1
|
Reddy K, Stafford GI, Makunga NP. Skeletons in the closet? Using a bibliometric lens to visualise phytochemical and pharmacological activities linked to Sceletium, a mood enhancer. FRONTIERS IN PLANT SCIENCE 2024; 15:1268101. [PMID: 38576783 PMCID: PMC10991851 DOI: 10.3389/fpls.2024.1268101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Plants from the Sceletium genus (Aizoaceae) have been traditionally used for millennia by the Khoe and Khoen people in southern Africa, as an appetite suppressant as well as a mood elevator. In more recent times, this mood-elevating activity has been commercialised in the South African natural products industry for the treatment of anxiety and depression, with several products available both locally and abroad. Research on this species has seen rapid growth with advancements in analytical and pharmacological tools, in an effort to understand the composition and biological activity. The Web of Science (WoS) database was searched for articles related to 'Sceletium' and 'Mesembrine'. These data were additionally analysed by bibliometric software (VOSviewer) to generate term maps and author associations. The thematic areas with the most citations were South African Traditional Medicine for mental health (110) and anxiolytic agents (75). Pioneer studies in the genus focused on chemical structural isolation, purification, and characterisation and techniques such as thin layer chromatography, liquid chromatography (HPLC, UPLC, and more recently, LC-MS), gas chromatography mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) to study mesembrine alkaloids. Different laboratories have used a diverse range of extraction and preanalytical methods that became routinely favoured in the analysis of the main metabolites (mesembrine, mesembranol, mesembranone, and Sceletium A4) in their respective experimental settings. In contrast with previous reviews, this paper identified gaps in the research field, being a lack of toxicology assays, a deficit of clinical assessments, too few bioavailability studies, and little to no investigation into the minor alkaloid groups found in Sceletium. Future studies are likely to see innovations in analytical techniques like leaf spray mass spectrometry and direct analysis in real-time ionisation coupled with high-resolution time-of-flight mass spectrometry (DART-HR-TOF-MS) for rapid alkaloid identification and quality control purposes. While S. tortuosum has been the primary focus, studying other Sceletium species may aid in establishing chemotaxonomic relationships and addressing challenges with species misidentification. This research can benefit the nutraceutical industry and conservation efforts for the entire genus. At present, little to no pharmacological information is available in terms of the molecular physiological effects of mesembrine alkaloids in medical clinical settings. Research in these fields is expected to increase due to the growing interest in S. tortuosum as a herbal supplement and the potential development of mesembrine alkaloids into pharmaceutical drugs.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Natural Sciences Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Natural Sciences Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Gericke J, Harvey BH, Pretorius L, Ollewagen T, Benecke RM, Smith C. Sceletium tortuosum-derived mesembrine significantly contributes to the anxiolytic effect of Zembrin®, but its anti-depressant effect may require synergy of multiple plant constituents. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117113. [PMID: 37660956 DOI: 10.1016/j.jep.2023.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sceletium tortuosum (L.) N.E.Br. (ST) is an alkaloid-rich succulent plant with various mechanisms of action that infer psychotropic effects. These actions correlate with clinical evidence suggesting efficacy in the treatment of depression and anxiety, in line with its use by indigenous populations. Its low side effect profile suggests potential of ST to improve the overall wellbeing and compliance of millions of patients that experience severe side effects and/or do not respond to current prescription medication. However, to elucidate specific physiological effects of ST extracts, it is necessary to first understand which of its constituents are the major contributors to beneficial effects demonstrated for ST in this context. AIM OF THE STUDY To determine an anxiolytic- and antidepressant-like effective concentration of a ST extract by means of a dose response in zebrafish (ZF) larvae, and to assess relative contributions of equivalent concentrations of isolated alkaloids contained in the effective concentration(s). MATERIALS AND METHODS A dose response study employing a light-dark transition test (LDTT) was done in ZF larvae (<5 days post fertilization) to track locomotor activity in terms of anxiety-like (hyperlocomotion) and depression-like (hypolocomotion) behaviour. Larvae were treated for 1 h directly before the LDTT with escalating concentrations of a ST extract commercially known as Zembrin® (Zem) ranging from 0.25 to 500 μg/mL and compared to an untreated control group (n = 12 per treatment concentration). LDTT was repeated after 24 h to evaluate long-term exposure toxicity. The concentration that best attenuated hyperlocomotion during the dark phase following light-dark transition was identified as the anxiolytic-like concentration. This concentration, plus one higher and one lower concentration, were used for subsequent tests. The percentage content of each alkaloid (mesembrine, mesembrenone, mesembrenol, and mesembranol) in these concentrations were calculated and applied to additional larvae to identify the most effective anxiolytic-like alkaloid in the LDTT. To identify antidepressant-like therapeutic concentration and equivalent alkaloid concentration, the same treatment concentrations were tested in larvae (n = 12 per treatment concentration) pre-exposed to reserpine for 24 h. Depending on normality of data distribution, Brown-Forsythe and Welch, or Kruskal-Wallis ANOVA were used, with Dunnett or Dunn's multiple comparisons tests. RESULTS Only the extreme concentration of Zem (500 μg/mL) elicited toxicity after treatment for 24 h. Zem 12.5 μg/mL was the most effective anxiolytic-like concentration as it significantly decreased locomotor activity (P = 0.05) in the LDTT. Low (5 μg/mL), optimal (12.5 μg/mL) and high (25 μg/mL) Zem concentrations, as well as treatment solutions of single alkaloids (mesembrine, mesembrenone, mesembranol and mesembrenol), prepared to contain equivalent concentrations of each major alkaloid contained within these three concentrations of Zem, were tested further. Only mesembrine concentrations equal to that contained within the optimal and high dose of Zem (12.5 and 25 μg/mL) showed significant anxiolytic-like effects (P < 0.05). Only the highest Zem concentration (25 μg/mL) reversed the effects of reserpine - indicating antidepressant-like properties (P < 0.05) - while isolated alkaloids failed to induce such effects when administered in isolation. CONCLUSIONS Current data provide evidence of both anxiolytic- and antidepressant-like effect of whole extract of Zem, with relatively higher concentrations required to achieve antidepressant-like effect. Of all alkaloids assessed, only mesembrine contributed significantly to the anxiolytic-like effects of Zem. No alkaloid alone could be pinpointed as a contributor to the antidepressant-like activity observed for higher concentration Zem. This may be due to synergistic effects of the alkaloids or may be due to other components not tested here. Current data warrants further investigation into mechanisms of action, as well as potential synergy, of ST alkaloids in suitable mammalian in vivo models.
Collapse
Affiliation(s)
- Johané Gericke
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Lesha Pretorius
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Rohan M Benecke
- Division Clinical Pharmacology, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Carine Smith
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Abstract
Leafy vegetables promote reparation of energy loss due to oxidative stress, and they have the potential to alleviate hunger and malnutrition as well as other forms of metabolic imbalance ravaging the world. However, these vegetables are underutilized, despite the fact that they harbor essential minerals needed for critical cellular activities. As amaranth is one of the earliest vegetables reputed for its high nutraceutical and therapeutic value, in this study, we explored research on the Amaranthus species, and identified areas with knowledge gaps, to harness the various biological and economic potentials of the species. Relevant published documents on the plant were retrieved from the Science Citation Index Expanded accessed through the Web of Science from 2011 to 2020; while RStudio and VOSviewer were used for data analysis and visualization, respectively. Publications over the past decade (dominated by researchers from the USA, India, and China, with a collaboration index of 3.22) showed that Amaranthus research experienced steady growth. Findings from the study revealed the importance of the research and knowledge gaps in the underutilization of the vegetable. This could be helpful in identifying prominent researchers who can be supported by government funds, to address the malnutrition problem in developing countries throughout the world.
Collapse
|
4
|
Zhanataev AK, Pigarev SE, Fedoros EI, Panchenko AV, Anisina EA, Chayka ZV, Durnev AD, Anisimov VN. Antigenotoxic and antimutagenic effects of lignin derivative BP-C2 against dioxidine and cyclophosphamide in vivo in murine cells. Toxicol Rep 2022; 9:743-749. [DOI: 10.1016/j.toxrep.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
|
5
|
López V, Cásedas G, Petersen-Ross K, Powrie Y, Smith C. Neuroprotective and anxiolytic potential of green rooibos ( Aspalathus linearis) polyphenolic extract. Food Funct 2022; 13:91-101. [PMID: 34877951 DOI: 10.1039/d1fo03178c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
South African rooibos (Aspalathus linearis) tea is globally consumed for its health benefits and caffeine free nature, but no information is available on the neuroprotective capacity of (unfermented) green rooibos. Our aim was to investigate the cytoprotective activity of green rooibos in neuronal cells, including probing antioxidant and enzyme inhibitory properties that could explain observed effects in these cells. We also investigated the anxiolytic potential of green rooibos using zebrafish larval models. Green rooibos extract (Green oxithin™) was assessed for its neuroprotective potential in Neuro-2a cells treated with different concentrations of the extract (12.5-25-50-100 μg mL-1) and different concentrations of hydrogen peroxide (250 or 125 μM) as oxidizing agent. Cell viability (MTT) and redox status (intracellular ROS) were also quantified in these cells. Antioxidant properties of the extract were quantified using cell-free systems (DPPH, ORAC and xanthine/xanthine oxidase), and potential neuroprotection evaluated in terms of its potential to inhibit key enzymes of the CNS (monoamine oxidase A (MOA-A), acetylcholinesterase (AChE) and tyrosinase (TYR)). Results demonstrated that green rooibos extract exerted significant cytoprotective properties in Neuro-2a cells, particularly when exposed to lethal 250 μM hydrogen peroxide, increasing cell survival by more than 100%. This may be ascribed (at least partially) to its capacity to limit intracellular ROS accumulation in these cells. Data from cell-free systems confirmed that green rooibos was able to scavenge free radicals (synthetic and physiological) in a dose dependent manner with a similar profile activity to vitamins C and E. Green rooibos also acted as a moderate MAO-A inhibitor, but had no significant effect on AChE or TYR. Finally, zebrafish larvae treated with lower doses of green rooibos demonstrated a significant anxiolytic effect in the light-dark anxiety model. Using the PTZ excitotoxicity model, green rooibos was shown to rescue GABA receptor signalling, which together with its demonstrated inhibition of MAO-A, may account for the anxiolytic outcome. Current data confirms that green rooibos could be considered a "functional brain food" and may be a good option as starting ingredient in the development of new nutraceuticals.
Collapse
Affiliation(s)
- Víctor López
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Kelly Petersen-Ross
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Yigael Powrie
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Carine Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| |
Collapse
|
6
|
Chen T, Luo S, Wang X, Zhou Y, Dai Y, Zhou L, Feng S, Yuan M, Ding C. Polyphenols from Blumea laciniata Extended the Lifespan and Enhanced Resistance to Stress in Caenorhabditis elegans via the Insulin Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10111744. [PMID: 34829615 PMCID: PMC8614712 DOI: 10.3390/antiox10111744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Blumea laciniata is widely used as a folk medicine in Asia, but relevant literature on it is rarely reported. We confirmed that polyphenol extract (containing chlorogenic acid, rutin, and luteolin-4-O-glucoside) from B. laciniata (EBL) showed strong antioxidant ability in vitro. Hence, in this work, we applied Caenorhabditis elegans to further investigate the antioxidant and anti-ageing abilities of EBL in vivo. The results showed that EBL enhanced the survival of C. elegans under thermal stress by 12.62% and sharply reduced the reactive oxygen species level as well as the content of malonaldehyde. Moreover, EBL increased the activities of antioxidant enzymes such as catalase and superoxide dismutase. Additionally, EBL promoted DAF-16, a transcription factor, into the nucleus. Besides, EBL extended the lifespan of C. elegans by 17.39%, showing an anti-ageing effect. Different mutants indicated that the insulin/IGF-1 signaling pathway participated in the antioxidant and anti-ageing effect of EBL on C. elegans.
Collapse
|
7
|
Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, Yodkeeree S, Limtrakul (Dejkriengkraikul) P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. PLANTS (BASEL, SWITZERLAND) 2021; 10:1383. [PMID: 34371586 PMCID: PMC8309239 DOI: 10.3390/plants10071383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Recently, the global trend toward the use of natural extracts and antioxidant agents in the cosmetic cream industry to produce whitening effects has been increasing. This has also been a persistent trend in Thailand. In this study, samples of commercial cosmetic creams on the Thai market were assessed for a functional evaluation of their antioxidant activity, tyrosinase inhibitory effects, and phenolic contents. Samples were extracted using hot water and sonication extraction method to obtain the functional cream extracts. Total phenolic contents in all samples were within the range of 0.46-47.92 mg GAE/30 g cream. Antioxidant activities of the cream extracts were within the range of 3.61-43.98 mg Trolox equivalent/30 g cream, while tyrosinase inhibition activities were within the range of 2.58-97.94% of inhibition. With regard to the relationship between the total phenolic content and the antioxidant activity of the cosmetic creams, Pearson's correlation coefficient revealed a moderately positive relationship with an r value of 0.6108. Furthermore, the relationship between the antioxidant activity and the tyrosinase inhibitory activity of the cosmetic creams was highly positive with an r value of 0.7238. Overall, this study demonstrated that the total phenolic contents in the functional cosmetic creams could play a role in antioxidant activity and anti-tyrosinase activities. The findings indicate how the whitening and antioxidant effects of cosmetic creams could be maintained after the products have been formulated, as this concern can affect the consumer's decision when purchasing cosmetic products.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Veterinary Biosciences and Veterinary Public Health, Division of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
8
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
van de Vyver M, Powrie YSL, Smith C. Targeting Stem Cells in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:163-181. [PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.
Collapse
Affiliation(s)
- Mari van de Vyver
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Yigael S L Powrie
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Accelerated ageing profile in inflammatory arthritis is unique and tissue compartment specific. Inflammopharmacology 2020; 28:967-977. [PMID: 32594363 DOI: 10.1007/s10787-020-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Rheumatoid arthritis is prevalent in more than 1% of the global population, with the highest occurrence between ages 35 and 50, which places a huge burden on the economy. Drug discovery for the prevention of this chronic disease is; therefore, a priority. It is known that subclinical progression of many chronic non-communicable diseases is exacerbated via accelerated ageing, a pro-inflammatory phenotype shift. However, rheumatoid arthritis additionally has significant humoral immune activation, inflammatory signalling-and thus the accelerated ageing profile-may differ from other chronic inflammatory diseases. The current study simulated inflammatory arthritis onset in a collagen-induced arthritis (CIA) rodent model, to characterise the redox and inflammatory profile at the onset of clinical symptoms, in different tissues, in the presence and absence of preventative antioxidant treatment. The data illustrate that an increased free radical level are evident already very early on in RA disease progression. Furthermore, oxidative stress seems to somewhat precede a significant pro-inflammatory state, perhaps due to humoral immune activation. Our data across different compartments further suggest that the compensatory increase in endogenous antioxidant activity is gradually exhausted at a different pace, with the liver showing the first signs of oxidant damage, even before significant evidence exist in circulation. The current data further suggest that preventative antioxidant intervention may have a sparing effect on endogenous antioxidant mechanisms and preserve telomere length to delay disease progression-or at least the accelerated ageing known to exacerbate RA symptoms-although it did not seem to have a significant direct effect on the autoimmune activity.
Collapse
|
11
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
12
|
Smith C, Swart A. Aspalathus linearis (Rooibos) - a functional food targeting cardiovascular disease. Food Funct 2019; 9:5041-5058. [PMID: 30183052 DOI: 10.1039/c8fo01010b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing consumer bias toward natural products and the considerable wealth of indigenous knowledge has precipitated an upturn in market-driven research into potentially beneficial medicinal plants. In this context, Aspalathus linearis (Rooibos) has been identified to be a promising candidate which may impact cardiovascular disease (CVD), which is one of the most widely studied chronic diseases of modern times. Despite these efforts, ischemic heart disease remains the number one cause of mortality globally. Apart from genetic predisposition and other aetiological mechanisms specific to particular types of CVD, co-factors from interlinked systems contribute significantly to disease development and the severity of its clinical manifestation. The bioactivity of Rooibos is directed towards multiple therapeutic targets. Experimental data to date include antioxidant, anti-inflammatory and anti-diabetic effects, as well as modulatory effects in terms of the immune system, adrenal steroidogenesis and lipid metabolism. This review integrates relevant literature on the therapeutic potential of Rooibos in the context of CVD, which is currently the most common of non-communicable diseases. The therapeutic value of whole plant extracts versus isolated active ingredients are addressed, together with the potential for overdose or herb-drug interaction. The body of research undertaken to date clearly underlines the benefits of Rooibos as both preventative and complementary therapeutic functional food in the context of CVD.
Collapse
Affiliation(s)
- Carine Smith
- Dept Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.
| | | |
Collapse
|
13
|
Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology 2018; 27:189-197. [PMID: 30547263 DOI: 10.1007/s10787-018-0549-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Cyanidin and chlorogenic acid are polyphenols from plant origin that are present in many common fruits, particularly in berries. To corroborate the protective or detrimental effects of both compounds from a neuro-inflammatory perspective, in vitro experiments were carried out in human astrocytes (U-373). Astrocytes were pre-treated with a range of concentrations of either cyanidin, chlorogenic acid or a combined treatment for a period of 30 min, before exposure to Escherichia coli lipopolysaccharide (LPS) challenge for 23.5 h, after which cytotoxicity (propidium iodide exclusion assay), cytoprotective effects (XTT assay) and effects on functional capacity (secretion of pro-inflammatory cytokines IL-6 and MCP-1) were evaluated. No treatment resulted in cytotoxicity, but high dose (20 µg/mL) LPS significantly reduced mitochondrial reductive capacity (p < 0.001). This effect was prevented in a dose-dependent manner by both cyanidin and chlorogenic acid, as well as by the combination treatment. However, in the absence of LPS, IL-6 secretion was significantly increased in response to 2 µM of either cyanidin or chlorogenic acid (both p < 0.0001), as well as the combination treatment (p < 0.01). MCP-1 secretion followed a similar trend, but did not reach statistical significance. Although we acknowledge the requirement for in vivo investigations to validate our interpretations, current data highlight the potential risk for antioxidant toxicity that is linked to high dose supplementation with single compound antioxidants. Research focused at elucidating synergistic effects between different antioxidants is required to minimise risk of adverse effects.
Collapse
|
14
|
Antioxidants from Plants Protect against Skin Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1454936. [PMID: 30174780 PMCID: PMC6098906 DOI: 10.1155/2018/1454936] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Exposure to UV light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, with consequent increase in oxidative stress and thus in photoaging. Exogenous supplementation with dietary antioxidants and/or skin pretreatment with antioxidant-based lotions before sun exposure might be a winning strategy against age-related skin pathologies. In this context, plants produce many secondary metabolites to protect themselves from UV radiations and these compounds can also protect the skin from photoaging. Phenolic compounds, ascorbic acid and carotenoids, derived from different plant species, are able to protect the skin by preventing UV penetration, reducing inflammation and oxidative stress, and influencing several survival signalling pathways. In this review, we focus our attention on the double role of oxidants in cell metabolism and on environmental and xenobiotic agents involved in skin photoaging. Moreover, we discuss the protective role of dietary antioxidants from fruits and vegetables and report their antiaging properties related to the reduction of oxidative stress pathways.
Collapse
|