1
|
Sato S, Appeldorff C, Wangensteen OS, Garcés-Pastor S, Laumer CE, Herranz M, Giribet G, Renault D, Rask Møller P, Worsaae K. Phylogenomics of the rarest animals: a second species of Micrognathozoa identified by machine learning. Proc Biol Sci 2025; 292:20242867. [PMID: 39968621 PMCID: PMC11836703 DOI: 10.1098/rspb.2024.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
The latest animal phylum to be discovered, Micrognathozoa, constitutes a rare group of limnic meiofauna. These microscopic 'jaw animals' are among the smallest metazoans yet possess highly complex jaw structures. The single species of Micrognathozoa, Limnognathia maerski Kristensen and Funch, 2000, was first described from Greenland, later reported from a remote Subantarctic island and more recently discovered in the Pyrenees on the European continent. Successful collections of these three known populations facilitated investigations of the intraphylum relationships and species limits within Limnognathia for the first time. Through detailed anatomical comparisons, we substantiate the lack of morphological differences between the three geographically disjunct populations. With transcriptomic data from single specimens, we conducted the first intraphylum phylogenetic analyses and extensively tested species hypotheses using standard approaches and novel machine learning methods. Analyses clearly delimited the Subantarctic population, here described as Limnognathia desmeti sp. nov., the second species of Micrognathozoa, but did not definitively split the Greenland and Pyrenees populations as separate species. Divergence dating analysis suggests the disjunct distribution of Micrognathozoa is not human mediated but the result of long-distance dispersal raising questions about their dispersal capabilities and potential undiscovered populations.
Collapse
Affiliation(s)
- Shoyo Sato
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Cecilie Appeldorff
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Owen S. Wangensteen
- Department of Evolutionary Biology Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Catalonia08028, Spain
| | - Sandra Garcés-Pastor
- Department of Evolutionary Biology Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Catalonia08028, Spain
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia08003, Spain
| | | | - María Herranz
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
- Area of Biodiversity and Conservation, Superior School of Experimental Science and Technology (ESCET), Rey Juan Carlos University, Móstoles, Madrid, Spain
- Global Change Research Institute (IICG-URJC), Móstoles, Madrid28933, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - David Renault
- UMR CNRS 6553 ECOBIO (Ecosystèmes, biodiversité, évolution), Université Rennes, avenue du Général Leclerc, Rennes cedex35042, France
- Institut Universitaire de France, Paris, France
| | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
2
|
Garrido-Benavent I, de Los Ríos A, Núñez-Zapata J, Ortiz-Álvarez R, Schultz M, Pérez-Ortega S. Ocean crossers: a tale of disjunctions and speciation in the dwarf-fruticose Lichina (lichenized Ascomycota). Mol Phylogenet Evol 2023:107829. [PMID: 37247701 DOI: 10.1016/j.ympev.2023.107829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/24/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Lichens thrive in rocky coastal areas in temperate and cold regions of both hemispheres. Species of the genus Lichina, which form characteristic black fruiting thalli associated with cyanobacteria, often create distinguishable bands in the intertidal and supralittoral zones. The present study uses a comprehensive specimen dataset and four gene loci to (1) delineate and discuss species boundaries in this genus, (2) assess evolutionary relationships among species, and (3) infer the most likely causes of their current geographic distribution in the Northern and Southern hemispheres. A dated phylogeny describes the time frame in which extant disjunctions of species and populations were established. The results showed that the genus is integrated by four species, with Lichina pygmaea, L. confinis and the newly described L. canariensis from rocky seashores in the Canary Islands, occurring in the Northern Hemisphere, whereas L. intermedia is restricted to the Southern Hemisphere. Lichina intermedia hosted a much higher intraspecific genetic diversity than the other species, with subclades interpreted as species-level lineages by the different species delimitation approaches. However, a conservative taxonomic approach was adopted. This species showed a striking disjunct distribution between Australasia and southern South America. The timing for the observed interspecific and intraspecific divergences and population disjunctions postdated continental plate movements, suggesting that long-distance dispersal across body waters in the two hemispheres played a major role in shaping the current species distributions. Such ocean crossings were, as in L. canariensis, followed by speciation. New substitution rates for the nrITS of the genus Lichina were inferred using a tree spanning the major Ascomycota lineages calibrated using fossils. In conclusion, this work lays the foundation for a better understanding of the evolution through time and space of maritime lichens.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100-Burjassot, València, Spain; Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Serrano 115 dpdo, E-28045 Madrid, Spain.
| | - Jano Núñez-Zapata
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| | - Rüdiger Ortiz-Álvarez
- Department of International Science, Spanish Federation of Science and Technology (FECYT), C/ Pintor Murillo 15, E-28100 Alcobendas, Madrid, Spain.
| | - Matthias Schultz
- Herbarium Hamburgense, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| |
Collapse
|
3
|
Jauregui-Lazo J, Brinda JC, Mishler BD. The phylogeny of Syntrichia: An ecologically diverse clade of mosses with an origin in South America. AMERICAN JOURNAL OF BOTANY 2023; 110:e16103. [PMID: 36576338 DOI: 10.1002/ajb2.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
PREMISE To address the biodiversity crisis, we need to understand the evolution of all organisms and how they fill geographic and ecological space. Syntrichia is one of the most diverse and dominant genera of mosses, ranging from alpine habitats to desert biocrusts, yet its evolutionary history remains unclear. METHODS We present a comprehensive phylogenetic analysis of Syntrichia, based on both molecular and morphological data, with most of the named species and closest outgroups represented. In addition, we provide ancestral-state reconstructions of water-related traits and a global biogeographic analysis. RESULTS We found 10 major well-resolved subclades of Syntrichia that possess geographical or morphological coherence, in some cases representing previously accepted genera. We infer that the extant species diversity of Syntrichia likely originated in South America in the early Eocene (56.5-43.8 million years ago [Mya]), subsequently expanded its distribution to the neotropics, and finally dispersed to the northern hemisphere. There, the clade experienced a recent diversification (15-12 Mya) into a broad set of ecological niches (e.g., the S. caninervis and S. ruralis complexes). The transition from terricolous to either saxicolous or epiphytic habitats occurred more than once and was associated with changes in water-related traits. CONCLUSIONS Our study provides a framework for understanding the evolutionary history of Syntrichia through the combination of morphological and molecular characters, revealing that migration events that shaped the current distribution of the clade have implications for morphological character evolution in relation to niche diversity.
Collapse
Affiliation(s)
- Javier Jauregui-Lazo
- Department of Integrative Biology, and University and Jepson Herbaria, 1001 Valley Life Sciences Building, University of California Berkeley, CA, 94720-2465, USA
| | - John C Brinda
- Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO, 63110, USA
| | - Brent D Mishler
- Department of Integrative Biology, and University and Jepson Herbaria, 1001 Valley Life Sciences Building, University of California Berkeley, CA, 94720-2465, USA
| |
Collapse
|
4
|
Krajewski Ł, Adamec L, Saługa M, Bednarek-Ochyra H, Plášek V. Welcome to the Czech Republic again! Rare northern mosses Calliergon megalophyllum and Drepanocladus sordidus (Amblystegiaceae) in South Bohemia in light of their European distribution and habitat preferences. PHYTOKEYS 2020; 154:111-136. [PMID: 32848501 PMCID: PMC7419341 DOI: 10.3897/phytokeys.154.51454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Two aquatic moss species, Calliergon megalophyllum and Drepanocladus sordidus (Amblystegiaceae, Bryophyta), which had been considered extinct in the Czech Republic, were found in the Třeboň Basin, South Bohemia, in 2016-2017. They co-occurred in extensive reed- and sedge-dominated fen pools with humic water on the shore of an old fishpond and the former species was also discovered in a small humic pool in an old shallow sand-pit. The new Czech sites of these rare boreal species represent one of the southernmost known outposts within their entire European range. Previously, the two species were only known from single records in the Czech Republic from the late 19th and early 20th centuries. To confirm our morphological observations, we used phylogenetic analyses of DNA sequence variation in four chloroplast loci (atpB-rbcL, trnL-trnF, rpl16, trnG) and one nuclear region, the internal transcribed spacers of ribosomal DNA (ITS). We found (1) monophyly of all Calliergon megalophyllum specimens tested; (2) based on chloroplast DNA sequences, monophyly among all Drepanocladus sordidus specimens and representatives of Pseudocalliergon turgescens and P. lycopodioides moss species; (3) based on nuclear ITS sequences, monophyly of all original D. sordidus specimens. These results corroborate morphological studies and thus confirm the existence of natural sites for the studied moss species in the Třeboň Basin, South Bohemia, Czech Republic.
Collapse
Affiliation(s)
- Łukasz Krajewski
- Institute of Technology and Life Sciences, Department of Nature Protection and Rural Landscape, 05-090 Raszyn, PolandInstitute of Technology and Life SciencesRaszynPoland
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Functional Ecology, 379 01 Třeboň, Czech RepublicInstitute of Botany of the Czech Academy of SciencesTřeboňCzech Republic
| | - Marta Saługa
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Halina Bednarek-Ochyra
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Vítězslav Plášek
- University of Ostrava, Department of Biology and Ecology, 710 00 Ostrava, Czech RepublicUniversity of OstravaOstravaCzech Republic
| |
Collapse
|
5
|
Saługa M. At the crossroads of botanical collections and molecular genetics laboratory: a preliminary study of obtaining amplifiable DNA from moss herbarium material. PeerJ 2020; 8:e9109. [PMID: 32518721 PMCID: PMC7258893 DOI: 10.7717/peerj.9109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/10/2020] [Indexed: 12/04/2022] Open
Abstract
Background Research focused on extreme environments is often associated with difficulties in obtaining fresh plant material. Herbaria may provide great support as they house large collections of specimens from different parts of the world. Accordingly, there is also a growing interest in methods using herbarium specimens in molecular studies. Much of the literature on herbarium DNA is aimed to improve extraction and PCR amplification and is focused mostly on vascular plants. Here, I provide a brief study of DNA extraction efficiency from moss herbarium specimens, emphasizing the importance of herbaria as an invaluable source of material from hard-to-access geographical areas, such as the Antarctic region. Methods The presented study is based on herbarium collections of 25 moss species collected in the austral polar regions between 1979 and 2013. The majority of samples were obtained using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). The remaining, smaller part was extracted using an adapted CTAB-based approach. The performance of DNA extraction methods in terms of PCR amplification success was measured by testing several DNA fragments of various size. Furthermore, in order to estimate of DNA fragmentation level, an automated on-chip electrophoresis system was used. Results Results reveal that DNA purity and the length of the target genetic region are the fundamental agents which drive the successful PCR reaction. Conversely, the DNA yield and specimen age seem to be less relevant. With this study, I present also an optimized CTAB-based approach which may effectively suppress inhibitors in the herbarium DNA. This method can be considered a cheaper alternative to column-based technology, particularly useful for dealing with a large number of samples. Results of this study confirmed previous reports and contribute to filling the existing gap in molecular analyses which involve the use of herbarium collections of mosses.
Collapse
Affiliation(s)
- Marta Saługa
- Władysław Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|