1
|
Dai Q, Xu T, Li Y, Sun Y, Lin Y, Yahagi T, Perez M, Qian PY, Qiu JW. Comparative Population Genetics of Two Alvinocaridid Shrimp Species in Chemosynthetic Ecosystems of the Western Pacific. Integr Zool 2025. [PMID: 39870578 DOI: 10.1111/1749-4877.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
Deep-sea shrimps from the family Alvinocarididae are prominent inhabitants of chemosynthesis-based habitats worldwide. However, their genetic diversity and population connectivity remain poorly understood due to limited sampling. To fill these knowledge gaps, we compared the population genetics of two vent- and seep-dwelling alvinocaridid species with overlapped geographic ranges between the South China Sea and the Manus Basin. Alvinocaris longirostris has a wider distribution, ranging from 35°N to 3°S and at depths of 930 to 1736 m, while Alvinocaris kexueae is more restricted, found between 16°N and 3°S at depths of 1300 to 1910 m. Our analysis, based on the mitochondrial cytochrome c oxidase subunit 1 gene, revealed that A. longirostris had lower genetic diversity and minimal genetic differentiation across eight disjoint vent and seep populations. In contrast, the narrower-distributed A. kexueae exhibited higher genetic diversity and significant genetic differentiation, with stronger gene flow observed from its Haima seep population to the Manus Basin vent population. In addition, both species appear to have experienced population expansion in their recent evolutionary history. These results suggest that A. longirostris and A. kexueae may possess distinct life-history traits that contribute to their differing distribution ranges in the Western Pacific.
Collapse
Affiliation(s)
- Qi Dai
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yixuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yitao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Takuya Yahagi
- Department of Marine Ecosystem Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Maeva Perez
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Kniesz K, Hoffman L, Martínez Arbizu P, Kihara TC. High genomic connectivity within Anatoma at hydrothermal vents along the Central and Southeast Indian Ridge. Sci Rep 2025; 15:1971. [PMID: 39809848 PMCID: PMC11732982 DOI: 10.1038/s41598-025-85507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Hydrothermal vents are ecosystems inhabited by a highly specialized fauna. To date, more than 30 gastropod species have been recorded from vent fields along the Central and Southeast Indian Ridge and all of them are assumed to be vent-endemic. During the INDEX project, 701 representatives of the genus Anatoma (Mollusca: Vetigastropoda) were sampled from six abyssal hydrothermal vent fields. Traditional morphology and COI barcoding of Hoffman et al. (Eur J Taxon 826:135-162, 2022) were combined with 2b-RAD sequencing to investigate the anatomid community structure and connectivity between the different vent fields. Consequently, 2b-RAD sequencing supported the primary species hypothesis (based on morphology) for 125 individuals of the recently described taxa A. discapex, A. declivis, A. laevapex and A. paucisculpta. We assigned 22 additional specimens to species with 2b-RAD sequencing and updated the community analyses that confirmed the pattern of expanding populations. Population structure and FST values indicated high connectivity along the six sampled vent fields for the three most abundant species. High levels of gene flow are suggested, pointing to high dispersal potential of the target species along the study area. However, low levels of heterozygosity revealed a small gene pool and therefore an increased vulnerability towards environmental change. Our results demonstrate that 2b-RAD sequencing, in combination with other molecular methods, can accurately characterise macrobenthic mollusc communities. Sequencing technology is an essential tool for ongoing monitoring. Furthermore, we highlight that the inferred molecular and ecological patterns provide valuable insights into hydrothermal vent ecosystems, which are crucial for the successful conservation of these ecosystems.
Collapse
Affiliation(s)
- Katharina Kniesz
- Senckenberg am Meer, Wilhelmshaven, Germany.
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Leibniz-Institut für Ostseeforschung Warnemünde, Rostock, Germany.
| | | | - Pedro Martínez Arbizu
- Senckenberg am Meer, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany
| | - Terue C Kihara
- INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany
| |
Collapse
|
3
|
Lee WK, Kim SJ. Distribution extension of a vent scale worm Branchinotoglumabipapillata (Polychaeta, Polynoidae) in the Indian Ocean. Zookeys 2024; 1215:139-149. [PMID: 39440028 PMCID: PMC11494209 DOI: 10.3897/zookeys.1215.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Branchinotogluma Pettibone, 1985 is the most species-rich genus within the subfamily Lepidonotopodinae Pettibone, 1983, comprising 18 valid species from chemosynthesis-based ecosystems in the Pacific and Indian Oceans. Here, we report a new distributional record of Branchinotoglumabipapillata Zhou, Wang, Zhang & Wang, 2018, at the hydrothermal vent sites on the northern Central Indian Ridge (nCIR). This record represents the northernmost occurrence of B.bipapillata in the Indian Ocean. We conducted a comparative study of the nCIR population and other documented populations using distributional information, morphological traits, and genetic markers (two mitochondrial [COI, 16S rRNA] and one nuclear [18S rRNA] genes). While most morphological characters of B.bipapillata were consistent with those found in the Southwest Indian Ridge (SWIR), variations were noted in the segment with the last branchiae. Molecular data revealed that all populations of B.bipapillata form a single clade, indicating a wide distribution from the SWIR to nCIR, covering ~4,000 km across various ridges in the Indian Ocean. This study presents extensive distribution of a vent species with well-connected populations throughout the Indian Ocean, distinguishing it from many other vent species affected by the dispersal barrier in the Indian Ocean.
Collapse
Affiliation(s)
- Won-Kyung Lee
- Division of Biomedical Research, Korea Research Institute Bioscience and Biotechnology, Daejeon 34141, Republic of KoreaDivision of Biomedical Research, Korea Research Institute Bioscience and BiotechnologyDaejeonRepublic of Korea
- Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of KoreaEwha Womans UniversitySeoulRepublic of Korea
| | - Se-Joo Kim
- Division of Biomedical Research, Korea Research Institute Bioscience and Biotechnology, Daejeon 34141, Republic of KoreaDivision of Biomedical Research, Korea Research Institute Bioscience and BiotechnologyDaejeonRepublic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of KoreaUniversity of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
4
|
Lan Y, Sun J, Chen C, Wang H, Xiao Y, Perez M, Yang Y, Kwan YH, Sun Y, Zhou Y, Han X, Miyazaki J, Watsuji TO, Bissessur D, Qiu JW, Takai K, Qian PY. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. THE ISME JOURNAL 2022; 16:2132-2143. [PMID: 35715703 PMCID: PMC9381778 DOI: 10.1038/s41396-022-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host’s cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
Collapse
Affiliation(s)
- Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yao Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maeva Perez
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yi Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yick Hang Kwan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Junichi Miyazaki
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Tomo-O Watsuji
- Department of Food and Nutrition, Higashi-Chikushi Junior College, 5-1-1 Shimoitozu, Kitakyusyu, 803-0846, Japan
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration & Exploration, Prime Minister's Office, 2nd Floor, Belmont House, 12 Intendance Street, Port Louis, 11328, Mauritius
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ken Takai
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China. .,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Zhou Y, Chen C, Zhang D, Wang Y, Watanabe HK, Sun J, Bissessur D, Zhang R, Han Y, Sun D, Xu P, Lu B, Zhai H, Han X, Tao C, Qiu Z, Sun Y, Liu Z, Qiu J, Wang C. Delineating biogeographic regions in Indian Ocean deep‐sea vents and implications for conservation. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Chong Chen
- X‐STAR, Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
- School of Oceanography Shanghai Jiao Tong University Shanghai China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | | | - Jin Sun
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Dass Bissessur
- Department for Continental Shelf Maritime Zones Administration & Exploration, Prime Minister’s Office Port Louis Mauritius
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Yuru Han
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Peng Xu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Bo Lu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Hongchang Zhai
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Chunhui Tao
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Hong Kong Baptist University Hong Kong China
| | - Zhensheng Liu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Jian‐Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Hong Kong Baptist University Hong Kong China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
- School of Oceanography Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
6
|
|
7
|
Gerdes K, Kihara TC, Martínez Arbizu P, Kuhn T, Schwarz-Schampera U, Mah CL, Norenburg JL, Linley TD, Shalaeva K, Macpherson E, Gordon D, Stöhr S, Messing CG, Bober S, Guggolz T, Christodoulou M, Gebruk A, Kremenetskaia A, Kroh A, Sanamyan K, Bolstad K, Hoffman L, Gooday AJ, Molodtsova T. Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean). Biodivers Data J 2021; 9:e69955. [PMID: 34720635 PMCID: PMC8516849 DOI: 10.3897/bdj.9.e69955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known. In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. New information This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.
Collapse
Affiliation(s)
- Klaas Gerdes
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Terue Cristina Kihara
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Thomas Kuhn
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany Federal Institute for Geosciences and Natural Resources Hannover Germany
| | - Ulrich Schwarz-Schampera
- International Seabed Authority, Kingston, Jamaica International Seabed Authority Kingston Jamaica
| | - Christopher L Mah
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Jon L Norenburg
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Thomas D Linley
- Newcastle University, School of Natural and Environmental Sciences, Newcastle, United Kingdom Newcastle University, School of Natural and Environmental Sciences Newcastle United Kingdom
| | - Kate Shalaeva
- Natural History Museum London, London, United Kingdom Natural History Museum London London United Kingdom
| | - Enrique Macpherson
- Centro de Estudios Avanzados de Blanes (CEAB), Blanes, Girona, Spain Centro de Estudios Avanzados de Blanes (CEAB) Blanes, Girona Spain
| | - Dennis Gordon
- NIWA, Newmarket, Auckland, New Zealand NIWA Newmarket, Auckland New Zealand
| | - Sabine Stöhr
- Swedish Museum of Natural History, Stockholm, Sweden Swedish Museum of Natural History Stockholm Sweden
| | - Charles G Messing
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, United States of America Department of Marine and Environmental Sciences, Nova Southeastern University Dania Beach United States of America
| | - Simon Bober
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Theresa Guggolz
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Magdalini Christodoulou
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrey Gebruk
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Antonina Kremenetskaia
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Andreas Kroh
- Naturhistorisches Museum, Vienna, Austria Naturhistorisches Museum Vienna Austria
| | - Karen Sanamyan
- Far-Eastern Branch of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia Far-Eastern Branch of the Russian Academy of Sciences Petropavlovsk-Kamchatsky Russia
| | - Kathrin Bolstad
- Auckland University of Technology, Auckland, New Zealand Auckland University of Technology Auckland New Zealand
| | - Leon Hoffman
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom National Oceanography Centre, University of Southampton Waterfront Campus Southampton United Kingdom
| | - Tina Molodtsova
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| |
Collapse
|
8
|
Zeng X, Zhang Y, Meng L, Fan G, Bai J, Chen J, Song Y, Seim I, Wang C, Shao Z, Liu N, Lu H, Fu X, Wang L, Liu X, Liu S, Shao Z. Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. Gigascience 2020; 9:giaa139. [PMID: 33319911 PMCID: PMC7736800 DOI: 10.1093/gigascience/giaa139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The scaly-foot snail (Chrysomallon squamiferum) is highly adapted to deep-sea hydrothermal vents and has drawn much interest since its discovery. However, the limited information on its genome has impeded further related research and understanding of its adaptation to deep-sea hydrothermal vents. FINDINGS Here, we report the whole-genome sequencing and assembly of the scaly-foot snail and another snail (Gigantopelta aegis), which inhabits similar environments. Using Oxford Nanopore Technology, 10X Genomics, and Hi-C technologies, we obtained a chromosome-level genome of C. squamiferum with an N50 size of 20.71 Mb. By constructing a phylogenetic tree, we found that these 2 deep-sea snails evolved independently of other snails. Their divergence from each other occurred ∼66.3 million years ago. Comparative genomic analysis showed that different snails have diverse genome sizes and repeat contents. Deep-sea snails have more DNA transposons and long terminal repeats but fewer long interspersed nuclear elements than other snails. Gene family analysis revealed that deep-sea snails experienced stronger selective pressures than freshwater snails, and gene families related to the nervous system, immune system, metabolism, DNA stability, antioxidation, and biomineralization were significantly expanded in scaly-foot snails. We also found 251 H-2 Class II histocompatibility antigen, A-U α chain-like (H2-Aal) genes, which exist uniquely in the Gigantopelta aegis genome. This finding is important for investigating the evolution of major histocompatibility complex (MHC) genes. CONCLUSION Our study provides new insights into deep-sea snail genomes and valuable resources for further studies.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Anker Engelunds Vej 1, Lyngby 2800, Denmark
| | | | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1,Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Congyan Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zenghua Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Nanxi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xiaoteng Fu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Liping Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| |
Collapse
|
9
|
Sun J, Zhou Y, Chen C, Kwan YH, Sun Y, Wang X, Yang L, Zhang R, Wei T, Yang Y, Qu L, Sun C, Qian PY. Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200110. [PMID: 32269824 PMCID: PMC7137978 DOI: 10.1098/rsos.200110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Biodiversity of hydrothermal vents in the Indian Ocean, particularly those on the Southwest Indian Ridge (SWIR), are still relatively poorly understood. The Tiancheng field on the SWIR was initially reported with only a low-temperature diffuse flow venting area, but here we report two new active areas, including a chimney emitting high-temperature vent fluids. Biological sampling in these new sites doubled the known megafauna and macrofauna richness reported from Tiancheng. Significantly, we found several iconic species, such as the scaly-foot snail and the first Alviniconcha population on the SWIR. Tiancheng shares a high proportion of taxa with vents on the Central Indian Ridge (CIR) and lacks a number of key taxa that characterize other vents investigated so far on the SWIR. Population genetics of the scaly-foot snail confirmed this, as the Tiancheng population was clustered with populations from the CIR, showing low connectivity with the Longqi field. Unlike the previously examined populations, scales of the Tiancheng scaly-foot snail were coated in zinc sulfide, although this results only from precipitation. The close connection between Tiancheng and CIR vents indicates that the dispersal barrier for vent endemic species is not the Rodriguez Triple Junction as previously suggested but the transformation faults between Tiancheng and Longqi, warranting further studies on deep currents in this area to resolve the key barrier, which has important implications for biological conservation.
Collapse
Affiliation(s)
- Jin Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xuyang Wang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Yang
- Marine Survey Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Tong Wei
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Lingyun Qu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Chengjun Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Sigwart JD, Chen C, Thomas EA, Allcock AL, Böhm M, Seddon M. Red Listing can protect deep-sea biodiversity. Nat Ecol Evol 2019; 3:1134. [PMID: 31332328 DOI: 10.1038/s41559-019-0930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julia D Sigwart
- Queen's University Belfast, Marine Laboratory, Portaferry, Northern Ireland, UK
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.
| | - Elin A Thomas
- Queen's University Belfast, Marine Laboratory, Portaferry, Northern Ireland, UK
| | | | - Monika Böhm
- Institute of Zoology, Zoological Society of London, London, UK
| | - Mary Seddon
- IUCN SSC Mollusc Specialist Group, Devon, UK
| |
Collapse
|
11
|
The making of natural iron sulfide nanoparticles in a hot vent snail. Proc Natl Acad Sci U S A 2019; 116:20376-20381. [PMID: 31551263 DOI: 10.1073/pnas.1908533116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomineralization in animals exclusively features oxygen-based minerals with a single exception of the scaly-foot gastropod Chrysomallon squamiferum, the only metazoan with an iron sulfide skeleton. This unique snail inhabits deep-sea hot vents and possesses scales infused with iron sulfide nanoparticles, including pyrite, giving it a characteristic metallic black sheen. Since the scaly-foot is capable of making iron sulfide nanoparticles in its natural habitat at a relatively low temperature (∼15 °C) and in a chemically dynamic vent environment, elucidating its biomineralization pathways is expected to have significant industrial applications for the production of metal chalcogenide nanoparticles. Nevertheless, this biomineralization has remained a mystery for decades since the snail's discovery, except that it requires the environment to be rich in iron, with a white population lacking in iron sulfide known from a naturally iron-poor locality. Here, we reveal a biologically controlled mineralization mechanism employed by the scaly-foot snail to achieve this nanoparticle biomineralization, through δ34 S measurements and detailed electron-microscopic investigations of both natural scales and scales from the white population artificially incubated in an iron-rich environment. We show that the scaly-foot snail mediates biomineralization in its scales by supplying sulfur through channel-like columns in which reaction with iron ions diffusing inward from the surrounding vent fluid mineralizes iron sulfides.
Collapse
|
12
|
Glover AG, Wiklund H, Chen C, Dahlgren TG. Managing a sustainable deep-sea 'blue economy' requires knowledge of what actually lives there. eLife 2018; 7:41319. [PMID: 30479272 PMCID: PMC6257809 DOI: 10.7554/elife.41319] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022] Open
Abstract
Ensuring that the wealth of resources contained in our oceans are managed and developed in a sustainable manner is a priority for the emerging 'blue economy'. However, modern ecosystem-based management approaches do not translate well to regions where we know almost nothing about the individual species found in the ecosystem. Here, we propose a new taxon-focused approach to deep-sea conservation that includes regulatory oversight to set targets for the delivery of taxonomic data. For example, a five-year plan to deliver taxonomic and genomic knowledge on a thousand species in regions of the ocean earmarked for industrial activity is an achievable target. High-throughput, integrative taxonomy can, therefore, provide the data that is needed to monitor various ecosystem services (such as the natural history, connectivity, value and function of species) and to help break the regulatory deadlock of high-seas conservation.
Collapse
Affiliation(s)
- Adrian G Glover
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Chong Chen
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Thomas G Dahlgren
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Diversity Centre, Gothenburg, Sweden.,NORCE, Bergen, Norway
| |
Collapse
|
13
|
Sigwart JD, Chen C. Comparative Oxygen Consumption of Gastropod Holobionts from Deep-Sea Hydrothermal Vents in the Indian Ocean. THE BIOLOGICAL BULLETIN 2018; 235:102-112. [PMID: 30358445 DOI: 10.1086/699326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physiological traits are the foundation of an organism's success in a dynamic environment, yet basic measurements are unavailable for many taxa and even ecosystems. We measured routine metabolism in two hydrothermal vent gastropods, Alviniconcha marisindica (n = 40) and the scaly-foot gastropod Chrysomallon squamiferum (n = 18), from Kairei and Edmond vent fields on the Central Indian Ridge (23-25°S, about 3000 meter depth). No previous studies have measured metabolism in any Indian Ocean vent animals. After recovering healthy animals to the surface, we performed shipboard closed-chamber respirometry experiments to compare oxygen uptake at different temperatures (10, 16, and 25 °C) at surface pressure (1 atm). The physiology of these species is driven by the demands of their chemoautotrophic symbionts. Chrysomallon has very enlarged respiratory and circulatory systems, and endosymbionts are housed in its trophosome-like internal esophageal gland. By contrast, Alviniconcha has chemoautotrophic bacteria within the gill and less extensive associated anatomical adaptations. Thus, we predicted that routine oxygen consumption of Chrysomallon might be higher than that of Alviniconcha. However, oxygen consumption of Chrysomallon was not higher than that of Alviniconcha, and, further, Chrysomallon maintained a steady metabolic demand in two widely separated experimental temperatures, while Alviniconcha did not. We interpret that these findings indicate that (1) the "trophosome" does not fundamentally increase oxygen requirement compared to other gastropod holobionts, and (2) cold temperatures (10 °C) induce a stress response in Alviniconcha, resulting in aberrantly high uptake. While these two large gastropod species co-occur, differences in oxygen consumption may reflect the separate niches they occupy in the vent ecosystem.
Collapse
|
14
|
Abstract
Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.
Collapse
Affiliation(s)
- Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Sci Rep 2018; 8:9364. [PMID: 29921902 PMCID: PMC6008444 DOI: 10.1038/s41598-018-27596-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrothermal vent fields are vulnerable to natural disturbances, such as volcanic activity, and are currently being considered as targets for mineral mining. Local vent communities are linked by pelagic larval dispersal and form regional metacommunities, nested within a number of biogeographic provinces. Larval supply depends on the connectivity of the dispersal networks, and affects recoverability of communities from disturbances. However, it is unclear how the dispersal networks contribute to recoverability of local communities. Here, we integrated a population dynamics model and estimation of large scale dispersal networks. By simulating disturbances to vent fields, we mapped recoverability of communities in 131 hydrothermal vent fields in the western Pacific Ocean. Our analysis showed substantial variation in recovery time due to variation in regional connectivity between known vent fields, and was not qualitatively affected by potential larval recruitment from unknown vent fields. In certain cases, simultaneous disturbance of a series of vent fields either delayed or wholly prevented recovery. Our approach is applicable to a dispersal network estimated from genetic diversity. Our method not only reveals distribution of recoverability of chemosynthetic communities in hydrothermal vent fields, but is also a practical tool for planning conservation strategies.
Collapse
|
16
|
Watanabe HK, Chen C, Marie DP, Takai K, Fujikura K, Chan BKK. Phylogeography of hydrothermal vent stalked barnacles: a new species fills a gap in the Indian Ocean 'dispersal corridor' hypothesis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172408. [PMID: 29765686 PMCID: PMC5936951 DOI: 10.1098/rsos.172408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 05/31/2023]
Abstract
Phylogeography of animals provides clues to processes governing their evolution and diversification. The Indian Ocean has been hypothesized as a 'dispersal corridor' connecting hydrothermal vent fauna of Atlantic and Pacific oceans. Stalked barnacles of the family Eolepadidae are common associates of deep-sea vents in Southern, Pacific and Indian oceans, and the family is an ideal group for testing this hypothesis. Here, we describe Neolepas marisindica sp. nov. from the Indian Ocean, distinguished from N. zevinae and N. rapanuii by having a tridentoid mandible in which the second tooth lacks small elongated teeth. Morphological variations suggest that environmental differences result in phenotypic plasticity in the capitulum and scales on the peduncle in eolepadids. We suggest that diagnostic characters in Eolepadidae should be based mainly on more reliable arthropodal characters and DNA barcoding, while the plate arrangement should be used carefully with their intraspecific variation in mind. We show morphologically that Neolepas specimens collected from the South West Indian Ridge, the South East Indian Ridge and the Central Indian Ridge belong to the new species. Molecular phylogeny and fossil evidence indicated that Neolepas migrated from the southern Pacific to the Indian Ocean through the Southern Ocean, providing key evidence against the 'dispersal corridor' hypothesis. Exploration of the South East Indian Ridge is urgently required to understand vent biogeography in the Indian Ocean.
Collapse
Affiliation(s)
- Hiromi Kayama Watanabe
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Chong Chen
- Department of Subsurface Geobiological Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Daniel P. Marie
- Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal, Albion, Mauritius
| | - Ken Takai
- Department of Subsurface Geobiological Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Benny K. K. Chan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
17
|
Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Sci Rep 2016; 6:39158. [PMID: 27966649 PMCID: PMC5155287 DOI: 10.1038/srep39158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/18/2016] [Indexed: 11/13/2022] Open
Abstract
The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47′S 49° 39′E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ13C and δ15N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations.
Collapse
|
18
|
Roterman CN, Copley JT, Linse KT, Tyler PA, Rogers AD. Connectivity in the cold: the comparative population genetics of vent-endemic fauna in the Scotia Sea, Southern Ocean. Mol Ecol 2016; 25:1073-88. [PMID: 26919308 DOI: 10.1111/mec.13541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/18/2023]
Abstract
We report the first comparative population genetics study for vent fauna in the Southern Ocean using cytochrome C oxidase I and microsatellite markers. Three species are examined: the kiwaid squat lobster, Kiwa tyleri, the peltospirid gastropod, Gigantopelta chessoia, and a lepetodrilid limpet, Lepetodrilus sp., collected from vent fields 440 km apart on the East Scotia Ridge (ESR) and from the Kemp Caldera on the South Sandwich Island Arc, ~95 km eastwards. We report no differentiation for all species across the ESR, consistent with panmixia or recent range expansions. A lack of differentiation is notable for Kiwa tyleri, which exhibits extremely abbreviated lecithotrophic larval development, suggestive of a very limited dispersal range. Larval lifespans may, however, be extended by low temperature-induced metabolic rate reduction in the Southern Ocean, muting the impact of dispersal strategy on patterns of population structure. COI diversity patterns suggest all species experienced demographic bottlenecks or selective sweeps in the past million years and possibly at different times. ESR and Kemp limpets are divergent, although with evidence of very recent ESR-Kemp immigration. Their divergence, possibility indicative of incipient speciation, along with the absence of the other two species at Kemp, may be the consequence of differing dispersal capabilities across a ~1000 m depth range and/or different selective regimes between the two areas. Estimates of historic and recent limpet gene flow between the ESR and Kemp are consistent with predominantly easterly currents and potentially therefore, cross-axis currents on the ESR, with biogeographic implications for the region.
Collapse
Affiliation(s)
- C N Roterman
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - J T Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - K T Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - P A Tyler
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - A D Rogers
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|