1
|
Georgopoulos AP, James LM, Sanders M. Nine Human Leukocyte Antigen (HLA) Class I Alleles are Omnipotent Against 11 Antigens Expressed in Melanoma Tumors. Cancer Inform 2024; 23:11769351241274160. [PMID: 39206277 PMCID: PMC11350539 DOI: 10.1177/11769351241274160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Host immunogenetics (Human Leukocyte Antigen, HLA) play a critical role in the human immune response to melanoma, influencing both melanoma prevalence and immunotherapy outcomes. Beneficial outcomes hinge on the successful binding of epitopes of melanoma antigens to HLA Class I molecules for an effective engagement of cytotoxic CD8+ lymphocytes and subsequent elimination of the cancerous cell. This study evaluated the binding affinity and immunogenicity of HLA Class I to melanoma tumor antigens to identify alleles best suited to facilitate elimination of melanoma antigens. Methods In this study, we used freely available software tools to determine in silico the binding affinity and immunogenicity of 2462 reported HLA Class I alleles to all linear nonamer epitopes of 11 known antigens expressed in melanoma tumors (TRP2, S100, Tyrosinase, TRP1, PMEL(17), MAGE1, MAGE4, CTA, BAGE, GAGE/SSX2, Melan). Results We identified the following 9 HLA Class I alleles with very high immunogenicity and binding affinity against all 11 melanoma antigens: A*02:14, B*07:10, B*35:10, B*40:10, B*40:12, B*44:10, C*07:11, and C*07:13, and C*07:14. Conclusion These 9 HLA alleles possess the potential to aid in the elimination of melanoma both by themselves and by enhancing the beneficial effect of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew Sanders
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Li L, Nian S, Liu Q, Zhang B, Jimu W, Li C, Huang Z, Hu Q, Huang Y, Yuan Q. Fully human anti-B7-H3 recombinant antibodies inhibited tumor growth by increasing T cell infiltration. Int Immunopharmacol 2024; 132:111926. [PMID: 38552297 DOI: 10.1016/j.intimp.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.
Collapse
Affiliation(s)
- Lin Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Siji Nian
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Qin Liu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Bo Zhang
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Wulemo Jimu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Chengwen Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Zhanwen Huang
- Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China
| | - Qiaosen Hu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Yuanshuai Huang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China; Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China.
| |
Collapse
|
3
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Mastrangelo S, Attina G, Ruggiero A. Tyrosine Kinase Inhibitors and Thyroid Toxicity. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:1343-1351. [DOI: 10.13005/bpj/2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Some multithyrosine kinase inhibitors have been reported to cause changes in thyroid function. For the management of sunitinib-induced hypothyroidism, an evaluation of thyroid hormone and antibody profile is recommended before starting treatment with tyrosine kinase inhibitors. Patients with pre-existing thyroid dysfunction should undergo dose adjustment of L-thyroxine during treatment with tyrosine kinase inhibitors. Thyroid dysfunction is not a reason to discontinue or reduce the dosage of sunitinib. Their occurrence appears to correlate with increased antitumour efficacy of the inhibitor. There are currently no guidelines for monitoring thyroid activity during treatment with TKIs, and the time interval at which TSH should be periodically measured has not yet been determined. A reasonable approach is to monitor thyroid function, both before and during 2-4 weeks after the end of therapy. A comprehensive analysis of adverse events associated with the use of these inhibitors could help clinical monitoring of patients along with the adoption of appropriate management approaches.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Shakiba Y, Vorobyev PO, Naumenko VA, Kochetkov DV, Zajtseva KV, Valikhov MP, Yusubalieva GM, Gumennaya YD, Emelyanov EA, Semkina AS, Baklaushev VP, Chumakov PM, Lipatova AV. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses 2023; 15:828. [PMID: 37112810 PMCID: PMC10142208 DOI: 10.3390/v15040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host's immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Victor A. Naumenko
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
| | - Dmitry V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ksenia V. Zajtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marat P. Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Egor A. Emelyanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I, Jia WWG. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 2023; 28:334-348. [PMID: 36938544 PMCID: PMC10018392 DOI: 10.1016/j.omto.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
VG2025 is a recombinant oncolytic herpes simplex virus type 1 (HSV-1) that uses transcriptional and translational dual regulation (TTDR) of critical viral genes to enhance virus safety and promote tumor-specific virus replication without reducing virulence. The TTDR platform is based on transcriptional control of the essential HSV-1 immediate-early protein ICP27 using a tumor-specific carcinoembryonic antigen (CEA) promoter, coupled with translational control of the neurovirulence factor ICP34.5 using multiple microRNA (miR)-binding sites. VG2025 further incorporates IL-12 and the IL-15/IL-15 receptor alpha subunit complex to enhance the antitumor and immune stimulatory properties of oncolytic HSVs. The TTDR strategy was verified in vitro and shown to be highly selective. Strong in vivo antitumor efficacy was observed following both intratumoral and intravenous administration. Clear abscopal and immune memory effects were also evident, indicating a robust antitumor immune response. Gene expression profiling of treated tumors revealed increased immune cell infiltration and activation of multiple immune-signaling pathways when compared with the backbone virus. Absence of neurotoxicity was verified in mice and in rhesus monkeys. Taken together, the enhanced tumor clearance, excellent safety profile, and positive correlation between CEA levels and viral replication efficiency may provide an opportunity for using biomarker-based precision medicine in oncolytic virotherapy.
Collapse
Affiliation(s)
- Dmitry V. Chouljenko
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
- Corresponding author: Dmitry V. Chouljenko, Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada.
| | - Yanal M. Murad
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - I-Fang Lee
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Zahid Delwar
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Jun Ding
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Guoyu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xiaohu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xuexian Bu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Yi Sun
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Ismael Samudio
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - William Wei-Guo Jia
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| |
Collapse
|
8
|
Neurology of cancer immunotherapy. Neurol Sci 2023; 44:137-148. [PMID: 36112276 PMCID: PMC9816208 DOI: 10.1007/s10072-022-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Immunotherapy is nowadays considered a mainstay of cancer treatment, dramatically affecting the disease-free survival rate in several aggressive malignancies. Unfortunately, cancer immunotherapy can also trigger life-threatening autoimmune neurological complications named "neurological adverse effects" (NAEs). NAEs can affect both the central nervous system (CNS), as in ipilimumab-related aseptic meningitis, and the peripheral nervous system (PNS), as in nivolumab-induced myasthenia gravis. CURRENT EVIDENCE The incidence of NAEs is highly variable, ranging from 2 to 4% using checkpoint inhibitors to 50% using blinatumomab. Looking at these numbers, it appears clear that neurologists will soon be called more and more frequently to decide upon the best therapeutic strategy for a patient receiving immunotherapy and experiencing a NAE. Most of them can be treated or reverted withholding the offending drug and adding IVIg, plasmapheresis, or steroids to the therapy. Sometimes, however, for oncological reasons, immunotherapy cannot be stopped so the neurologist needs to know what countermeasures have proven most effective. Moreover, patients with a pre-existing autoimmune neurological disease (AID), such as myasthenia gravis or multiple sclerosis, might need immunotherapy during their life, risking a severe worsening of their symptoms. In that setting, the neurologist needs to properly counsel patients about the risk of a therapy-related relapse. CONCLUSION In this article, we describe the most frequently reported NAEs and aim to give neurologists a practical overview on how to deal with them.
Collapse
|
9
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Jafari M, Kadkhodazadeh M, Shapourabadi MB, Goradel NH, Shokrgozar MA, Arashkia A, Abdoli S, Sharifzadeh Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front Immunol 2022; 13:1012806. [PMID: 36311790 PMCID: PMC9608759 DOI: 10.3389/fimmu.2022.1012806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the fact that the new drugs and targeted therapies have been approved for cancer therapy during the past 30 years, the majority of cancer types are still remain challenging to be treated. Due to the tumor heterogeneity, immune system evasion and the complex interaction between the tumor microenvironment and immune cells, the great majority of malignancies need multimodal therapy. Unfortunately, tumors frequently develop treatment resistance, so it is important to have a variety of therapeutic choices available for the treatment of neoplastic diseases. Immunotherapy has lately shown clinical responses in malignancies with unfavorable outcomes. Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that employs naturally occurring or genetically-modified viruses that multiply preferentially within cancer cells. OVs have the ability to not only induce oncolysis but also activate cells of the immune system, which in turn activates innate and adaptive anticancer responses. Despite the fact that OVs were translated into clinical trials, with T-VECs receiving FDA approval for melanoma, their use in fighting cancer faced some challenges, including off-target side effects, immune system clearance, non-specific uptake, and intratumoral spread of OVs in solid tumors. Although various strategies have been used to overcome the challenges, these strategies have not provided promising outcomes in monotherapy with OVs. In this situation, it is increasingly common to use rational combinations of immunotherapies to improve patient benefit. With the development of other aspects of cancer immunotherapy strategies, combinational therapy has been proposed to improve the anti-tumor activities of OVs. In this regard, OVs were combined with other biotherapeutic platforms, including various forms of antibodies, nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to reduce the side effects of OVs and enhance their efficacy. This article reviews the promising outcomes of OVs in cancer therapy, the challenges OVs face and solutions, and their combination with other biotherapeutic agents.
Collapse
Affiliation(s)
- Mahdie Jafari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Arashkia
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| |
Collapse
|
11
|
Zhang A, Yang F, Gao L, Shi X, Yang J. Research Progress on Radiotherapy Combined with Immunotherapy for Associated Pneumonitis During Treatment of Non-Small Cell Lung Cancer. Cancer Manag Res 2022; 14:2469-2483. [PMID: 35991677 PMCID: PMC9386171 DOI: 10.2147/cmar.s374648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation pneumonitis is a common and serious complication of radiotherapy for thoracic tumours. Although radiotherapy technology is constantly improving, the incidence of radiation pneumonitis is still not low, and severe cases can be life-threatening. Once radiation pneumonitis develops into radiation fibrosis (RF), it will have irreversible consequences, so it is particularly important to prevent the occurrence and development of radiation pneumonitis. Immune checkpoint inhibitors (ICIs) have rapidly altered the treatment landscape for multiple tumour types, providing unprecedented survival in some patients, especially for the treatment of non-small cell lung cancer (NSCLC). However, in addition to its remarkable curative effect, ICls may cause immune-related adverse events. The incidence of checkpoint inhibitor pneumonitis (CIP) is 3% to 5%, and its mortality rate is 10% to 17%. In addition, the incidence of CIP in NSCLC is higher than in other tumour types, reaching 7%–13%. With the increasing use of immune checkpoint inhibitors (ICls) and thoracic radiotherapy in the treatment of patients with NSCLC, ICIs may induce delayed radiation pneumonitis in patients previously treated with radiation therapy, or radiation activation of the systemic immune system increases the toxicity of adverse reactions, which may lead to increased pulmonary toxicity and the incidence of pneumonitis. In this paper, the data about the occurrence of radiation pneumonitis, immune pneumonitis, and combined treatment and the latest related research results will be reviewed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Fuyuan Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Lei Gao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Xiaoyan Shi
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Jiyuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
12
|
Wardill HR, Chan RJ, Chan A, Keefe D, Costello SP, Hart NH. Dual contribution of the gut microbiome to immunotherapy efficacy and toxicity: supportive care implications and recommendations. Support Care Cancer 2022; 30:6369-6373. [PMID: 35266052 PMCID: PMC9213341 DOI: 10.1007/s00520-022-06948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
The efficacy of immune checkpoint inhibitors (immunotherapy) is increasingly recognized to be linked to the composition the gut microbiome. Given the high rates of resistance, interventions targeting the gut microbiome are now being investigated for its ability to improve the efficacy of immunotherapy. In light of recently published data demonstrating a strong correlation between the efficacy and toxicity of immunotherapy, there is a risk that efforts to enhance immunotherapy efficacy may be undermined by increases in immune-related adverse events (IrAEs) This is particularly important for microbial interventions aimed at increasing immunotherapy efficacy, with many microbes implicated in tumour response also linked to IrAEs, especially colitis. IrAEs have a profound impact on patient quality of life, causing physical, psychosocial, and financial distress. Here, we outline strategies at the discovery, translational, and clinical research phases to ensure the impact of augmenting immunotherapy efficacy is approached in a manner that considers adverse implications. Adopting these strategies will ensure that our ongoing efforts to overcome immunotherapy resistance are not impacted by unacceptable toxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia. .,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| | - Raymond J Chan
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia.,Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Alexandre Chan
- School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Dorothy Keefe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Cancer Australia, Surry Hills, New South Wales, Australia.,Adelaide Medical School, the University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Gastroenterology, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Nicolas H Hart
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
13
|
Orzetti S, Tommasi F, Bertola A, Bortolin G, Caccin E, Cecco S, Ferrarin E, Giacomin E, Baldo P. Genetic Therapy and Molecular Targeted Therapy in Oncology: Safety, Pharmacovigilance, and Perspectives for Research and Clinical Practice. Int J Mol Sci 2022; 23:ijms23063012. [PMID: 35328435 PMCID: PMC8951339 DOI: 10.3390/ijms23063012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The impressive advances in the knowledge of biomarkers and molecular targets has enabled significant progress in drug therapy for crucial diseases such as cancer. Specific areas of pharmacology have contributed to these therapeutic outcomes—mainly targeted therapy, immunomodulatory therapy, and gene therapy. This review focuses on the pharmacological profiles of these therapeutic classes and intends, on the one hand, to provide a systematic definition and, on the other, to highlight some aspects related to pharmacovigilance, namely the monitoring of safety and the identification of potential toxicities and adverse drug reactions. Although clinicians often consider pharmacovigilance a non-priority area, it highlights the risk/benefit ratio, an essential factor, especially for these advanced therapies, which represent the most innovative and promising horizon in oncology.
Collapse
Affiliation(s)
- Sabrina Orzetti
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Department of Hospital Pharmacy, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Federica Tommasi
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Antonella Bertola
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Giorgia Bortolin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Elisabetta Caccin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Sara Cecco
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Emanuela Ferrarin
- Scientific and Patients Library of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy;
| | - Elisa Giacomin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Paolo Baldo
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Correspondence: ; Tel.: +39-0434-659221
| |
Collapse
|
14
|
Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13184722. [PMID: 34572949 PMCID: PMC8471577 DOI: 10.3390/cancers13184722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The incidence of metastatic melanoma has been increasing over the past years with current therapies showing limited efficacy to cure the disease. Therefore, other options are being investigated, such as adoptive cell therapy (ACT) where activated immune cells are infused into a patient to attack melanoma. Natural killer (NK) cells are part of the innate immune system and extremely suitable for this kind of therapy since they show minimal toxicities in the clinical setting. In this review, we focus on current strategies for NK cell therapy and the development of new approaches that hold great promise for the treatment of advanced melanoma. Abstract Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.
Collapse
|
15
|
Advances in culture methods for acute myeloid leukemia research. Oncoscience 2021; 8:82-90. [PMID: 34368398 PMCID: PMC8336936 DOI: 10.18632/oncoscience.540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional suspension cultures have been used in Acute Myeloid Leukemia (AML) research to study its biology as well as to screen any drug molecules, since its inception. Co-culture models of AML cells and other stromal cells as well as 3 dimensional (3D) culture models have gained much attention recently. These culture models try to recapitulate the tumour microenvironment and are found to be more suitable than suspension cultures. Though animal models are being used, they require more time, effort and facilities and hence, it is essential to develop cell culture models for high-throughput screening of drugs. Here, we discuss a new co-culture model developed by our research group involving acute myeloid leukemia (AML) cells and stimulated macrophages. Other studies on co-culture systems and relevance of 3D culture in leukemic research in understanding the pathology and treatment of leukemia are also reviewed.
Collapse
|
16
|
Dixon ML, Leavenworth JD, Leavenworth JW. Lineage Reprogramming of Effector Regulatory T Cells in Cancer. Front Immunol 2021; 12:717421. [PMID: 34394124 PMCID: PMC8355732 DOI: 10.3389/fimmu.2021.717421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|