1
|
Laetz EMJ, Kahyaoglu C, Borgstein NM, Merkx M, van der Meij SET, Verberk WCEP. Critical thermal maxima and oxygen uptake in Elysia viridis, a sea slug that steals chloroplasts to photosynthesize. J Exp Biol 2024; 227:jeb246331. [PMID: 38629207 DOI: 10.1242/jeb.246331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/31/2024] [Indexed: 05/31/2024]
Abstract
Photosynthetic animals produce oxygen, providing an ideal lens for studying how oxygen dynamics influence thermal sensitivity. The algivorous sea slug Elysia viridis can steal and retain chloroplasts from the marine alga Bryopsis sp. for months when starved, but chloroplast retention is mere weeks when they are fed another green alga, Chaetomorpha sp. To examine plasticity in thermal tolerance and changes in net oxygen exchange when fed and starving, slugs fed each alga were acclimated to 17°C (the current maximum temperature to which they are exposed in nature) and 22°C (the increase predicted for 2100) and measured at different points during starvation. We also examined increased illumination to evaluate a potential tradeoff between increased oxygen production but faster chloroplast degradation. Following acclimation, we subjected slugs to acute thermal stress to determine their thermal tolerance. We also measured net oxygen exchange before and after acute thermal stress. Thermal tolerance improved in slugs acclimated to 22°C, indicating they can acclimate to temperatures higher than they naturally experience. All slugs exhibited net oxygen uptake, and rates were highest in recently fed slugs before exposure to acute thermal stress. Oxygen uptake was suppressed following acute thermal stress. Under brighter light, slugs exhibited improved thermal tolerance, possibly because photosynthetic oxygen production alleviated oxygen limitation. Accordingly, this advantage disappeared later in starvation when photosynthesis ceased. Thus, E. viridis can cope with heatwaves by suppressing metabolism and plastically adjusting heat tolerance; however, starvation influences a slug's thermal tolerance and oxygen uptake such that continuous access to algal food for its potential nutritive and oxygenic benefits is critical when facing thermal stress.
Collapse
Affiliation(s)
- Elise M J Laetz
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Can Kahyaoglu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Natascha M Borgstein
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Michiel Merkx
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sancia E T van der Meij
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Wilco C E P Verberk
- Department of Ecology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
2
|
Havurinne V, Aitokari R, Mattila H, Käpylä V, Tyystjärvi E. Ultraviolet screening by slug tissue and tight packing of plastids protect photosynthetic sea slugs from photoinhibition. PHOTOSYNTHESIS RESEARCH 2022; 152:373-387. [PMID: 34826025 PMCID: PMC9458594 DOI: 10.1007/s11120-021-00883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 05/16/2023]
Abstract
One of the main mysteries regarding photosynthetic sea slugs is how the slug plastids handle photoinhibition, the constant light-induced damage to Photosystem II of photosynthesis. Recovery from photoinhibition involves proteins encoded by both the nuclear and plastid genomes, and slugs with plastids isolated from the algal nucleus are therefore expected to be incapable of constantly repairing the damage as the plastids inside the slugs grow old. We studied photoinhibition-related properties of the sea slug Elysia timida that ingests its plastids from the green alga Acetabularia acetabulum. Spectral analysis of both the slugs and the algae revealed that there are two ways the slugs use to avoid major photoinhibition of their plastids. Firstly, highly photoinhibitory UV radiation is screened by the slug tissue or mucus before it reaches the plastids. Secondly, the slugs pack the plastids tightly in their thick bodies, and therefore plastids in the outer layers protect the inner ones from photoinhibition. Both properties are expected to greatly improve the longevity of the plastids inside the slugs, as the plastids do not need to repair excessive amounts of damage.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Riina Aitokari
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Heta Mattila
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Ville Käpylä
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Vorobyeva OA, Malakhov VV, Ekimova IA. General and fine structure of Aeolidia papillosa cnidosacs (Gastropoda: Nudibranchia). J Morphol 2021; 282:754-768. [PMID: 33713032 DOI: 10.1002/jmor.21346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/09/2022]
Abstract
Nudibranch mollusks (Gastropoda: Heterobranchia) are widely known for their ability to incorporate some active biochemical compounds of their prey, or even organelles and symbionts of the prey, which assured biological success of this group. At the same time, the process of nematocysts obtaining and incorporation into specific structures called cnidosacs by cladobranch mollusks remain poorly studied. This highlights a necessity of additional ultrastructural studies of cnidosac and adjacent organs in various aeolid mollusks using modern microscopic methods as they may provide new insight into the cnidosac diversity and fine-scale dynamics of nematocysts sequestration process. The present study is focused on the general and fine structure of the cnidosac area in cladobranch Aeolidia papillosa (Aeolidiidae). Specific goals of our study were to provide a detailed description of histological and ultrafine structure of epidermis, upper parts of the digestive glands and the cnidosac, its innervation and proliferation using standard histological techniques, confocal laser scanning microscopy (CLSM) and transmission electron microscopy. Our results clearly demonstrated that A. papillosa cnidosac is a much more complex structure, than it was thought, especially compared with simple cnidosacs found in flabellinids and facelinids. Using CLSM for functional morphological analysis provides a better resolution in visualization of structural elements within a cnidosac compared with traditional histological techniques. We revealed the presence of two cell types in the cnidophage zone: cnidophages and interstitial cells, which differ in ultrastructure and function. Our results also document the presence of a specific cnidopore zone, lined with differentiated cuboid epithelium bearing long microvilli, which likely provides a unidirectional flow of nematocysts during kleptocnides extrusion. For the first time, occurrence of vacuoles containing protective chitinous spindles in the cnidosac epithelium was shown.
Collapse
Affiliation(s)
- Olga A Vorobyeva
- Invertebrate Zoology Department, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir V Malakhov
- Invertebrate Zoology Department, Lomonosov Moscow State University, Moscow, Russia
| | - Irina A Ekimova
- Invertebrate Zoology Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Cruz S, LeKieffre C, Cartaxana P, Hubas C, Thiney N, Jakobsen S, Escrig S, Jesus B, Kühl M, Calado R, Meibom A. Functional kleptoplasts intermediate incorporation of carbon and nitrogen in cells of the Sacoglossa sea slug Elysia viridis. Sci Rep 2020; 10:10548. [PMID: 32601288 PMCID: PMC7324368 DOI: 10.1038/s41598-020-66909-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023] Open
Abstract
Some sacoglossan sea slugs incorporate intracellular functional algal chloroplasts, a process termed kleptoplasty. “Stolen” chloroplasts (kleptoplasts) can remain photosynthetically active up to several months, contributing to animal nutrition. Whether this contribution occurs by means of translocation of photosynthesis-derived metabolites from functional kleptoplasts to the animal host or by simple digestion of such organelles remains controversial. Imaging of 13C and 15N assimilation over a 12-h incubation period of Elysia viridis sea slugs showed a light-dependent incorporation of carbon and nitrogen, observed first in digestive tubules and followed by a rapid accumulation into chloroplast-free organs. Furthermore, this work revealed the presence of 13C-labeled long-chain fatty acids (FA) typical of marine invertebrates, such as arachidonic (20:4n-6) and adrenic (22:4n-6) acids. The time frame and level of 13C- and 15N-labeling in chloroplast-free organs indicate that photosynthesis-derived primary metabolites were made available to the host through functional kleptoplasts. The presence of specific 13C-labeled long-chain FA, absent from E. viridis algal food, indicates animal based-elongation using kleptoplast-derived FA precursors. Finally, carbon and nitrogen were incorporated in organs and tissues involved in reproductive functions (albumin gland and gonadal follicles), implying a putative role of kleptoplast photosynthesis in the reproductive fitness of the animal host.
Collapse
Affiliation(s)
- Sónia Cruz
- ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Charlotte LeKieffre
- ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers, Cedex 1, France.,Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
| | - Paulo Cartaxana
- ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Cédric Hubas
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Station Marine de Concarneau, Place de la croix, 29900, Concarneau, France
| | - Najet Thiney
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Station Marine de Concarneau, Place de la croix, 29900, Concarneau, France
| | - Sofie Jakobsen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Bruno Jesus
- Laboratoire Mer Molécules Santé, Faculté des Sciences et des Techniques, Université de Nantes, 44322, Nantes, France
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Ricardo Calado
- ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Anders Meibom
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Donohoo SA, Wade RM, Sherwood AR. Finding the Sweet Spot: Sub-Ambient Light Increases Fitness and Kleptoplast Survival in the Sea Slug Plakobranchus cf. ianthobaptus Gould, 1852. THE BIOLOGICAL BULLETIN 2020; 238:154-166. [PMID: 32597715 DOI: 10.1086/709371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sacoglossans, or "sap-sucking" sea slugs, are primarily algivorous, with many taxa exhibiting kleptoplasty, the feeding and retaining of photosynthetically active chloroplasts from algae. The Plakobranchus species complex exhibits some of the longest kleptoplast retention and survival times under starvation conditions, but the contributions of these kleptoplasts to their survival and overall fitness have been widely debated. In this study we assessed the effects of starvation and light on the fitness of Plakobranchus cf. ianthobaptus and its kleptoplasts by placing starved individuals in eight daily average light treatments, ranging from near dark (2 µmol photon m-2 s-1) to ambient light (470 µmol photon m-2 s-1). Slug weight was used as a metric of fitness, and kleptoplast photosynthetic activity was determined via maximum quantum yield (Fv/Fm) by pulse-amplitude modulated fluorometry as a proxy for kleptoplast health. Plakobranchus individuals in near-dark and high light treatments (>160 µmol photon m-2 s-1) experienced significantly greater weight loss than those in low light (65 µmol photon m-2 s-1) and moderate light treatments (95-135 µmol photon m-2 s-1). Additionally, individuals in high light treatments experienced a rapid decline in kleptoplast photosynthetic activity, while all other treatments experienced minimal decline. This relationship between kleptoplast degradation and weight loss suggests an important link between fitness and kleptoplasty. Given the significant negative effects of ambient conditions, regular refreshment and replenishment of kleptoplasts or physiological or behavioral adjustments are likely employed for the benefits of kleptoplasty to be maintained.
Collapse
|
6
|
Christa G, Pütz L, Sickinger C, Melo Clavijo J, Laetz EMJ, Greve C, Serôdio J. Photoprotective Non-photochemical Quenching Does Not Prevent Kleptoplasts From Net Photoinactivation. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Laetz EMJ, Wägele H. How does temperature affect functional kleptoplasty? Comparing populations of the solar-powered sister-species Elysia timida Risso, 1818 and Elysia cornigera Nuttall, 1989 (Gastropoda: Sacoglossa). Front Zool 2018; 15:17. [PMID: 29760759 PMCID: PMC5937827 DOI: 10.1186/s12983-018-0264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background Despite widespread interest in solar-powered sea slugs (Sacoglossa: Gastropoda), relatively little is know about how they actually perform functional kleptoplasty. Sister-taxa Elysia timida and E. cornigera provide an ideal model system for investigating this phenomenon, since they feed on the same algal genus and only E. timida is capable of long-term kleptoplasty. Recent research has explored factors regarding functional kleptoplasty in E. timida, including their starvation longevity, digestive activity, autophagal response and photosynthetic efficiency under two different temperature conditions (18 °C and 21 °C). These studies revealed the trends E. timida displays regarding each factor during starvation as well as influences temperature has on some aspects of functional kleptoplasty. This study examines E. cornigera regarding each of these factors in an attempt to elucidate differences between each species that could explain their differing kleptoplastic abilities. Since both species naturally occur in 25 °C seawater (E. timida peak summer temperature, E. cornigera low winter temperature), each species was acclimatized to 25 °C to facilitate comparison and determine if these species exhibit physiological differences to starvation when under the same environmental conditions. Results When comparing the different E. timida temperature treatments, it becomes clear that increased temperatures compromise E. timida’s kleptoplastic abilities. Specimens acclimatized to 25 °C revealed shorter starvation longevities surviving an average 42.4 days compared to the 95.9 day average observed in specimens exposed to 18 °C. Each temperature treatment displayed a significantly different decrease throughout the starvation period in both, the rate of photosynthetic efficiency and in the decreasing functional kleptoplast abundance. Lysosomal abundances are assessed here as indicators of different aspects of metabolic activity, which could be correlated to temperature. E. cornigera, also acclimatized to 25 °C did not display significantly similar patterns as any of the E. timida temperature treatments, having fewer incorporated kleptoplasts, a higher lysosomal response to starvation, a faster decrease in photosynthetic efficiency and a lower starvation longevity. Conclusions These results confirm that each species has different physiological reactions to starvation and kleptoplast retention, even under the same conditions. While temperature affects aspects of functional kleptoplasty, it is likely not responsible for the differences in kleptoplastic abilities seen in these species. Electronic supplementary material The online version of this article (10.1186/s12983-018-0264-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elise Marie Jerschabek Laetz
- 1Zoological Research Museum Alexander Koenig, 160 Adenauerallee, 53113 Bonn, Germany.,2Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Heike Wägele
- 1Zoological Research Museum Alexander Koenig, 160 Adenauerallee, 53113 Bonn, Germany
| |
Collapse
|
8
|
Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci Rep 2017; 7:7714. [PMID: 28798379 PMCID: PMC5552801 DOI: 10.1038/s41598-017-08002-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/06/2017] [Indexed: 12/02/2022] Open
Abstract
Several sacoglossan sea slug species feed on macroalgae and incorporate chloroplasts into tubular cells of their digestive diverticula. We investigated the role of the “stolen” chloroplasts (kleptoplasts) in the nutrition of the sea slug Elysia viridis and assessed how their abundance, distribution and photosynthetic activity were affected by light and starvation. Elysia viridis individuals feeding on the macroalga Codium tomentosum were compared with starved specimens kept in dark and low light conditions. A combination of variable Chl a fluorescence and hyperspectral imaging, and HPLC pigment analysis was used to evaluate the spatial and temporal variability of photopigments and of the photosynthetic capacity of kleptoplasts. We show increased loss of weight and body length in dark-starved E. viridis as compared to low light-starved sea slugs. A more pronounced decrease in kleptoplast abundance and lower photosynthetic electron transport rates were observed in dark-starved sea slugs than in low light-starved animals. This study presents strong evidence of the importance of kleptoplast photosynthesis for the nutrition of E. viridis in periods of food scarcity. Deprived of photosynthates, E. viridis could accelerate the breakdown of kleptoplasts in the dark to satisfy its’ energy requirements.
Collapse
|
9
|
Laetz EMJ, Moris VC, Moritz L, Haubrich AN, Wägele H. Photosynthate accumulation in solar-powered sea slugs - starving slugs survive due to accumulated starch reserves. Front Zool 2017; 14:4. [PMID: 28115976 PMCID: PMC5244517 DOI: 10.1186/s12983-016-0186-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Solar-powered sea slugs are famed for their ability to survive starvation due to incorporated algal chloroplasts. It is well established that algal-derived carbon can be traced in numerous slug-derived compounds, showing that slugs utilize the photosynthates produced by incorporated plastids. Recently, a new hypothesis suggests that the photosynthates produced are not continuously made available to the slug. Instead, at least some of the plastid’s photosynthetic products are stored in the plastid itself and only later become available to the slug. The long-term plastid-retaining slug, Elysia timida and its sole food source, Acetabularia acetabulum were examined to determine whether or not starch, a combination of amylose and amylopectin and the main photosynthate produced by A. acetabulum, is produced by the stolen plastids and whether it accumulates within individual kleptoplasts, providing an energy larder, made available to the slug at a later time. Results Histological sections of Elysia timida throughout a starvation period were stained with Lugol’s Iodine solution, a well-known stain for starch granules in plants. We present here for the first time, an increase in amylose concentration, within the slug’s digestive gland cells during a starvation period, followed by a sharp decrease. Chemically blocking photosynthesis in these tissues resulted in no observable starch, indicating that the starch in untreated animals is a product of photosynthetic activity. Conclusion This suggests that kleptoplasts function as both, a nutritive producer and storage device, holding onto the polysaccharides they produce for a certain time until they are finally available and used by the starving slug to withstand extended starvation periods.
Collapse
Affiliation(s)
- Elise M J Laetz
- Zoological Research Museum Alexander Koenig, 162 Adenauerallee, Bonn, 53113 Germany.,Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121 Germany
| | - Victoria C Moris
- Zoological Research Museum Alexander Koenig, 162 Adenauerallee, Bonn, 53113 Germany
| | - Leif Moritz
- Zoological Research Museum Alexander Koenig, 162 Adenauerallee, Bonn, 53113 Germany
| | - André N Haubrich
- Zoological Research Museum Alexander Koenig, 162 Adenauerallee, Bonn, 53113 Germany
| | - Heike Wägele
- Zoological Research Museum Alexander Koenig, 162 Adenauerallee, Bonn, 53113 Germany
| |
Collapse
|