1
|
Li C, Zheng X, Xie S, Lin D. Exonuclease-III Assisted Signal Cycle Integrating with Self-Priming Mediated Chain Extension for Sensitive and Reliable MicroRNA Detection. ACS OMEGA 2025; 10:6228-6233. [PMID: 39989823 PMCID: PMC11840618 DOI: 10.1021/acsomega.4c11417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
MicroRNA (miRNA) is pivotal in regulating pathological progression and may serve as a significant biomarker for early diagnosis, treatment, and management strategies for atherosclerosis. This study produced a self-priming amplification-accelerated CRISPR/Cas system-based method for the sensitive and selective detection of miRNA by merging Exo-III-assisted target recycling, self-priming-mediated chain extension, and the CRISPR/Cas12a system. The sensor comprises three stages: (i) the creation of a substrate template via Exo-III mediated target recycling and DNA ligase assisted ligation; (ii) the exponential isothermal reaction facilitated by DNA polymerase for signal amplification; (iii) the trans-cleavage activity of CRISPR/Cas12a after recognizing the amplification product generates signals. We employed miRNA-21 as a target. The strategy enables sensitive detection of miRNA-21 without the use of primers, and the unique design of the CRISPR/sgRNA complex efficiently mitigates background signal interference. The sensor can recognize single-base mutant homologous sequences and demonstrate a steady performance in complicated biological matrices. This sensor has been effectively employed to precisely assess miRNA-21 in engineered clinical samples, showcasing its significant potential in clinical diagnostics and of atherosclerosis.
Collapse
Affiliation(s)
- Chunmeng Li
- Department
of Vascular Surgery, The Dingli Clinical
Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou City, Zhejiang Province 325000, China
- Laboratory
of Wenzhou Pan-Vascular Disease Management Center, Wenzhou City, Zhejiang Province 325000, China
| | - Xiangjian Zheng
- Department
of Vascular Surgery, The Dingli Clinical
Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou City, Zhejiang Province 325000, China
| | - Shangshang Xie
- Department
of Vascular Surgery, The Dingli Clinical
Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou City, Zhejiang Province 325000, China
| | - Deyong Lin
- Department
of Vascular Surgery, The Dingli Clinical
Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou City, Zhejiang Province 325000, China
| |
Collapse
|
2
|
Ye Y, Wang Z. Effects of LncRNA MYOSLID and MiR-29c-3p on the Proliferation and Migration of Angiotensin II-induced Vascular Smooth Muscle Cells. Int Heart J 2025; 66:164-174. [PMID: 39828340 DOI: 10.1536/ihj.24-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.Angiotensin (Ang) II-induced VSMCs were used for in vitro research. The MYOSLID and miR-29c-3p expression patterns in VSMCs were assessed by reverse transcription-quantitative polymerase chain reaction. MYOSLID was overexpressed, or miR-29c-3p was silenced in VSMCs by cell transfection, followed by proliferation, migration, and apoptosis evaluation. The colocalization of MYOSLID and miR-29c-3p was observed by RNA in situ hybridization. The targeted binding relationship of miR-29c-3p and MYOSLID was verified by dual-luciferase and RNA immunoprecipitation assays. Joint experiments were performed with the overexpressed MYOSLID and miR-29c-3p via cotransfection. An ATH mouse model was established and injected with LV-MYOSLID, with the aortic root atherosclerotic lesion observed by HE staining and the α-SMA expression determined by immunohistochemistry.The MYOSLID expression was decreased, while the miR-29c-3p expression was increased in the Ang II-induced VSMCs, along with the promoted VSMC proliferation, apoptosis, and migration. Meanwhile, the MYOSLID overexpression or miR-29c-3p silencing repressed the Ang II-induced VSMC behaviors. The miR-29c-3p mimics reduced the luciferase activity of the MYOSLID 3'UTR-WT-transfected cells, but had no obvious influence on the MYOSLID 3'UTR-MUT-transfected cells. Overexpressed miR-29c-3p partially nullified the highly expressed MYOSLID-repressed Ang II-induced VSMC apoptosis, proliferation, and migration. The MYOSLID overexpression repressed the miR-29c-3p expression and reduced the atherosclerotic lesion area and the number of α-SMA-positive VSMCs in ATH mice.The MYOSLID overexpression restrained the Ang II-induced VSMC proliferation, migration, and apoptosis by repressing the miR-29c-3p expression, thus retarding the atherosclerotic plaque formation.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Angiotensin II/pharmacology
- Cell Proliferation
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cell Movement
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Apoptosis
- Disease Models, Animal
- Cells, Cultured
- Myocytes, Smooth Muscle/metabolism
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yumin Ye
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University
| | - Zhenhua Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University
| |
Collapse
|
3
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
4
|
Abedpoor N, Taghian F, Jalali Dehkordi K, Safavi K. Sparassis latifolia and exercise training as complementary medicine mitigated the 5-fluorouracil potent side effects in mice with colorectal cancer: bioinformatics approaches, novel monitoring pathological metrics, screening signatures, and innovative management tactic. Cancer Cell Int 2024; 24:141. [PMID: 38637796 PMCID: PMC11027426 DOI: 10.1186/s12935-024-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer. METHODS For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques. RESULTS MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors. CONCLUSIONS This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Ji M, Wei Y, Ye Z, Hong X, Yu X, Du R, Li Q, Sun W, Liu D. In Vivo Fluorescent Labeling of Foam Cell-Derived Extracellular Vesicles as Circulating Biomarkers for In Vitro Detection of Atherosclerosis. J Am Chem Soc 2024; 146:10093-10102. [PMID: 38545938 DOI: 10.1021/jacs.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Real-time monitoring of the development of atherosclerosis (AS) is key to the management of cardiovascular disease (CVD). However, existing laboratory approaches lack sensitivity and specificity, mostly due to the dearth of reliable AS biomarkers. Herein, we developed an in vivo fluorescent labeling strategy that allows specific staining of the foam cell-derived extracellular vesicles (EVs) in atherosclerotic plaques, which are released into the blood as circulating biomarkers for in vitro detection of AS. This strategy relies on a self-assembled nanoprobe that could recognize foam cells specifically, where the probe is degraded by the intracellular HClO to produce a trifluoromethyl-bearing boron-dipyrromethene fluorophore (termed B-CF3), a lipophilic dye that can be transferred to the exosomal membranes. These circulating B-CF3-stained EVs can be detected directly on a fluorescence spectrometer or microplate reader without resorting to any sophisticated analytical method. This liquid-biopsy format enables early detection and real-time differentiation of lesion vulnerability during AS progression, facilitating effective CVD management.
Collapse
Affiliation(s)
- Moxuan Ji
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongchun Wei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Ye
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxuan Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Ji T, Yan D, Huang Y, Luo M, Zhang Y, Xu T, Gao S, Zhang L, Ruan L, Zhang C. Fibulin 1, targeted by microRNA-24-3p, promotes cell proliferation and migration in vascular smooth muscle cells, contributing to the development of atherosclerosis in APOE -/- mice. Gene 2024; 898:148129. [PMID: 38184021 DOI: 10.1016/j.gene.2024.148129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) are the main components of atherosclerosis (AS) plaque. VSMCs participate in plaque formation through phenotypic transformation. The complex interplay between ECM and VSMCs plays vital roles in the progression of AS throughout the disease. An in-depth investigation into the functions of ECM-related molecules in VSMC development might contribute to deciphering the complexity of AS pathogenesis. In this study, the roles and molecular mechanisms of the ECM-related molecule Fibulin-1 (FBLN1) in the development of AS and VSMCs were explored using RNA sequencing, bioinformatics analysis, and cell experiments. Furthermore, the expression of FBLN1, as determined by western blot analysis, immunohistochemistry, and real-time quantitative PCR, was significantly increased in AS vascular samples compared to normal vascular samples. Silencing the FBLN1 through AAV viral injection in mice revealed an improvement in AS. Functional analyses revealed that FBLN1 promoted VSMC proliferation, migration, and wound healing. Combined with RNA sequencing and TargetScan7.2 prediction data, 22 microRNAs (miRNAs) were found to have the potential for direct interaction with the FBLN1 3'UTR in VSMCs. Among these 22 miRNAs, it was demonstrated that microRNA-24-3p (miR-24-3p) could negatively regulate FBLN1 expression by directly binding to the FBLN1 3'UTR. Moreover, miR-24-3p inhibited cell proliferation, migration, and wound healing, and suppressed the expression of Ki67, matrix metalloproteinase-2 and -9 (MMP2/9) by targeting FBLN1 in VSMCs. Meanwhile, inhibition of FBLN1 expression could restrain VSMC phenotypic transformation. In conclusion, miR-24-3p inhibited VSMC proliferation and migration by targeting FBLN1. Additionally, multiple miRNAs with the potential to interact with the FBLN1 3'UTR were identified. These findings might deepen our understanding of ECM gene regulatory networks and the complex etiology of AS.
Collapse
Affiliation(s)
- Tianyi Ji
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mandi Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ting Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shangbang Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Kerkhof PLM, Tona F. Sex differences in diagnostic modalities of atherosclerosis in the macrocirculation. Atherosclerosis 2023; 384:117275. [PMID: 37783644 DOI: 10.1016/j.atherosclerosis.2023.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Asymptomatic atherosclerosis begins early in life and may progress in a sex-specific manner to become the major cause of cardiovascular morbidity and death. As diagnostic tools to evaluate atherosclerosis in the macrocirculation, we discuss imaging methods (in terms of computed tomography, positron emission tomography, intravascular ultrasound, magnetic resonance imaging, and optical coherence tomography), along with derived scores (Agatston, Gensini, Leaman, Syntax), and also hemodynamic indices of vascular stiffness (including flow-mediated dilation, shear stress, pulse pressure, augmentation index, arterial distensibility), assessment of plaque properties (composition, erosion, rupture), stenosis measures such as fractional flow reserve. Moreover, biomarkers including matrix metalloproteinases, vascular endothelial growth factors and miRNAs, as well as the impact of machine learning support, are described. Special attention is given to age-related aspects and sex-specific characteristics, along with clinical implications. Knowledge gaps are identified and directions for future research formulated.
Collapse
Affiliation(s)
- Peter L M Kerkhof
- Dept. Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands.
| | - Francesco Tona
- Dept. Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| |
Collapse
|
9
|
Della Corte V, Todaro F, Cataldi M, Tuttolomondo A. Atherosclerosis and Its Related Laboratory Biomarkers. Int J Mol Sci 2023; 24:15546. [PMID: 37958528 PMCID: PMC10649778 DOI: 10.3390/ijms242115546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Atherosclerosis constitutes a persistent inflammatory ailment, serving as the predominant underlying condition for coronary artery disease (CAD), peripheral artery disease (PAD), and cerebrovascular disease. The progressive buildup of plaques within the walls of medium- and large-caliber arteries characterizes the atherosclerotic process. This accumulation results in significant narrowing that impedes blood flow, leading to critical tissue oxygen deficiency. Spontaneous blockage of thrombotic vessels can precipitate stroke and myocardial infarction, which are complications representing the primary global causes of mortality. Present-day models for predicting cardiovascular risk incorporate conventional risk factors to gauge the likelihood of cardiovascular events over a ten-year span. In recent times, researchers have identified serum biomarkers associated with an elevated risk of atherosclerotic events. Many of these biomarkers, whether used individually or in combination, have been integrated into risk prediction models to assess whether their inclusion enhances predictive accuracy. In this review, we have conducted a comprehensive analysis of the most recently published literature concerning serum biomarkers associated with atherosclerosis. We have explored the potential utility of incorporating these markers in guiding clinical decisions.
Collapse
|
10
|
Moayedi F, Taghian F, Jalali Dehkordi K, Hosseini SA. Cumulative effects of exercise training and consumption of propolis on managing diabetic dyslipidemia in adult women: a single-blind, randomized, controlled trial with pre-post-intervention assessments. J Physiol Sci 2023; 73:17. [PMID: 37542207 PMCID: PMC10717816 DOI: 10.1186/s12576-023-00872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/17/2023] [Indexed: 08/06/2023]
Abstract
Dyslipidemia is an imbalance of various lipids, and propolis, as a natural resinous viscos mixture made by Apis mellifera L. could improve in this condition. In this single-blind, randomized trial, 60 women with type 2 diabetes and dyslipidemia were divided into four groups: (1) the patients who did not apply the combined training and 500 mg propolis capsules supplement (Control group); (2) subjects performed combined training, including aerobic and resistance training (EXR); (3) subjects received the 500 mg propolis supplement capsules (SUPP); (4) Subjects performed combined training along with receiving the 500 mg propolis supplement capsules (EXR + SUPP). We evaluated the concentration of CTRP12, SFRP5, interleukin-6 (IL6), superoxide dismutase (SOD), malondialdehyde (MDA), adiponectin, and total antioxidant capacity (TAC) before and after the intervention. MDA, TAC, IL6, CTRP12, SFRP5 IL6, adiponectin, and lipid profile levels ameliorated in the EXR + SUPP group. We found that 8 weeks of treatment by combined exercise training and propolis supplement decreased inflammation activity and increased antioxidant defense in women with diabetic dyslipidemia.Trial registration This study was registered in the Iranian Registry of Clinical Trials; IRCT code: IRCT20211229053561N1.
Collapse
Affiliation(s)
- Fatemeh Moayedi
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Seyed Ali Hosseini
- Department of Sports Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
11
|
Zhang M, Yu Z, Zhao L, Luo H. Long non-coding RNA PVT1 regulates atherosclerosis progression via the microRNA-106b-5p/ACSL4 axis. Biochem Biophys Res Commun 2023; 667:170-179. [PMID: 37236049 DOI: 10.1016/j.bbrc.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been associated with atherosclerosis (AS), but the role of lncRNA PVT1 in this disease is still unknown. However, lncRNA PVT1 was found to be significantly upregulated in the serum of AS patients. In vitro experiments using human vascular endothelial cells (HUVECs) showed that oxidized low-density lipoprotein (ox-LDL) treatment enhanced PVT1 expression and impeded HUVEC proliferation, which could be reversed by PVT1 knockdown or miR-106b-5p mimics. Additionally, knockdown of PVT1 and overexpression of miR-106b-5p inhibited the increase of iron content, MDA level, lipid ROS, ACSL4, and PTGS2 in ox-LDL-induced HUVECs, as well as the decrease of GSH and GPX4. We also found that PVT1 knockdown reduced lipid deposition, atherosclerotic plaque number, and size in ApoE-/- mice. These results suggest that PVT1 plays a crucial role in AS progression by regulating the miR-106b-5p/ACSL4 axis in HUVECs, and may therefore be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hui Luo
- Department of Cardiology, The First Hospital of Changsha, Changsha, 410008, China.
| |
Collapse
|
12
|
Farajizadeh F, Taghian F, Jalali Dehkordi K, Mirsafaei Rizi R. Swimming training and herbal nanoformulations as natural remedies to improve sensory-motor impairment in rat midbrain tumor models: system biology, behavioral test, and experimental validation. 3 Biotech 2023; 13:149. [PMID: 37131964 PMCID: PMC10148939 DOI: 10.1007/s13205-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Motor impairment worsens health-related quality of life in patients with primary and metastatic midbrain tumors. Here, 56-male-Wistar rats were divided into eight groups: Normal group, Midbrain Tomur Model group, Model + Exe group, Model + Lipo, Model + Extract, Model + Lipo-Extract, Model + Extract-Exe, Model + Lipo-Extract + Exe. According to the aim, mid-brain tumor models were conducted by injections of the C6 glioma cell line (5 × 105 cell suspension) and stereotaxic techniques in the substantia nigra area. Furthermore, consumption of nanoformulation of herbals extract (100 mg/kg/day), crude extract (100 mg/kg/day), and swimming training (30 min, 3 days/week) as interventional protocols were performed for 6 weeks. In addition, we evaluated the effect of polyherbal nanoliposomes containing four plant extracts and swimming training on the GABArα1/TRKB/DRD2/DRD1a/TH network in the substantia nigra of the midbrain tumor rat model. Data emphasized that DRD2 might be a druggable protein with the network's highest significance cut-point effect that could modulate sensory-motor impairment. Furthermore, we found Quercetin, Ginsenosides, Curcumin, and Rutin, as bioactive compounds present in Ginseng, Matthiola incana, Turmeric, and Green-Tea extracts, could bind over the DRD2 protein with approved binding affinity scores. Based on our data, swimming training, and nanoliposome-enriched combined supplements could consider effective complementary medicine for motor impairment recovery induced by the midbrain tumor in the substantia nigra area. Hence, regular swimming training and natural medicines rich in polyphenolic bioactive components and antioxidative effects could modify and improve the dopamine receptors' function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03574-3.
Collapse
Affiliation(s)
- Fariba Farajizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Rezvan Mirsafaei Rizi
- Department of Sports Injuries, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
13
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
14
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
15
|
Zarei S, Taghian F, Sharifi G, Abedi H. Alternation of heart microRNA-mRNA network by high-intensity interval training and proanthocyanidin in myocardial ischemia rats: Artificial intelligence and validation experimental. J Food Biochem 2022; 46:e14488. [PMID: 36271618 DOI: 10.1111/jfbc.14488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Heart ischemia is an irreversible condition that occurs via decreased blood flow in vessels by genetic factors, molecular regulators, and environmental conditions. The microRNAs binding to 3´UTR of target genes can influence gene expression and play pivotal roles in several mechanisms identified as a potential biomarker to the pathogenesis. We have screened a pool of microRNAs and mRNAs according to their potential correlation to myocardial ischemia based on artificial intelligence. We constructed the hub genes and mRNA-microRNA networks by R programing language and in silico analysis. Moreover, we calculated the binding affinity of the 3D structure of proanthocyanidin on VEGFα and GATA4 to ameliorate heart tissue after ischemia. Then we treated rats with 300 mg/kg proanthocyanidins and exercised in different intensity and duration times (low, moderate, and high-intensity interval training) for 14 weeks. In the second step, after 14 weeks, isoproterenol hydrochloride was injected into the rats, and myocardial ischemia was induced. We indicated that VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p are regulatable after 14 weeks of exercise training and proanthocyanidin extract consumption and could prevent myocardial injuries in ischemia. Moreover, we revealed different intensity and duration times, and proanthocyanidin modulated the microRNA-mRNA interaction in rats with myocardial ischemia. Proanthocyanidin consumption as a bioactive compound may significantly ameliorate myocardial dysfunction and offset pathological hallmarks of myocardial ischemia. Moreover, exercise has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. PRACTICAL APPLICATIONS: Complimentary medicine identified Proanthocyanidin and exercise are recognized as effective methods to prevent and improve Myocardial ischemia. According to medical biology servers, we explored the VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p as a vital pathomechanism of myocardial ischemia. Furthermore, proanthocyanidin extract is the effective compound that could has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. Furthermore, proanthocyanidin and swimming training might recover myocardial dysfunction and regulate the hub genes and mRNA-microRNA networks.
Collapse
Affiliation(s)
- Safar Zarei
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Sharifi
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassanali Abedi
- Research Center for Noncommunicable Diseases, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
16
|
Hajibabaie F, Abedpoor N, Safavi K, Taghian F. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 2022; 46:e14480. [PMID: 36239429 DOI: 10.1111/jfbc.14480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/14/2023]
Abstract
Cytokine storms lead to cardiovascular diseases (CVDs). Natural herbal compounds are considered the primary source of active agents with the potential to prevent or treat inflammatory-related pathologies such as CVD and diabetes. Flaxseed contains phytochemicals, including secoisolariciresinol diglucoside (SDG), α-linolenic acid (ALA), and lignans, termed "SAL." Hence, we evaluated the effect of the SAL on the H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Here, candidate hub genes, TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7, were selected as effective genes in diabetic cardiovascular pathogenesis based on in-silico analysis and chemoinformatic. Myocardial infarction (MI) was induced using H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Real-time qPCR was conducted to assess the expression level of hub genes. This study indicated that SAL compounds bound to the Il-6, SIRT1, and TNF-α active sites as druggable candidate proteins based on the chemoinformatics analysis. This study displayed that the TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7 network dysfunction in MI models were ameliorated by SAL consumption. Furthermore, SAL compounds improved the function and myogenesis of H9c2 cells in hyperlipidemic and hyperglycemic conditions. Our data suggested that phytochemicals obtained from flaxseed might have proposed potential complementary treatment or preventive strategies for MI. PRACTICAL APPLICATIONS: Phytochemicals obtained from flaxseed (SAL) could reverse diabetic heart dysfunction hallmarks and provide new potential treatment approaches in cardiovascular therapy. SAL could be considered complementary and alternative medicines for treating various disorders/diseases singly or synchronizing with prescription drugs.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
17
|
Li YP, Qiang TT, Wang KY, Wang XL. Shexiang Baoxin Pill Regulates Intimal Hyperplasia, Migration, and Apoptosis after Platelet-Derived Growth Factor-BB-Stimulation of Vascular Smooth Muscle Cells via miR-451. Chin J Integr Med 2022; 28:785-793. [PMID: 35840853 DOI: 10.1007/s11655-022-2891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the regulatory roles of Shexiang Baoxin Pill (SXBXW) in neointimal formation and vascular smooth muscle cells (VSMCs) invasion and apoptosis as well as the potential molecular mechanisms using cultured VSMCs model of vascular injury (platelet-derived growth factor (PDGF)-BB-stimulated) in vitro. METHODS VSMCs were randomly assigned to 5 groups: blank, PDGF-BB (20 ng/mL+ 0.1% DMSO), SXBXW-L (PDGF-BB 20 ng/mL + SXBXW low dose 0.625 g/L), SXBXW-M (PDGF-BB 20 ng/mL + SXBXW medium dose 1.25 g/L) and SXBXW-H (PDGF-BB 20 ng/mL+ SXBXW high dose 2.5 g/L) group. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and bromodeoxyuridine (BrdU) incorporation assay, the migration effects were detected by Transwell assay, cell apoptosis rate was measured by the Annexin V/propidium iodide (PI) apoptosis kit. The markers of contractile phenotype of VSMCs were detected with immunofluorescent staining. To validate the effects of miR-451 in regulating proliferation, migration and apoptosis treated with SXBXW, miR-451 overexpression experiments were performed, the VSMCs were exposed to PDGF-BB 20 ng/mL + 0.1% DMSO and later divided into 4 groups: mimic-NC (multiplicity of infection, MOI=50), SXBXW (1.25 g/L) + mimic-NC, mimic-miR451 (MOI=50), and SXBXW (1.25 g/L) + mimic-miR451, and alterations of proteins related to the miR-451 pathway were analyzed using Western blot. RESULTS PDGF-BB induced VSMCs injury causes acceleration of proliferation and migration. SXBXW inhibited phenotypic switching, proliferation and migration and promoted cell apoptosis in PDGF-BB-induced VSMCs. In addition, miR-451 was shown to be down-regulated in the VSMCs following PDGF-BB stimulation. SXBXW treatment enhanced the expression of miR-451 in PDGF-BB-induced VSMCs (P<0.05). Compared with SXBXW + mimic-NC and mimic-miR451 groups, the expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and p53 was further reduced in SXBXW + mimic-miR451 group, while activating transcription factor 2 (ATF2) was increased in VSMCs (P<0.05). CONCLUSION SXBXW regulated proliferation, migration and apoptosis via activation of miR-451 through ATF2, p53 and Ywhaz in PDGF-BB-stimulated VSMCs.
Collapse
Affiliation(s)
- Yi-Ping Li
- Department of Cardiology, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting-Ting Qiang
- Department of Cardiology, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke-Yan Wang
- Department of Cardiology, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Long Wang
- Department of Cardiology, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Heydarnia E, Taghian F, Jalali Dehkordi K, Moghadasi M. Regular combined training and vitamins modulated the apoptosis process in diabetic rats: Bioinformatics analysis of heart failure's differential genes expression network correlated with anti-apoptotic process. J Food Biochem 2022; 46:e14291. [PMID: 35780321 DOI: 10.1111/jfbc.14291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
The apoptosis process could impose significantly by hyperglycemia. According to in silico language processing and high throughput raw data analysis, we recognized hub molecular mechanisms involved in the pathogenesis of diabetic hearts and suggested a new pharmaceutical approach for declining myocardial programed cell death. Fifty male Sprague-Dawley rats were classified into five groups: healthy rats as control, diabetic rats, diabetic combined resistance/endurance training, diabetic rats which consumed supplementation vitamins E and C, and the combined supplementation and training. Here, we calculated changes in gene expression based on artificial intelligence methods and evaluated gene expression in apoptotic influencing combined training and antioxidants vitamins consumption in heart injured models by streptozotocin via Real-Time PCR. Moreover, we assessed the binding affinity of the 3D structure of small molecules on macromolecule SIRT3 to a new compound pharmaceutical suggesting the decline in cell death program. The computational intelligence surveys revealed that the apoptosis process was a remarkable pathomechanism in the abnormality function of heart tissue in diabetic conditions. Furthermore, we showed that synchronizing antioxidant vitamin consumption and regular combined training could significantly decrease irreversible myocardial cell death in diabetic myocardiopathy. Hence, levels of antiapoptotic mRNA were modified in the combined training/vitamin consumption group compared with other classifications. We found that regular combined exercise and vitamin consumption could reverse the apoptosis process to enhance the survival of cardiac muscle cells in diabetes conditions. PRACTICAL APPLICATIONS: Machine learning and system biology indicated that the apoptosis process is a vital pathomechanism of hyperglycemia-induced heart failure. Sirt3/Fas/Bcl-2/Cycs and Bax, as a critical network of apoptosis, play an essential role in heart failure induced by hyperglycemia. Moreover, Type 2 diabetes and obesity increase the risk of heart failure by increasing high blood sugar levels. We calculated the binding power of the vitamins E and C on SIRT3 protein based on the drug software. In addition, this study assessed that regular combined training and vitamin consumption had an antiapoptotic effect. Also, our data might improve the hyperglycemia state.
Collapse
Affiliation(s)
- Elaheh Heydarnia
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mehrzad Moghadasi
- Department of Physical Education and Sports Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
19
|
Liang X, Hu M, Yuan W, Liu Y, Li J, Bai C, Yuan Z. MicroRNA-4487 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting RAS p21 protein activator 1. Pathol Res Pract 2022; 234:153903. [DOI: 10.1016/j.prp.2022.153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
|
20
|
Endurance Training and Consumption of Hydroalcoholic Zingiber Officinale Extract Regulated PPARγ, PGC1-ɑ/TNF-ɑ Expression Level in Myocardial Infarction Rats. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Zarei S, Taghian F, Sharifi G, Abedi H. Novel prevention insights into depletion of oxidative stress status through regular exercise and grape seed effective substance in heart ischemia rat model. Food Sci Nutr 2022; 10:833-845. [PMID: 35311161 PMCID: PMC8907746 DOI: 10.1002/fsn3.2714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial ischemia (MI) is recognized as the most frequent cardiovascular disease which is the dominant cause of global morbidity and mortality. Artificial intelligence tools and integrative data analysis revealed superoxide dismutase, catalase, glutathione peroxidase, gap junction protein α, myosin heavy chains, and zinc finger transcription factor GATA4 are engaged in oxidative stress and in cardiomyopathy. Network analysis indicated that MAPK3 might be the highest distribution property and cut point in this network, which could be a potential candidate for preventing and treating oxidative stress in heart tissue. Among antioxidant agents, grape seed extract (GSE) is an effective substance that altered antioxidant status in heart tissue. Considering drug discovery methods, we illustrated that GSE might target the MAPK3 protein with sufficient binding affinity. Moreover, we found that low- and moderate-intensity training might prevent the depletion of antioxidants after MI. GSE consumption altered the levels of superoxide dismutase, glutathione peroxidase, and catalase after 14 weeks. Therefore, the interaction of low- and moderate-intensity training and GSE had a synergistic effect on the antioxidant status and relative expression of the Mapk3. Moreover, the interaction of high-intensity training and GSE had a compensatory mechanism that could scavenge reactive oxygen species and improve endogenous antioxidants and modulate the Mapk3 level in MI rats. Consequently, we displayed positive influence and synergic effects of simultaneous GSE prescription and regular physical activity for 14 weeks to prevent acute and chronic heart ischemia cardioprotective phenomenon. Furthermore, the capacitation oxidative stress and relative expression of the Mapk3 was significantly increased by GSE and regular exercise.
Collapse
Affiliation(s)
- Safar Zarei
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Farzaneh Taghian
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Gholamreza Sharifi
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Hassanali Abedi
- Research Center for Noncommunicable DiseasesFaculty of MedicineJahrom University of Medical SciencesJahromIran
| |
Collapse
|
22
|
Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 2022; 124:151844. [PMID: 35045377 DOI: 10.1016/j.acthis.2022.151844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, β-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
23
|
Teng P, Liu Y, Zhang M, Ji W. Diagnostic and Prognostic Significance of serum miR-18a-5p in Patients with Atherosclerosis. Clin Appl Thromb Hemost 2021; 27:10760296211050642. [PMID: 34841929 PMCID: PMC8649087 DOI: 10.1177/10760296211050642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS) is a common vascular disease with great harm. The current study examined the expression pattern of miR-18a-5p in AS patients, and explored its clinical values. 110 AS patients and 68 healthy controls were collected clinically, and the expression pattern of miR-18a-5p in the serum of AS patients was detected using qRT-PCR. All AS patients were followed up for five years to record the adverse cardiovascular events. ROC and Kaplan-Meier (K-M) curve were plotted to assess the diagnostic ability. The multiple Cox regression analysis was performed for independent influencing factors analysis. MiR-18a-5p was at high expression in AS patients, and showed positive correlation with the CIMT value (r = 0.789, P < .001). ROC curve suggested the high diagnostic value of serum miR-18a-5p for AS, with the AUC of 0.894. The diagnostic specificity and sensitivity were 86.8% and 79.1%, respectively. K-M plot demonstrated that cases with high miR-18a-5p levels were more likely to suffer from cardiovascular events, and it is an independent influence factor for the poor clinical outcome. Serum miR-18a-5p serves as a promising biomarker for AS diagnosis, and is related to the occurrence of adverse cardiovascular events.
Collapse
Affiliation(s)
- PingPing Teng
- Department of General Health and Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Yonglei Liu
- Department of Cardiology First Ward, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Meng Zhang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Wanli Ji
- School of Pharmacy, 191610Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
24
|
Gao Y, Li G, Fan S, Wang Y, Wei H, Li M, Li X. Circ_0093887 upregulates CCND2 and SUCNR1 to inhibit the ox-LDL-induced endothelial dysfunction in atherosclerosis by functioning as a miR-876-3p sponge. Clin Exp Pharmacol Physiol 2021; 48:1137-1149. [PMID: 33844344 DOI: 10.1111/1440-1681.13504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs) are widely expressed in mammals and act as regulatory targets in the atherogenesis. The objective of this study was to research the biological role and molecular mechanism of circ_0093887 in oxidized low-density lipoprotein (ox-LDL)-induced atherosclerosis (AS) of human aortic endothelial cells (HAECs). Cell viability detection was performed by CCK-8 assay. Inflammatory molecules were examined using ELISA. Flow cytometry was used to measure cell-cycle progression and cell apoptotic rate. Caspase 3 activity was determined using caspase 3 activity assay. The expression levels of circ_0093887, miR-876-3p, CCND2 and SUCNR1 were assayed by quantitative real-time polymerase chain reaction (qRT-PCR). Dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used for the target analysis. EdU assay, wound healing assay/transwell assay and tube formation assay were, respectively, used to assess the effects of circ_0093887/miR-876-3p axis on cell proliferation, migration and tube formation. Oxidized low-density lipoprotein inhibited cell viability and cell-cycle progression but induced the inflammatory response and cell apoptosis. Circ_0093887 was downregulated and miR-876-3p was upregulated in AS patients and ox-LDL-treated HAECs. Functionally, the overexpression of circ_0093887 abrogated the cell injury of HAEC exposed to ox-LDL. For the functional mechanism, we found that circ_0093887 was a sponge for miR-876-3p and miR-876 targeted CCND2 or SUCNR1. The reverted experiment indicated that the function of circ_0093887 was achieved by sponging miR-876-3p. Meanwhile, miR-876-3p inhibitor relieved the inhibitory regulation of circ_0093887 knockdown in cell proliferation, migration and tube formation. Downregulation of miR-876-3p also alleviated the ox-LDL-induced cell injury by upregulating the expression of CCND2 or SUCNR1. Furthermore, circ_0093887 was validated to regulate the levels of CCND2 and SUCNR1 via the sponge effect on miR-876-3p. The protective effects of circ_0093887 on HAECs from ox-LDL were also alleviated by repressing the CCND2 and SUCNR1 levels. These findings suggested that circ_0093887 protected HAEC against the ox-LDL-induced inflammatory and apoptotic damages by targeting the miR-876-3p/CCND2 or miR-876/SUCNRA axis. Circ_0093887 could act as a potential therapeutic biomarker for AS patients.
Collapse
Affiliation(s)
- Yanhui Gao
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangnan Li
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shasha Fan
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyang Li
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueqi Li
- Department of Cardiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Li R, Jiang Q, Zheng Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med 2021; 25:8028-8038. [PMID: 34169652 PMCID: PMC8358879 DOI: 10.1111/jcmm.16734] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Lipoproteins, LDL/toxicity
- Male
- MicroRNAs/genetics
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- RNA, Circular/genetics
- Signal Transduction
- Vesicle-Associated Membrane Protein 3/genetics
- Vesicle-Associated Membrane Protein 3/metabolism
Collapse
Affiliation(s)
- Ruogu Li
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Qiliang Jiang
- Department of AnesthesiologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yue Zheng
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
26
|
An original biomarker for the risk of developing cardiovascular diseases and their complications: Telomere length. Toxicol Rep 2021; 8:499-504. [PMID: 33732625 PMCID: PMC7941069 DOI: 10.1016/j.toxrep.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022] Open
Abstract
We studied a sample of patients with coronary heart disease. We analyzed the telomere length in this sample. We compared telomere length in patients and conventionally healthy study participants. Patients with coronary heart disease had shorter telomerestelomeres. These patients had an increased risk of cardiovascular complication.
Aim The aim of this work was to study the effect of telomere length in the chromosomes of nuclear blood cells in individuals with coronary heart disease (CHD) on the development of cardiovascular complications (CVC). Materials and methods DNA was isolated from nuclear blood cells of 498 study participants. The telomere length was determined by real-time polymerase chain reaction. The investigation of each sample was repeated three times. Five years after the end of this study, a telephone survey of 119 patients with CHD was conducted in order to obtain data on the presence of CVC. Results According to the results obtained, a decrease in telomere length in patients with coronary heart disease increases the risk of subsequent development of cardiovascular complications. Conclusion Patients with coronary heart disease with shorter telomeres compared with conventionally healthy study participants had an increased risk of cardiovascular complications within 5 years after telomere analysis.
Collapse
|
27
|
Xie X, Cong L, Liu S, Xiang L, Fu X. Genistein alleviates chronic vascular inflammatory response via the miR‑21/NF‑κB p65 axis in lipopolysaccharide‑treated mice. Mol Med Rep 2021; 23:192. [PMID: 33495831 PMCID: PMC7809901 DOI: 10.3892/mmr.2021.11831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic vascular inflammatory response is an important pathological basis of cardiovascular disease. Genistein (GEN), a natural compound, exhibits anti‑inflammatory effects. The aim of the present study was to investigate the effects of GEN on lipopolysaccharide (LPS)‑induced chronic vascular inflammatory response in mice and explore the underlying anti‑inflammatory mechanisms. C57BL/6 mice were fed with a high‑fat diet combined with intraperitoneal injection of LPS to induce chronic vascular inflammation. The expression levels of TNF‑α, IL‑6 and microRNA (miR)‑21 in the vasculature were detected via reverse transcription‑quantitative (RT‑q)PCR. The protein levels of inducible nitric oxide synthase (iNOS) and NF‑κB p65 were detected via western blotting. NF‑κB p65 was also analyzed via immunohistochemistry and immunofluorescence (IF). In addition, after transfection with miR‑21 mimic or inhibitor for 24 h, vascular endothelial cells (VECs) were treated with GEN and LPS. RT‑qPCR and western blot analyses were performed to detect the expression of TNF‑α, IL‑6, miR‑21 and iNOS, and the protein levels of iNOS and NF‑κB p65, respectively. IF was used to measure NF‑κB p65 nuclear translocation. The results revealed that GEN significantly decreased the expression of inflammation‑associated vascular factors in LPS‑treated C57BL/6 mice, including TNF‑α, IL‑6, iNOS, NF‑κB p65 and miR‑21. Furthermore, miR‑21 antagomir enhanced the anti‑inflammatory effects of GEN. In LPS‑induced VECs, miR‑21 mimic increased inflammation‑associated factor expression and attenuated the anti‑inflammatory effects of GEN, whereas miR‑21 inhibitor induced opposing effects. Therefore, the results of the present study suggested that GEN inhibited chronic vascular inflammatory response in mice, which may be associated with the inhibition of VEC inflammatory injury via the miR‑21/NF‑κB p65 pathway.
Collapse
Affiliation(s)
- Xiaolin Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Li Cong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sujuan Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Liping Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaohua Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Correspondence to: Professor Xiaohua Fu, Department of Basic Medicine, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan 410013, P.R. China, E-mail:
| |
Collapse
|
28
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
29
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
30
|
Chen G, Gao J, Sheng Y, Han X, Ji X, Zhao M, Wu J. Diagnostic value of miR-92a in asymptomatic carotid artery stenosis patients and its ability to predict cerebrovascular events. Diagn Pathol 2020; 15:74. [PMID: 32522208 PMCID: PMC7285548 DOI: 10.1186/s13000-020-00987-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/28/2020] [Indexed: 03/13/2023] Open
Abstract
Background Early diagnosis of asymptomatic carotid artery stenosis (ACAS) is important to prevent the incidence of cerebrovascular events. This study aimed to investigate the circulating expression of microRNA-92a (miR-92a) in ACAS patients and evaluate its diagnostic value for ACAS and predictive value for cerebrovascular events. Methods Circulating expression of miR-92a was measured using quantitative real-time PCR. Chi-square test was used to analyze the association of miR-92a with ACAS patients’ clinical characteristics. A receiver operating characteristic (ROC) was used to evaluate the diagnostic value of miR-92a, and the Kaplan-Meier method and Cox regression analysis were used to assess the predictive value of miR-92a for cerebrovascular events. Results Serum expression of miR-92a was higher in ACAS patients than that in the healthy controls (P < 0.001), and associated with patients’ degree of carotid stenosis (P = 0.013). The elevated miR-92a expression could distinguish ACAS patients from healthy individual, and was an independent predictive factor for the occurrence of cerebrovascular events (P = 0.015). Conclusion The data from this study indicated that circulating increased miR-92a may serve as a noninvasive diagnostic biomarker for ACAS and a potential risk factor for the future onset of cerebrovascular events.
Collapse
Affiliation(s)
- Gang Chen
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Jianwei Gao
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Yuguo Sheng
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Xinqiang Han
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Xingang Ji
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Mengpeng Zhao
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Jian Wu
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, 256603, China.
| |
Collapse
|
31
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
32
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Ischemic postconditioning attenuates the inflammatory response in ischemia/reperfusion myocardium by upregulating miR‑499 and inhibiting TLR2 activation. Mol Med Rep 2020; 22:209-218. [PMID: 32377693 PMCID: PMC7248531 DOI: 10.3892/mmr.2020.11104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR-499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)-499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re-occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR-499 negative control adeno-associated virus (AAV) vectors + IPostC; miR-499 inhibitor AAV vectors + IPostC; and miR-499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R-induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR-499 expression levels (as demonstrated by reverse transcription-quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)-1β and IL-6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR-499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti-inflammatory and anti-apoptotic effects of IPostC. However, IPostC + miR-499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR-499-dependent cardioprotective effect. The present results suggested that miR-499 may be involved in IPostC-mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL-1β and IL-6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti-apoptotic protein Bcl-2, and inhibition of the pro-apoptotic protein Bax in myocardium.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian-Jun Meng
- Department of Geriatric Health Care Center, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Hui Tu
- Guangxi Key Laboratory of Precision Medicine in Cardio‑Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|