on ferritin, soluble transferrin receptor (sTfR), total iron binding capacity (TIBC) and blood morphology indices. The percentage of ID subjects was higher (32%) in the VDD group than in the 25(OH)D sufficient group (11%) (χ2 = 10.6; p = 0.001). The percentage of VDD subjects was higher (75%) in the ID than in the normal iron status group (48%) (χ2 = 15.6; p = 0.001). The odds ratios (ORs) for VDD increased from 1.75 (95% CI 1.02–2.99; p = 0.040) to 4.6 (95% CI 1.81–11.65; p = 0.001) with progressing iron deficiency. ID was dependent on VDD in both VDD groups (25(OH)D < 75 and < 50 nmol/L). The ID group had a lower 25(OH)D concentration (p = 0.000). The VDD group had lower ferritin (p = 0.043) and iron (p = 0.004) concentrations and higher values of TIBC (p = 0.016) and sTfR (p = 0.001). The current results confirm the association between vitamin D and iron status in female athletes, although it is difficult to assess exactly which of these nutrients exerts a stronger influence over the other.
Collapse
|
25
|
Uwaezuoke SN. Vitamin D deficiency and anemia risk in children: a review of emerging evidence. Pediatric Health Med Ther 2017; 8:47-55. [PMID: 29388633 PMCID: PMC5774601 DOI: 10.2147/phmt.s129362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been renewed scientific interest in the sequelae of vitamin D deficiency, given the emerging evidence on the diverse biologic functions of vitamin D, besides its fundamental role in bone and mineral metabolism. For the past decade, the evidence in the medical literature pointing to a relationship between anemia risk and vitamin D deficiency has been accumulating. This paper critically reviews the current evidence linking vitamin D deficiency to anemia risk in children. The synthesized evidence indicates that the studies, which were preponderantly conducted among the adult population, not only reported a bidirectional relationship between vitamin D deficiency and anemia but also showed a racial effect. In studies conducted among children, similar results were reported. Although the causal association of vitamin D deficiency with anemia risk (especially iron-deficiency anemia) remains debatable, the noncalcemic actions of the vitamin and its analogs hold prospects for several novel clinical applications. There is, however, unanimity in many reports suggesting that vitamin D deficiency is directly associated with anemia of chronic disease or inflammation. Despite the advances in unraveling the role of vitamin D in iron homeostasis, further research is still required to validate causality in the relationship between vitamin D deficiency and anemia, as well as to determine its optimal dosing, the ideal recipients for therapeutic intervention, and the preferred analogs to administer.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Paediatrics, College of Medicine, University of Nigeria, Nsukka
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
26
|
Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 2017; 66:391-402. [PMID: 28248532 DOI: 10.33549/physiolres.933454] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.
Collapse
Affiliation(s)
- I Zofkova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
27
|
Azizi-Soleiman F, Vafa M, Abiri B, Safavi M. Effects of Iron on Vitamin D Metabolism: A Systematic Review. Int J Prev Med 2016; 7:126. [PMID: 28028427 PMCID: PMC5159690 DOI: 10.4103/2008-7802.195212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
Abstract
Vitamin D is a prohormone nutrient, which is involved in skeletal and extra-skeletal functions. Iron is another essential nutrient that is necessary for the production of red blood cells and oxygen transport. This element plays important roles in enzymatic systems including those required for Vitamin D activation. To the best of our knowledge, there is no exclusive review on the relationship between iron deficiency anemia (IDA), as the most prevalent type of anemia, and Vitamin D deficiency and the effect of recovery from iron deficiency on Vitamin D status. The aim of this study was to conduct a systematic search of observational and clinical trials in this field. The databases of PubMed, ProQuest, Cochrane Library, ISI Web of Knowledge, and SCOPUS were searched comprehensively. English-language human studies conducted on iron deficient patients or interventions on the effect of iron therapy on Vitamin D were extracted (n = 10). Our initial search yielded 938 articles. A total of 23 papers met the inclusion criteria. Thirteen studies were excluded because they were not relevant or not defining anemia types. The final analysis was performed on ten articles (3 cross-sectional and 7 interventional studies). Observational data indicated a positive relationship between iron status and Vitamin D, while trials did not support the effectiveness of iron supplementation on improving Vitamin D status. The mechanism underlying this association may involve the reduction of the activation of hydroxylases that yield calcitriol. Future randomized controlled trials with large sample sizes and proper designs are needed to highlight underlying mechanisms.
Collapse
Affiliation(s)
- Fatemeh Azizi-Soleiman
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Safavi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Madar AA, Stene LC, Meyer HE, Brekke M, Lagerløv P, Knutsen KV. Effect of vitamin D3 supplementation on iron status: a randomized, double-blind, placebo-controlled trial among ethnic minorities living in Norway. Nutr J 2016; 15:74. [PMID: 27506667 PMCID: PMC4977672 DOI: 10.1186/s12937-016-0192-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Both vitamin D and iron deficiencies are widespread globally, and a relationship between these deficiencies has been suggested. However, there is a paucity of randomised controlled trials assessing the effect of vitamin D supplementation on iron status. PURPOSE We aimed to investigate whether 16 weeks of daily vitamin D3 supplementation had an effect on serum ferritin, haemoglobin, serum iron and transferrin saturation. METHODS Overall, 251 participants from South Asia, Middle East and Africa aged 18-50 years who were living in Norway were randomised to receive daily oral supplementation of 10 μg vitamin D3, 25 μg vitamin D3, or placebo for 16 weeks during the late winter. Blood samples from baseline and after 16 weeks were analysed for serum 25-hydroxyvitamin D (s-25(OH) D), serum ferritin, haemoglobin and serum iron. In total, 214 eligible participants completed the intervention (86 % of those randomised). Linear regression analysis were used to test the effect of vitamin D3 supplementation combined (10 or 25 μg) and separate doses 10 or 25 μg compared to placebo on change (T2-T1) in each outcome variable adjusted for baseline s-25(OH)D values. RESULTS There was no difference in change in the levels of s-ferritin (1.9 μg/L, 95 % CI: -3.2, 7.0), haemoglobin (-0.02 g/dL, 95 % CI: -0.12, 0.09), s-iron (0.4 μg/L, 95 % CI: -0.5, 1.3) or transferrin saturation (0.7 %, 95 % CI: -0.6.1, 2.0) between those receiving vitamin D3 or those receiving placebo. Serum 25-hydroxyvitamin D increased from 29 nmol/L at baseline to 49 nmol/L after the intervention, with little change in the placebo group. CONCLUSIONS In this population of healthy ethnic minorities from South Asia, the Middle East and Africa who had low vitamin D status, 16 weeks of daily supplementation with 10 or 25 μg of vitamin D3 did not significantly affect the haemoglobin levels or other markers of iron status.
Collapse
Affiliation(s)
- Ahmed A Madar
- Department of Community Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Lars C Stene
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Haakon E Meyer
- Department of Community Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway.,Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Mette Brekke
- Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Per Lagerløv
- Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Kirsten V Knutsen
- Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Guo JP, Pan JX, Xiong L, Xia WF, Cui S, Xiong WC. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease. PLoS One 2015; 10:e0139395. [PMID: 26575486 PMCID: PMC4648559 DOI: 10.1371/journal.pone.0139395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022] Open
Abstract
Patients of Alzheimer's disease (AD) frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe), displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ), increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT) mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO), another iron chelator, selectively inhibited osteoclast (OC) differentiation, without an obvious effect on osteoblast (OB) differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs) from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.
Collapse
Affiliation(s)
- Jun-Peng Guo
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Pathology, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-Xiu Pan
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lei Xiong
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Wen-Fang Xia
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Cui
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine, and Department of Neurology,Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| |
Collapse
|
30
|
Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients 2015; 7:2324-44. [PMID: 25849944 PMCID: PMC4425147 DOI: 10.3390/nu7042324] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 01/25/2023] Open
Abstract
Iron is essential in oxygen transport and participates in many enzymatic systems in the body, with important roles in collagen synthesis and vitamin D metabolism. The relationship between iron and bone health comes from clinical observations in iron overload patients who suffered bone loss. The opposite scenario—whether iron deficiency, with or without anemia, affects bone metabolism—has not been fully addressed. This is of great interest, as this nutrient deficiency is a worldwide public health problem and at the same time osteoporosis and bone alterations are highly prevalent. This review presents current knowledge on nutritional iron deficiency and bone remodeling, the biomarkers to evaluate iron status and bone formation and resorption, and the link between iron and bone metabolism. Finally, it is hypothesized that chronic iron deficiency induces bone resorption and risk of osteoporosis, thus complete recovery from anemia and its prevention should be promoted in order to improve quality of life including bone health. Several mechanisms are suggested; hence, further investigation on the possible impact of chronic iron deficiency on the development of osteoporosis is needed.
Collapse
|
31
|
Gravesen E, Hofman-Bang J, Mace ML, Lewin E, Olgaard K. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats. BMC Nephrol 2013; 14:281. [PMID: 24373521 PMCID: PMC3877875 DOI: 10.1186/1471-2369-14-281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortality in the chronic kidney disease (CKD) population. CKD patients are often treated with iv iron therapy in order to maintain iron stores and erythropoietin responsiveness, also in the case of not being iron depleted. Therefore, the effect of a single high iv dose of two different iron preparations, iron isomaltoside 1000 (IIM) and ferric carboxymaltose (FCM), on plasma levels of FGF23 and phosphate was examined in normal and uremic iron repleted rats. METHODS Iron was administered iv as a single high dose of 80 mg/kg bodyweight and the effects on plasma levels of iFGF23, phosphate, Ca2+, PTH, transferrin, ferritin and iron were examined in short and long term experiments (n = 99). Blood samples were obtained at time 0, 30, 60, 180 minutes, 24 and 48 hours and in a separate study after 1 week. Uremia was induced by 5/6-nephrectomy. RESULTS Nephrectomized rats had significant uremia, hyperparathyroidism and elevated FGF23. Iron administration resulted in significant increases in plasma ferritin levels. No significant differences were seen in plasma levels of iFGF23, phosphate and PTH between the experimental groups at any time point within 48 hours or at 1 week after infusion of the iron compounds compared to vehicle. CONCLUSIONS In non-iron depleted normal and uremic rats a single high dose of either of two intravenous iron preparations, iron isomaltoside 1000, and ferric carboxymaltose, had no effect on plasma levels of iFGF23 and phosphate for up to seven days.
Collapse
Affiliation(s)
- Eva Gravesen
- Nephrological Department P, Rigshospitalet, University of Copenhagen, P 2132, 9 Blegdamsvej, Copenhagen DK 2100, Denmark
| | - Jacob Hofman-Bang
- Nephrological Department P, Rigshospitalet, University of Copenhagen, P 2132, 9 Blegdamsvej, Copenhagen DK 2100, Denmark
| | - Maria L Mace
- Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | - Ewa Lewin
- Nephrological Department P, Rigshospitalet, University of Copenhagen, P 2132, 9 Blegdamsvej, Copenhagen DK 2100, Denmark
- Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | - Klaus Olgaard
- Nephrological Department P, Rigshospitalet, University of Copenhagen, P 2132, 9 Blegdamsvej, Copenhagen DK 2100, Denmark
| |
Collapse
|
32
|
Toxqui L, Blanco-Rojo R, Wright I, Pérez-Granados AM, Vaquero MP. Changes in blood pressure and lipid levels in young women consuming a vitamin D-fortified skimmed milk: a randomised controlled trial. Nutrients 2013; 5:4966-77. [PMID: 24317556 PMCID: PMC3875909 DOI: 10.3390/nu5124966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Vitamin D exerts a variety of extra-skeletal functions. AIM to know the effects of the consumption of a vitamin D-fortified skimmed milk on glucose, lipid profile, and blood pressure in young women. METHODS a randomised, placebo-controlled, double-blind parallel-group trial of 16 weeks duration was conducted in young women with low iron stores who consumed a skimmed milk fortified with iron and 200 IU/day (5 μg) of vitamin D (D-fortified group, n = 55), or a placebo without vitamin D (D-placebo group, n = 54). A reference group (n = 56) of iron-sufficient women was also recruited. RESULTS baseline serum 25-hydroxyvitamin D was inversely correlated with total-cholesterol (r = -0.176, p = 0.023) and low density lipoprotein-cholesterol (LDL-chol) (r = -0.176, p = 0.024). During the assay, LDL-cholesterol increased in the D-placebo group (p = 0.005) while it tended to decrease in the D-fortified group (p = 0.07). Neither group displayed changes in total-cholesterol, high density lipoprotein-cholesterol (HDL-chol), triglycerides or glucose levels. Systolic (p = 0.017) and diastolic (p = 0.010) blood pressure decreased during the assay in the D-fortified group without significant differences compared to the D-placebo. CONCLUSION consumption of a dairy product fortified with vitamin D reduces systolic and diastolic blood pressure but does not change lipid levels in young women.
Collapse
Affiliation(s)
- Laura Toxqui
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|