1
|
Wang YS, Ding MY, Chen Y, Hu XT, Zhang YX, Fang ZW, Chen HH. Double cross-linked emulsion gels stabilized by flaxseed protein and chitosan: Effects of CaCO 3 content on gel properties, stability and curcumin digestive characteristics. Food Chem 2025; 477:143503. [PMID: 40015026 DOI: 10.1016/j.foodchem.2025.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
In Ca2+-induced emulsion gels, rapid Ca2+ release leads to uneven gel structures, impairing curcumin (Cur) protection and delivery. To overcome this issue, a novel approach combining low-temperature heating (40 °C) and mild acidic environments (pH 6.5) was proposed to gradually releas Ca2+ from CaCO3. This strategy significantly improves the mechanical properties and stability of flaxseed protein (FP)-chitosan (CS) emulsion gels by forming a uniform and dense network structure. At a CaCO3 concentration of 15 mg/mL, the gel exhibited optimal performance, increasing Cur's photostability and storage stability by 44.0 %, 41.1 %, and 23.3 %, respectively, compared to the control (Cur-oil). Increasing the CaCO3 concentration also inhibited the release of Cur and free fatty acids, reducing bioaccessibility during in vitro digestion. Overall, this study provides new insights into the stability of bioactive compounds and expands the application of CaCO3-induced emulsion gels as delivery systems in the food industry.
Collapse
Affiliation(s)
- Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ming-Yu Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Tong Hu
- Bathurst Future Agti-Tech Institute, Qingdao Agricultural University, Qingdao, China
| | - Yi-Xiu Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zi-Wei Fang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Bathurst Future Agti-Tech Institute, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
2
|
Yazid NA, Tan KY, Khor SM, Lee HV. Sodium caseinate/cellulose nanofiber-stabilized Pickering emulsions: A study on lipid absorption regulation. Int J Biol Macromol 2025; 291:138876. [PMID: 39694355 DOI: 10.1016/j.ijbiomac.2024.138876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
This study aimed to develop a sustainable and bio-based nano-additive (sodium caseinate/cellulose nanofibers (SC/CNF) complex) to modulate liquid-based oil-in-water (O/W) colloid interfaces, which function as a fat control agent to slow lipid digestion. Edible protein (SC) was grafted onto CNF through facile electrostatic attraction, which reduces solvent and chemical usage for greener process. The physicochemical properties of SC/CNF showed that adding SC increased the interfacial bonding between CNF particles, resulting in higher interfacial pressure by forming dense and compact layers of SC/CNF. This characteristic improves the mechanical strength and colloidal stability of SC/CNF during water-oil stabilization. Further preparation of O/W Pickering emulsions stabilized by SC/CNF complexes was conducted using different parameters (such as SC concentration, dosage of SC/CNF, and O/W ratio) to investigate profile of free fatty acid (FFA) released during lipid digestion via simulated in vitro gastrointestinal tract (GIT) model. The results showed that the optimized emulsion stabilized by the SC/CNF complex rendered a lower value of free fatty acids (FFA) after undergoing in vitro simulated digestion. The lowest FFA release (31.18 %) was achieved under the following conditions: 1 % w/v (SC concentration), 1 % w/w (dosage of SC/CNF), and 20/80 (O/W) ratio. Low FFA release within the digestive system indicated that the nano-emulsions effectively regulated lipid digestion. The changes in physicochemical characteristics in terms of colloidal stability (particle size, microstructure, and surface charge) of the stabilized emulsions corresponding to the FFA released were studied during each digestion phase (including mouth, stomach, and small intestine). This study revealed that the SC/CNF complex is a promising nano-biomaterial that can function as a bio-functional food additive, particle stabilizer, and fat digestion controller. The unique characteristics of SC/CNF complexes in stabilizing oil-water emulsions present a potential interfacial mechanism for modulating lipid bioavailability. The innovation approach allows for the demand for green-label products, promote development of healthier food options, and the pursuit of sustainable food solutions.
Collapse
Affiliation(s)
- Nasuha Abu Yazid
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwei Voon Lee
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Sampaio SL, Chisnall T, Euston SR, Liddle C, Lonchamp J. Novel palm shortening substitute using a combination of rapeseed oil, linseed meal and beta-glucan. Food Chem 2024; 457:140134. [PMID: 38901335 DOI: 10.1016/j.foodchem.2024.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 μm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.
Collapse
Affiliation(s)
- Shirley L Sampaio
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Timothy Chisnall
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stephen R Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Catriona Liddle
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom
| | - Julien Lonchamp
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom.
| |
Collapse
|
4
|
Queffelec J, Flórez-Fernández N, Torres MD, Domínguez H. Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. Int J Biol Macromol 2024; 258:128859. [PMID: 38134984 DOI: 10.1016/j.ijbiomac.2023.128859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Microwave hydrothermal treatment was selected to extract valuable fractions with bioactive and gelling properties from Evernia prunastri lichen with potential for topical applications. The impact of the extraction processing conditions on the soluble extracts, mucilage fraction and residual solid phase was analyzed within a lichen global valorization approach. A particular stress was made on the thermo-rheological and structural characteristics of the extracted glucan and galactomannan polymers, the corresponding gelled matrices, and their cosmetic feasibility. Results revealed that the proposed microwave-assisted treatment showed a relevant influence on the phytochemical features of the aqueous soluble extracts, accounting the major protein content at 120 °C and the enhanced antioxidant and anti-tyrosinase properties at 140 °C. Extracts at 200 °C showed the highest anti-inflammatory (COX-1 and COX-2 inhibition) efficacies. The biopolymer analyses indicated that those recovered after lichen hydrothermal treatment at 160 °C featured a good extraction performance, the highest molecular weight, apparent viscosity, and antiproliferative potential. The thermo-rheological properties of the corresponding matrices formulated at 10 % and 60 or 80 °C exhibited the strongest and most thermo-reversible characteristics, as well as antifreezing feasibility. Another advantage of the selected fractions was the absence of skin irritation according to the in vitro skin irritation assay.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain.
| | - H Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| |
Collapse
|
5
|
Cofrades S, Gómez-Estaca J, Álvarez MD, Garcimartín A, Macho-González A, Benedí J, Pintado T. Influence of the Oil Structuring System on Lipid Hydrolysis and Bioaccessibility of Healthy Fatty Acids and Curcumin. Gels 2023; 10:33. [PMID: 38247756 PMCID: PMC10815158 DOI: 10.3390/gels10010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Oleogels (OG) and gelled emulsions (GE) were elaborated with a mixture of olive and chia oils (80:20 ratio) without and with the incorporation of the health-related compound curcumin. These were studied to evaluate the influence of the oil structuring system on the lipid hydrolysis and bioaccessibility of three healthy fatty acids (FA) (palmitic, oleic, and α-linolenic acids) and of curcumin, compared to the oil mixture (bulk oil, BO). The oil structuring system influenced the firmness and texture, and the presence of curcumin significantly altered the color parameters. GE showed higher lipid digestibility, with a greater proportion of absorbable fraction (higher content of free FA and monoacylglycerides) than OG, which behaved similarly to BO. The presence of curcumin affected the degree of lipolysis, reducing lipid digestibility in OG and increasing it in GE. As for FA bioaccessibility, although GE presented higher percentages overall, curcumin significantly increased and decreased FA bioaccessibility in OG and GE, respectively. The oil structuring system also influenced the bioaccessibility of curcumin, which was higher in GE. Therefore, when selecting an oil structuring system, their physicochemical properties, the degree of lipid hydrolysis, and the bioaccessibility of both curcumin and the FA studied should all be considered.
Collapse
Affiliation(s)
- Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - María Dolores Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Adrián Macho-González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| |
Collapse
|
6
|
Leahu A, Ropciuc S, Ghinea C, Damian C. Physico-Chemical, Textural and Sensory Evaluation of Emulsion Gel Formulated with By-Products from the Vegetable Oil Industry. Gels 2023; 9:964. [PMID: 38131950 PMCID: PMC10743262 DOI: 10.3390/gels9120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to obtain low fat mayonnaise-like emulsion gels using sesame cake and walnut cake by-products resulting from vegetable oil extraction. The ingredients used to formulate the mayonnaise like emulsion gel samples were corn starch, sesame seed cake (SSC), walnuts seed cake (WSC), lemon juice, sunflower oil, mustard, sugar, salt, gelatin and water. Five different samples were prepared: one control lab sample (M) containing only corn starch and the other ingredients (without SSC and WSC), two samples (SO1 and SO2) with 2 and 4% of SSC (without corn starch and WSC) and two samples (WO1 and WO2) with 2 and 4% of WSC (without corn starch and SSC). Also, an egg-free commercial mayonnaise (CM) was purchased and used for comparison. Physicochemical (fat, protein, moisture, ash, carbohydrate, water activity, emulsion stability, viscosity, density and color), textural (hardness, adhesiveness, springiness, cohesiveness, gumminess and chewiness), and sensory (aspect, color, texture/firmness, flavor, taste and acceptability) attributes of all samples were investigated. The results showed that carbohydrate content decreased in all four seed cakes samples compared to the control sample, while protein and fat content increased in all seed cakes samples, with the largest increases observed in the sesame seed cake samples. It was observed that the CM sample has a carbohydrate content value close to that obtained for the M sample, while the protein content has the lowest value for the CM sample compared to all samples analyzed. The stability of the emulsion gels increased from 70.73% (control sample) to 83.64% for the sample with 2% addition sesame seed cake and to 84.09% for the 2% walnut cake added, due to the coagulation capacity of the added cakes. The type and concentration of oil seeds cake added in emulsion gels affected their textural properties such as hardness, adhesiveness, gumminess, and chewiness. The hardness and adhesiveness of low-fat mayonnaise-like emulsion gels samples decreased with the addition of oil seeds cake. However, the addition of by-products improved the sensory properties of emulsion gels. This study provided a theoretical basis for the food industry's application of oilseed cakes, especially for the development of low-fat mayonnaise.
Collapse
Affiliation(s)
- Ana Leahu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.R.); (C.G.); (C.D.)
| | | | | | | |
Collapse
|
7
|
Asyrul-Izhar AB, Bakar J, Sazili AQ, Goh YM, Ismail-Fitry MR. Emulsion Gels Formed by Electrostatic Interaction of Gelatine and Modified Corn Starch via pH Adjustments: Potential Fat Replacers in Meat Products. Gels 2023; 9:gels9010050. [PMID: 36661816 PMCID: PMC9857752 DOI: 10.3390/gels9010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The application of emulsion gels as animal fat replacers in meat products has been focused on due to their unique physicochemical properties. The electrostatic interaction between proteins and polysaccharides could influence emulsion gel stability. This study aimed to evaluate the physicochemical properties of emulsion gels using starch and gelatin as stabilizers, promoting electrostatic attraction via pH adjustment. Three systems were studied: emulsion gel A (EGA) and emulsion gel B (EGB), which have positive and negative net charges that promote electrostatic interaction, and emulsion gel C (EGC), whose charge equals the isoelectric point and does not promote electrostatic interactions. There was no significant difference in proximate analysis, syneresis and thermal stability between samples, while EGA and EGB had higher pH values than EGC. The lightness (L*) value was higher in EGA and EGB, while the yellowness (b*) value was the highest in EGC. The smaller particle size (p < 0.05) in EGA and EGB also resulted in higher gel strength, hardness and oxidative stability. Microscopic images showed that EGA and EGB had a more uniform matrix structure. X-ray diffraction demonstrated that all the emulsion gels crystallized in a β′ polymorph form. Differential scanning calorimetry (DSC) revealed a single characteristic peak was detected in both the melting and cooling curves for all the emulsion gels, which indicated that the fat exists in a single polymorphic state. All emulsion gels presented a high amount of unsaturated fatty acids and reduced saturated fat by up to 11%. Therefore, the emulsion gels (EGA and EGB) that favored the electrostatic protein-polysaccharide interactions are suitable to be used as fat replacers in meat products.
Collapse
Affiliation(s)
- Abu Bakar Asyrul-Izhar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods 2022; 12:foods12010040. [PMID: 36613256 PMCID: PMC9818671 DOI: 10.3390/foods12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The unique composition and technological properties of some oat bran components (mainly protein and soluble fiber) and olive oil make them a good choice to form oil-in-water vegetable emulsions. The different concentrations of oat bran were studied to form olive oil-in water (O/W) emulsions to apply as a replacement for fat and meat. As a result, four O/W emulsions (OBE) were formulated with 10% (OBE10), 15% (OBE15), 20% (OEB20), and 30% (OBE30) oat bran concentrations and 40% olive oil, with the corresponding amount of water added for each O/W emulsion. Composition, technological properties (thermal stability, pH, texture), and lipid structural characteristics were evaluated. The results showed that low oat bran content (OEB10)-with a lower concentration of oat protein and β-glucans-resulted in an O/W emulsion with an aggregated droplet structure and lower thermal stability and hardness. These connections between composition, technology, and structural properties of olive O/W emulsions elaborated with oat bran could help in making the optimal choice for their potential application in the production of foods such as healthier meat products.
Collapse
|
9
|
Ren Y, Huang L, Zhang Y, Li H, Zhao D, Cao J, Liu X. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022; 11:foods11131950. [PMID: 35804763 PMCID: PMC9265990 DOI: 10.3390/foods11131950] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Although traditional meat products are highly popular with consumers, the high levels of unsaturated fatty acids and cholesterol present significant health concerns. However, simply using plant oil rich in unsaturated fatty acids to replace animal fat in meat products causes a decline in product quality, such as lower levels of juiciness and hardness. Therefore, it is necessary to develop a fat substitute that can ensure the sensory quality of the product while reducing its fat content. Consequently, using emulsion gels to produce structured oils or introducing functional ingredients has attracted substantial attention for replacing the fat in meat products. This paper delineated emulsion gels into protein, polysaccharide, and protein–polysaccharide compound according to the matrix. The preparation methods and the application of the three emulsion gels as fat substitutes in meat products were reviewed. Since it displayed a unique separation structure, the double emulsion was highly suitable for encapsulating bioactive substances, such as functional oils, flavor components, and functional factors, while it also exhibited significant potential for developing low-fat or functional healthy meat products. This paper summarized the studies involving the utilization of double emulsion and gelled double emulsion as fat replacement agents to provide a theoretical basis for related research and new insight into the development of low-fat meat products.
Collapse
Affiliation(s)
- Yuqing Ren
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Correspondence: (H.L.); (X.L.)
| | - Di Zhao
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
- Correspondence: (H.L.); (X.L.)
| |
Collapse
|
10
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
11
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
12
|
Lv D, Zhang P, Chen F, Yin L. Effects of emulsion concentration on the physicochemical properties of wheat bran arabinoxylan-soy protein isolate emulsion-filled gels used as β-carotene carriers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gutiérrez-luna K, Ansorena D, Astiasarán I. Use of hydrocolloids and vegetable oils for the formulation of a butter replacer: Optimization and oxidative stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
15
|
Structural and Technological Approach to Reveal the Role of the Lipid Phase in the Formation of Soy Emulsion Gels with Chia Oil. Gels 2021; 7:gels7020048. [PMID: 33924233 PMCID: PMC8167564 DOI: 10.3390/gels7020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.
Collapse
|
16
|
Pintado T, Ruiz-Capillas C, Jiménez-Colmenero F, Herrero AM. Impact of Culinary Procedures on Nutritional and Technological Properties of Reduced-Fat Longanizas Formulated with Chia ( Salvia hispanica L.) or Oat ( Avena sativa L.) Emulsion Gel. Foods 2020; 9:E1847. [PMID: 33322421 PMCID: PMC7762967 DOI: 10.3390/foods9121847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
This paper evaluates how grilling, a traditional culinary procedure for fresh meat products, affects the composition and technological properties of healthy longanizas formulated with chia (Salvia hispanica L.) (C-RF) and oat (Avena sativa L.) (O-RF) emulsion gels (EGs) as animal fat replacers. The use of EGs, regardless of whether they contain chia or oat, improved longaniza performance during cooking as they lost less (p < 0.05) water and fat. The composition of cooked sausages was affected by their formulation, particularly those with chia EG (C-RF) which featured the highest polyunsaturated fatty acid content, mainly due to the higher level of α-linolenic fatty acid (1.09 g/100 g of product). Chia and oat EGs in C-RF and O-RF allow longanizas to be labeled with nutritional and health claims under European law. In general, this culinary procedure increases (p < 0.05) the lightness, lipid oxidation and texture parameters of all samples.
Collapse
Affiliation(s)
| | | | | | - Ana M. Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (T.P.); (C.R.-C.); (F.J.-C.)
| |
Collapse
|
17
|
Paglarini CDS, Vidal VAS, Martini S, Cunha RL, Pollonio MAR. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit Rev Food Sci Nutr 2020; 62:640-655. [PMID: 33000627 DOI: 10.1080/10408398.2020.1825322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent consumers' concerns about diet and its health benefits has triggered a reduction in consumption of foods rich in sugar, fat, salt, and chemical additives. As a result, an expanded market for functional foods has arisen. In particular, high-fat foods normally composed by saturated fatty acids, cholesterol and trans-fatty acids have been reformulated to be healthier. The primary source of saturated fat ingested by humans includes meats and their by-products that have animal fat as lipid source. The reformulation of these products therefore represents an important strategy to make them healthier for human consumption. Substituting solid fat by unsaturated oils usually affects the texture of the products, and therefore, new structuring methods must be developed to provide vegetable oils a similar characteristic to solid fats and improve their functional and health-related properties. Among these structural models, gelled emulsions (GE) show great potential to be used as healthier lipid ingredients in low-calorie and reduced-fat products, including healthier meat products. This review addresses the GE properties to be used as structuring agent, their in vitro bioaccessibility in meat products and effect on technological, sensorial, microstructural and microbiological characteristics.
Collapse
Affiliation(s)
- Camila de Souza Paglarini
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vitor Andre Silva Vidal
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA
| | - Rosiane Lopes Cunha
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
18
|
Muñoz-González I, Ruiz-Capillas C, Salvador M, Herrero AM. Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chem 2020; 339:128049. [PMID: 33152862 DOI: 10.1016/j.foodchem.2020.128049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022]
Abstract
Polyphenols have interesting antioxidant properties and could help prevent certain diseases. Emulsion gels (EGs) have characteristics that make them a promising alternative system for supplying several bioactive compounds simultaneously, among them polyphenols. We produced four EGs containing olive oil, soy protein and a cold gelling agent based on alginate. One basic formulation (ES) contained only these ingredients and was used as a reference, while the other three also contained different solid polyphenol extracts from grape seed (G), grape seed and olive (O) or grape total (T), called ESG, ESO and EST, respectively. The corresponding EGs were prepared by mixing soy protein, alginate, water and one of these types of polyphenol extract (G, O or T), using a homogenizer. Then, the olive oil was gradually added to the mixture and finally, each mixture was placed in a metal container under pressure and chilled for 24 h until they formed an EG. The composition (including concentrations of phenolic metabolites), and technological and structural properties of these EGs were evaluated. Hydroxytyrosol was identified in all the EGs, but ESO showed the highest (P < 0.05) content. The EGs with added polyphenols showed contents of gallic acid, flavanol monomers and derivatives, with ESG showing the highest (P < 0.05) content. All the EGs showed optimal thermal stability, while colour and texture parameters were significantly influenced by the type of polyphenol extract added. No significant differences in the frequency or half-bandwidth of the 2923 and 2853 cm-1 infrared bands were observed.
Collapse
Affiliation(s)
- Irene Muñoz-González
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Claudia Ruiz-Capillas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Marina Salvador
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Ana M Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Quality Characteristics of Healthy Dry Fermented Sausages Formulated with a Mixture of Olive and Chia Oil Structured in Oleogel or Emulsion Gel as Animal Fat Replacer. Foods 2020; 9:foods9060830. [PMID: 32599965 PMCID: PMC7353661 DOI: 10.3390/foods9060830] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
The present work evaluates the suitability of beeswax oleogels and emulsion gel prepared with a healthy lipid mixture (olive and chia oils) as pork fat replacers for the development of a dry fermented meat product (fuet). Because these systems offer various possibilities, this study has compared their effect on the nutritional quality and sensory acceptability of fuets and their behaviour with regard to technological properties and microbiological and oxidative stability during 30 days of chilled storage. This strategy allowed products with an improved fatty acid profile and a 12-fold decrease of the polyunsaturated fatty acids (PUFA) n-6/n-3 ratio, as compared to the control samples. Irrespective of the structuring method used as animal fat replacer, reformulated samples showed a good oxidative status during chilled storage. In general, no differences that depended on the use of oleogel or emulsion gel were observed in the technological properties and microbiological status, so the choice of one or the other would be conditioned by other factors than the characteristics that the product develops. However, further studies are needed to improve the sensory attributes of the reformulated samples.
Collapse
|
20
|
Szpicer A, Onopiuk A, Półtorak A, Wierzbicka A. The influence of oat β-glucan content on the physicochemical and sensory properties of low-fat beef burgers. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1750095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Arkadiusz Szpicer
- Department of Technique and Food Product Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Anna Onopiuk
- Department of Technique and Food Product Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Andrzej Półtorak
- Department of Technique and Food Product Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Product Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| |
Collapse
|
21
|
Szpicer A, Onopiuk A, Półtorak A, Wierzbicka A. Influence of tallow replacement by oat β-glucan and canola oil on the fatty acid and volatile compound profiles of low-fat beef burgers. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1674924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Anna Onopiuk
- Department of Technique and Food Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Andrzej Półtorak
- Department of Technique and Food Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Warsaw University of Life Sciences-WULS, Warsaw, Poland
| |
Collapse
|
22
|
Cereal polysaccharides as sources of functional ingredient for reformulation of meat products: A review. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Xue X, Wang J, Li S, Zhang X, Dong J, Gui L, Chang Q. Effect of micronised oat bran by ultrafine grinding on dietary fibre, texture and rheological characteristic of soft cheese. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiuheng Xue
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| | - Juhua Wang
- College of Animal Science & Technology Anhui Agricultural University Hefei Anhui 230036 China
| | - Shaohua Li
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| | - Xiuxiu Zhang
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| | - Jinhua Dong
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| | - Lin Gui
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| | - Qianqian Chang
- Anhui Engineering Laboratory for Agricultural Products Processing College of Tea and Food Science & Technology Anhui Agriculture University Hefei Anhui 230036 China
| |
Collapse
|
24
|
Muñoz-González I, Merino-Álvarez E, Salvador M, Pintado T, Ruiz-Capillas C, Jiménez-Colmenero F, Herrero AM. Chia ( Salvia hispanica L.) a Promising Alternative for Conventional and Gelled Emulsions: Technological and Lipid Structural Characteristics. Gels 2019; 5:gels5020019. [PMID: 30974809 PMCID: PMC6630939 DOI: 10.3390/gels5020019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is an oilseed plant which contains proteins of high biological value and other healthy components with interesting technological properties. For these reasons, chia could be a promising option for the formation and stabilization of oil-in-water emulsions. The aim of this study is to evaluate the potential of chia protein (from chia flour) in the formation of emulsions. To that end, composition and technological and structural properties determined by infrared spectroscopy were investigated in conventional (EC) and gelled (EGC) emulsions with chia and compared with their corresponding soy protein emulsions with the same protein content [conventional (ES) or gelled (EGS)] used as reference. All emulsions containing chia had better fat and water binding properties than those elaborated with soy protein isolate (SPI). The color of the emulsions varied significantly depending on whether the emulsions were made with chia or SPI. EGS and EGC exhibited the greatest (p < 0.05) penetration force values, being EGC the firmest (p < 0.05). Depending on the type of emulsion, Attenuated Total Reflectance (ATR)-FTIR Spectroscopy revealed differences in their lipid structure and interaction in terms of lipid acyl chain mobility (order/disorder) and emulsion droplet size. These structural characteristics could be related to the textural behavior of emulsions.
Collapse
Affiliation(s)
- Irene Muñoz-González
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Esther Merino-Álvarez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Marina Salvador
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Tatiana Pintado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Claudia Ruiz-Capillas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Francisco Jiménez-Colmenero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Ana M Herrero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Paglarini CDS, Martini S, Pollonio MAR. Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Szpicer A, Onopiuk A, Półtorak A, Wierzbicka A. Influence of oat β-glucan and canola oil addition on the physico-chemical properties of low-fat beef burgers. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Arkadiusz Szpicer
- Department of Technique and Food Development; Warsaw University of Life Sciences-SGGW; Warsaw Poland
| | - Anna Onopiuk
- Department of Technique and Food Development; Warsaw University of Life Sciences-SGGW; Warsaw Poland
| | - Andrzej Półtorak
- Department of Technique and Food Development; Warsaw University of Life Sciences-SGGW; Warsaw Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development; Warsaw University of Life Sciences-SGGW; Warsaw Poland
| |
Collapse
|
27
|
Paglarini CS, Martini S, Pollonio MAR. Physical properties of emulsion gels formulated with sonicated soy protein isolate. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Camila S. Paglarini
- Department of Food Technology; School of Food Engineering; University of Campinas (UNICAMP); Campinas 13083-862 Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan UT 84322-8700 USA
| | - Marise A. R. Pollonio
- Department of Food Technology; School of Food Engineering; University of Campinas (UNICAMP); Campinas 13083-862 Brazil
| |
Collapse
|
28
|
Kurek MA, Karp S, Stelmasiak A, Pieczykolan E, Juszczyk K, Rieder A. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Herrero A, Ruiz-Capillas C, Pintado T, Carmona P, Jiménez-Colmenero F. Elucidation of lipid structural characteristics of chia oil emulsion gels by Raman spectroscopy and their relationship with technological properties. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|