1
|
Bigham KT, Leduc D, Rowden AA, Bowden DA, Nodder SD, Orpin AR. Recovery of deep-sea meiofauna community in Kaikōura Canyon following an earthquake-triggered turbidity flow. PeerJ 2024; 12:e17367. [PMID: 39670102 PMCID: PMC11636979 DOI: 10.7717/peerj.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 12/14/2024] Open
Abstract
Turbidity flows can transport massive amounts of sediment across large distances with dramatic, long-lasting impacts on deep-sea benthic communities. The 2016 Mw 7.8 Kaikōura Earthquake triggered a canyon-flushing event in Kaikōura Canyon, New Zealand, which included significant submarine mass wasting, debris, and turbidity flows. This event provided an excellent opportunity to investigate the effects of large-scale natural disturbance on benthic ecosystems. Benthic meiofauna community structure before and after the event was analysed from a time series of sediment cores collected 10 years and 6 years before, and 10 weeks, 10 months, and 4 years after the disturbance. Immediately after the 2016 event abundances of all meiofauna dramatically decreased. Four years later the meiofauna community had recovered and was no longer distinguishable from the pre-event community. However, the nematode component of the community was similar, but not fully comparable to the pre-event community by 4 years after the disturbance. Community recovery was systematically correlated to changes in the physical characteristics of the habitat caused by the disturbance, using physical and biochemical variables derived from sediment cores, namely: sediment texture, organic matter, and pigment content. While these environmental variables explained relatively little of the overall variability in meiofauna community structure, particle size, food availability and quality were significant components. The minimum threshold time for the meiofauna community to fully recover was estimated to be between 3.9 and 4.7 years, although the predicted recovery time for the nematode community was longer, between 4.6 and 5 years. We consider the management implications of this study in comparison to the few studies of large-scale disturbances in the deep sea, in terms of their relevance to the efficacy of the marine reserve that encompasses Kaikōura Canyon, along with potential implications for our understanding of the impacts of anthropogenic seafloor disturbances, such as seabed mining.
Collapse
Affiliation(s)
- Katharine T. Bigham
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Daniel Leduc
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Ashley A. Rowden
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - David A. Bowden
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Scott D. Nodder
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Alan R. Orpin
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
2
|
Zograf J, Mordukhovich V. New genus of Ironidae (Nematoda, Enoplida) from Piip volcano (the Bering Sea). PeerJ 2022; 10:e12946. [PMID: 35190787 PMCID: PMC8857901 DOI: 10.7717/peerj.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023] Open
Abstract
Piipironus grandis gen. et sp. nov. is described from Piip submarine volcano, the Bering Sea. Piipironus gen. nov. shows all main characters of Thalassironinae but differs from all known ironids in the form of the amphid (spiral vs pocket-like) and the simultaneous presence of precloacal papilliform supplements and tubular postcloacal organs. Pared tubular postcloacal organs have never been described before for the family Ironidae. The combination of papilliform precloacal supplements and the pair of tubular postcloacal organs described for Piipironus grandis gen. et sp. nov. is unique among nematodes. The study of the nematofauna of the Piip submarine volcano began quite recently, and Piipironus is the second new genus of nematodes described from here from one sample of bottom sediments. This can be taken as one of the examples of the hyper-high diversity of marine nematodes.
Collapse
Affiliation(s)
- Julia Zograf
- A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS, Vladivostok, Russia
| | - Vladimir Mordukhovich
- A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS, Vladivostok, Russia,Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
3
|
Kang T, Kim D. Meiofauna and nematode community composition in a hydrothermal vent and deep-sea sediments in the Central Indian Ridge. MARINE POLLUTION BULLETIN 2021; 170:112616. [PMID: 34147859 DOI: 10.1016/j.marpolbul.2021.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The hydrothermal ecosystem is very unusual, yet little research has so far been conducted on meiofauna in hydrothermal zones. To identify the communities of both meiofauna and nematodes around the Onnuri Vent Field (OVF), we collected sediment from a hydrothermal zone in the OVF and deep-sea (DS) sediments (non-vent) outside the OVF. Sampling was conducted at seven stations using multiple corers on the Research Vessel ISABU in June 2018 and June-July 2019. The average densities of meiofauna ± standard deviation ranged from 21.7 ± 5.2 to 122.3 ± 45.0 individuals/10 cm2. The structure of the meiofaunal community differed between the OVF and DS. The two most dominant groups of meiofauna in both environments were nematodes and harpacticoids. Statistical analyses showed significant differences in the structure of the nematode community between OVF and DS. We also found that the richness, evenness, and diversity of nematodes in the OVF were lower than those in the DS.
Collapse
Affiliation(s)
- Teawook Kang
- Marine Research Center, National Park Research Institute, Bakramhoi-gil 1, Yeosu-si, 59723, Republic of Korea
| | - Dongsung Kim
- Marine Ecosystem Research Center, KIOST, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea.
| |
Collapse
|
4
|
Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Sci Rep 2018; 8:9364. [PMID: 29921902 PMCID: PMC6008444 DOI: 10.1038/s41598-018-27596-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrothermal vent fields are vulnerable to natural disturbances, such as volcanic activity, and are currently being considered as targets for mineral mining. Local vent communities are linked by pelagic larval dispersal and form regional metacommunities, nested within a number of biogeographic provinces. Larval supply depends on the connectivity of the dispersal networks, and affects recoverability of communities from disturbances. However, it is unclear how the dispersal networks contribute to recoverability of local communities. Here, we integrated a population dynamics model and estimation of large scale dispersal networks. By simulating disturbances to vent fields, we mapped recoverability of communities in 131 hydrothermal vent fields in the western Pacific Ocean. Our analysis showed substantial variation in recovery time due to variation in regional connectivity between known vent fields, and was not qualitatively affected by potential larval recruitment from unknown vent fields. In certain cases, simultaneous disturbance of a series of vent fields either delayed or wholly prevented recovery. Our approach is applicable to a dispersal network estimated from genetic diversity. Our method not only reveals distribution of recoverability of chemosynthetic communities in hydrothermal vent fields, but is also a practical tool for planning conservation strategies.
Collapse
|
5
|
Gollner S, Kaiser S, Menzel L, Jones DOB, Brown A, Mestre NC, van Oevelen D, Menot L, Colaço A, Canals M, Cuvelier D, Durden JM, Gebruk A, Egho GA, Haeckel M, Marcon Y, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Martinez Arbizu P. Resilience of benthic deep-sea fauna to mining activities. MARINE ENVIRONMENTAL RESEARCH 2017; 129:76-101. [PMID: 28487161 DOI: 10.1016/j.marenvres.2017.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 05/21/2023]
Abstract
With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
Collapse
Affiliation(s)
- Sabine Gollner
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany; Royal Netherlands Institute for Sea Research (NIOZ), Ocean Systems (OCS), 't Horntje (Texel), The Netherlands.
| | - Stefanie Kaiser
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany.
| | - Lena Menzel
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany.
| | - Daniel O B Jones
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, Southampton, United Kingdom.
| | - Alastair Brown
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, Southampton, United Kingdom.
| | - Nelia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Portugal.
| | - Dick van Oevelen
- Royal Netherlands Institute for Sea Research (NIOZ), Estuarine and Delta Systems (EDS), Yerseke, The Netherlands.
| | - Lenaick Menot
- IFREMER, Institut français de recherche pour l'exploitation de la mer, Plouzane, France.
| | - Ana Colaço
- IMAR Department of Oceanography and Fisheries, Horta, Açores, Portugal; MARE - Marine and Environmental Sciences Centre Universidade dos Açores, Departamento de Oceanografia e Pescas, Horta, Açores, Portugal.
| | - Miquel Canals
- GRC Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona, Spain.
| | - Daphne Cuvelier
- IMAR Department of Oceanography and Fisheries, Horta, Açores, Portugal; MARE - Marine and Environmental Sciences Centre Universidade dos Açores, Departamento de Oceanografia e Pescas, Horta, Açores, Portugal.
| | - Jennifer M Durden
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, Southampton, United Kingdom.
| | - Andrey Gebruk
- P.P. Shirshov Institute of Oceanology, Moscow, Russia.
| | - Great A Egho
- Marine Biology Research Group, Ghent University, Ghent, Belgium.
| | | | - Yann Marcon
- Alfred Wegener Institute (AWI), Bremerhaven, Germany; MARUM Center for Marine Environmental Sciences, Bremen, Germany.
| | - Lisa Mevenkamp
- Marine Biology Research Group, Ghent University, Ghent, Belgium.
| | - Telmo Morato
- IMAR Department of Oceanography and Fisheries, Horta, Açores, Portugal; MARE - Marine and Environmental Sciences Centre Universidade dos Açores, Departamento de Oceanografia e Pescas, Horta, Açores, Portugal.
| | - Christopher K Pham
- IMAR Department of Oceanography and Fisheries, Horta, Açores, Portugal; MARE - Marine and Environmental Sciences Centre Universidade dos Açores, Departamento de Oceanografia e Pescas, Horta, Açores, Portugal.
| | - Autun Purser
- Alfred Wegener Institute (AWI), Bremerhaven, Germany.
| | - Anna Sanchez-Vidal
- GRC Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona, Spain.
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Ghent, Belgium.
| | - Annemiek Vink
- Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany.
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany.
| |
Collapse
|
6
|
Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans. PLoS One 2016; 11:e0163776. [PMID: 27732624 PMCID: PMC5061364 DOI: 10.1371/journal.pone.0163776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima's D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid populations are generally large and continuously undergoing population growth. Benthic and pelagic species abundance data support these findings.
Collapse
|
7
|
Martineau J, Pothier D, Fortin D. Processes driving short-term temporal dynamics of small mammal distribution in human-disturbed environments. Oecologia 2016; 181:831-40. [PMID: 27003700 DOI: 10.1007/s00442-016-3613-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 03/10/2016] [Indexed: 11/30/2022]
Abstract
As the impact of anthropogenic activities intensifies worldwide, an increasing proportion of landscape is converted to early successional stages every year. To understand and anticipate the global effects of the human footprint on wildlife, assessing short-term changes in animal populations in response to disturbance events is becoming increasingly important. We used isodar habitat selection theory to reveal the consequences of timber harvesting on the ecological processes that control the distribution dynamics of a small mammal, the red-backed vole (Myodes gapperi). The abundance of voles was estimated in pairs of cut and uncut forest stands, prior to logging and up to 2 years afterwards. A week after logging, voles did not display any preference between cut and uncut stands, and a non-significant isodar indicated that their distribution was not driven by density-dependent habitat selection. One month after harvesting, however, juvenile abundance increased in cut stands, whereas the highest proportions of reproductive females were observed in uncut stands. This distribution pattern appears to result from interference competition, with juveniles moving into cuts where there was weaker competition with adults. In fact, the emergence of source-sink dynamics between uncut and cut stands, driven by interference competition, could explain why the abundance of red-backed voles became lower in cut (the sink) than uncut (the source) stands 1-2 years after logging. Our study demonstrates that the influences of density-dependent habitat selection and interference competition in shaping animal distribution can vary frequently, and for several months, following anthropogenic disturbance.
Collapse
Affiliation(s)
- Julie Martineau
- Chaire de Recherche Industrielle CRSNG, Université Laval en Sylviculture et Faune, Québec, Canada
- Département de biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - David Pothier
- Chaire de Recherche Industrielle CRSNG, Université Laval en Sylviculture et Faune, Québec, Canada
- Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Daniel Fortin
- Chaire de Recherche Industrielle CRSNG, Université Laval en Sylviculture et Faune, Québec, Canada.
- Département de biologie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|