1
|
Chatsirisakul O, Leenabanchong N, Siripaopradit Y, Chang CW, Buhngamongkol P, Pongpirul K. Strain-Specific Therapeutic Potential of Lactiplantibacillus plantarum: A Systematic Scoping Review. Nutrients 2025; 17:1165. [PMID: 40218922 PMCID: PMC11990516 DOI: 10.3390/nu17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This systematically scoping review aims to evaluate the therapeutic potential and clinical benefits of specific Lactiplantibacillus plantarum (L. plantarum) strains in human health, identifying their strain-specific effects across various medical conditions. Methods: Following the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines and employing the PICO framework, a comprehensive literature search was conducted in the PubMed and Embase databases to identify relevant studies published up to December 2023. Inclusion criteria were rigorously applied to ensure the selection of high-quality studies focusing on the clinical application of distinct L. plantarum stains. Results: This review analyzed several unique strains of L. plantarum across 69 studies, identifying several therapeutic benefits. L. plantarum 299v effectively improved gastrointestinal symptoms, enhanced oral health, and reduced systemic inflammation. L. plantarum IS-10506 exhibited notable immunomodulatory effects, especially in managing atopic dermatitis. L. plantarum LB931 showed promise in decreasing pathogenic colonization, supporting women's vaginal health. Additionally, L. plantarum CCFM8724 demonstrated potential in reducing early childhood caries, highlighting its promise in pediatric oral care. Conclusions: The therapeutic potential of L. plantarum is extensive, with certain strains exhibiting promising clinical benefits for specific health concerns. The findings of this review advocate for the integration of L. plantarum strains into clinical practice, emphasizing the need for further research to elucidate their mechanisms of action, optimal dosages, and long-term safety profiles.
Collapse
Affiliation(s)
- Oranut Chatsirisakul
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Natasha Leenabanchong
- Faculty of Medicine and Public Health, HRH Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand;
| | - Yada Siripaopradit
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Chun-Wei Chang
- College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Patsakorn Buhngamongkol
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
- Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
2
|
Guo H, Li H, Xiao Y, Wu DT, Gan RY, Kang Z, Huang Y, Gao H. Revisiting fermented buckwheat: a comprehensive examination of strains, bioactivities, and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39989084 DOI: 10.1080/10408398.2025.2468367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Buckwheat, a nutrient-rich pseudocereal, is known for its various biological properties, but its antinutritional factors, such as phytic acid and tannins, can hinder nutrient absorption. Fermentation improves buckwheat's nutritional profile by enhancing bioactive compounds, increasing digestibility, and reducing antinutritional factors. This review comprehensively examines the effects of fermentation and microbial strains on the nutritional composition and functional properties of buckwheat, highlighting their impact on health benefits and potential applications in diverse food products. Fermentation significantly boosts essential nutrients, including amino acids, vitamins, minerals, and bioactive compounds, while reducing antinutritional factors like phytic acid and protease inhibitors. It also enhances antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, and gut microbiota-regulating properties. However, there are notable gaps in research, including limited understanding of fermentation process control, heavy metal transformation, and pathogenic microorganism effects during fermentation. Addressing these gaps is crucial for optimizing the functional properties and ensuring the safety of fermented buckwheat in the food industry. Overall, fermented buckwheat holds significant potential as a functional ingredient for gluten-free foods, nondairy beverages, and other health-promoting products that cater to specific dietary needs.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan, P. R. China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Kumar H, Guleria S, Kimta N, Dhalaria R, Nepovimova E, Dhanjal DS, Alomar SY, Kuca K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr Res Food Sci 2024; 9:100836. [PMID: 39290651 PMCID: PMC11406246 DOI: 10.1016/j.crfs.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Felisiak K, Przybylska S, Tokarczyk G, Tabaszewska M, Słupski J, Wydurska J. Effect of Chickpea ( Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods 2024; 13:2356. [PMID: 39123550 PMCID: PMC11311373 DOI: 10.3390/foods13152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
High nutritional value and antioxidant properties make chickpea flour a valuable substitute for wheat flour, although its texture-forming abilities are different. The aim of this study was to investigate the possibility of increasing the content of bioactive compounds and antioxidant properties of shortbread cookies by simple partial or complete replacement of wheat flour with chickpea flour without considerable changes in texture, color, sensory properties, or acceptability. Shortbread cookies were made from wheat flour (0% of chickpea flour), wheat flour and chickpea flour (replacement of 25%, 50%, and 75%), and chickpea flour (100%). Generally, the increase in chickpea flour share resulted in an increase in protein, fat, and ash content, as well as antioxidant properties. Polyphenol content, flavonoid content, and antioxidant activities increased three- to sixfold in shortbread cookies containing chickpea flour in comparison to wheat cookies. The level of proteins increased about 50% and the antioxidant properties were three to six times higher than in wheat cookies. Cookies containing up to 75% chickpea flour were assessed as very good or good quality, while only cookies without wheat flour were assessed as sufficient quality. It could be concluded that part of the wheat flour content in shortbread cookies can be replaced by chickpea flour. Application of a 25% proportion of chickpea flour increases physicochemical properties without changes in sensory properties. Sensory quality was up to 75% lower, but antioxidant properties were increased. However, complete replacement of wheat flour in shortbread cookies without changing the recipe resulted in a product of slightly lower sensory quality.
Collapse
Affiliation(s)
- Katarzyna Felisiak
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Sylwia Przybylska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Kraków, 30-149 Kraków, Poland; (M.T.); (J.S.)
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Kraków, 30-149 Kraków, Poland; (M.T.); (J.S.)
| | - Joanna Wydurska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| |
Collapse
|
5
|
Wronkowska M, Wiczkowski W, Topolska J, Szawara-Nowak D, Piskuła MK, Zieliński H. Identification and Bioaccessibility of Maillard Reaction Products and Phenolic Compounds in Buckwheat Biscuits Formulated from Flour Fermented by Rhizopus oligosporus 2710. Molecules 2023; 28:molecules28062746. [PMID: 36985718 PMCID: PMC10056404 DOI: 10.3390/molecules28062746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The identification and potential bioaccessibility of phenolic compounds using the highly sensitive micro-HPLC-QTRAP/MS/MS technique and Maillard reaction products (MRPs) in buckwheat biscuits formulated from flours, raw and roasted, fermented by Rhizopus oligosporus 2710 was addressed in this study after in vitro digestion. The content of the analyzed MRPs such as furosine, FAST index, and the level of melanoidins defined by the browning index was increased in the biscuits prepared from fermented flours as compared to the control biscuits prepared from non-fermented ones. After in vitro digestion higher content of furosine was observed in control and tested biscuits providing its high potential bioaccessibility. The fermented buckwheat flours used for baking affected the nutritional value of biscuits in comparison to the control biscuits in the context of the twice-increased FAST index. More than three times higher value of the browning index was noted in control and tested biscuits after digestion in vitro indicating the high bioaccessibility of melanoidins. Our results showed the presence of ten phenolic acids and eight flavonoids in the investigated biscuits. Among phenolic acids, vanillic, syringic, and protocatechuic were predominant while in the group of flavonoids, rutin, epicatechin, and vitexin were the main compounds in analyzed biscuits. Generally, the lower potential bioaccessibility of phenolic acids and higher potential bioaccessibility of flavonoids was found for biscuits obtained from buckwheat flours fermented by fungi compared to control biscuits obtained from non-fermented flours. Fermentation of buckwheat flour with the fungus R. oligosporus 2710 seems to be a good way to obtain high-quality biscuits; however, further research on their functional properties is needed.
Collapse
|
6
|
Buckwheat hull, a valuable bakery product ingredient: assessment of bioaccessible phenolics and antioxidant capacity. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn this study, the bioaccessible total phenolic compounds (TPC) and antioxidant capacity (AC) of commonly consumed bakery products enriched with raw (BH) or roasted (RBH) buckwheat hull were evaluated. The soluble and insoluble fractions obtained after in vitro enzymatic digestion of mixed rye/wheat bread with 4% of RBH (BRBH), wheat bread with 3% of BH (BBH), and their control counterparts were separated (C-BRBH and C-BBH, respectively). The addition of buckwheat hull, raw and roasted, significantly increased the values of analyzed parameters compared to control samples. Before the digestion, the highest values of TPC and AC were found for bread with 4% of RBH. After in vitro digestion of the bakery products, the content of TPC and AC in the soluble fraction was 75–90% higher compared to the values found in the undigested fraction. Generally, a decrease in the bioaccessibility index of enriched bakery products compared to control samples was observed. The obtained results indicate that buckwheat by-products may be used as a valuable ingredient for commonly used bakery products. Also, it was shown that the in vitro digestion model may be of relevance in assessing the bioaccessibility of bioactive compounds in commonly used bakery products.
Collapse
|
7
|
Romanovskaja D, Razukas A, Asakaviciute R. Influence of Morphostructural Elements for Buckwheat (Fagopyrum esculentum Moench) Productivity in Different Agricultural Systems. PLANTS 2022; 11:plants11182382. [PMID: 36145785 PMCID: PMC9505566 DOI: 10.3390/plants11182382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]
Abstract
The research was carried out at Vokė Branch of the Institute of Agriculture of Lithuanian Research Centre for Agriculture and Forestry in 2018–2019. The objective of this study was to determine the influence of the relative proportion of stems, leaves and flowers on biomass formation and grain yield in organic and conventional farming systems. The study found that buckwheat produced one-third more biomass in the conventional farming system than in the organic farming system. Differences between buckwheat cultivars were more distinct due to biomass formation than grain yield. The research determined that the productivity (biomass and grain yields) of buckwheat was dependent on the proportion of morphological elements in plants and the process of biomass formation and grain yield in organic and conventional agricultural systems. Biomass yields depended on the relative number of stems in both farming systems. Grain yield depended on the ratio of flowers in the morphostructure; however, statistically significant correlations were found only in the organic farming system.
Collapse
|
8
|
Chiang JH, Hua XY, Yu AHM, Peh EWY, See E, Jeyakumar Henry C. A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Hong Chiang
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Yi Hua
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ashley Hui Min Yu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elaine Wan Yi Peh
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - E’Ein See
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
9
|
Wronkowska M, Rostek D, Lenkiewicz M, Kurantowicz E, Yaneva TG, Starowicz M. Oat flour fermented by Lactobacillus strains – Kinetics of volatile compound formation and antioxidant capacity. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Starowicz M, Arpaci S, Topolska J, Wronkowska M. Phytochemicals and Antioxidant Activity in Oat-Buckwheat Dough and Cookies with Added Spices or Herbs. Molecules 2021; 26:molecules26082267. [PMID: 33919764 PMCID: PMC8070670 DOI: 10.3390/molecules26082267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the phytochemicals and antioxidant activity in oat-buckwheat doughs and cookies with the addition of ten selected spices or herbs (2 g/100 g flours weight basis). The used spices and herbs, as was expected, showed a wide range of bioactive molecules, namely phenolic acids and flavonoids, and they are a rich source of components with antioxidant potential. All analysed oat-buckwheat dough showed higher antioxidant activity potential and higher total phenolic content (TPC) compared to cookies. The highest TPC was found in clove, both dough and cookies, with its addition showing the highest ferric reducing antioxidant power. Generally, cookies with the addition of spice/herbs showed higher phytochemical contents and antioxidant activity compared to oat-buckwheat cookies without the condiment. The technology of obtaining confectionery products, like oat-buckwheat cookies, that will favor the protection of bioactive compounds should still be improved.
Collapse
|
11
|
Zieliński H, Wiczkowski W, Honke J, Piskuła MK. In Vitro Expanded Bioaccessibility of Quercetin-3-Rutinoside and Quercetin Aglycone from Buckwheat Biscuits Formulated from Flours Fermented by Lactic Acid Bacteria. Antioxidants (Basel) 2021; 10:antiox10040571. [PMID: 33917795 PMCID: PMC8068175 DOI: 10.3390/antiox10040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
The expanded bioaccessibility of rutin (Ru) and quercetin (Q) from buckwheat biscuits (BBs) formulated from liquid-state fermented flours by selected lactic acid bacteria (LAB) were determined after gastrointestinal digestion. Fermentation of buckwheat flours caused a LAB-dependent variation in Ru and Q content. BBs baked at 220 °C for 30 min showed lower content of Ru and Q, and no correlation was found between the content of these compounds in fermented flours and BBs. The expanded bioaccessibility of Ru from BBs was low when its content in the soluble and insoluble fractions remaining after digestion in vitro was taken into account. Contrary results were found for Q bioaccessibility which had an index greater than 1, indicating the high Q bioaccessibility from BBs. Since very low Q content was noted in the insoluble fraction remaining after BBs digestion, the high Q bioaccessibility was determined to be due to its concentration in the soluble fraction.
Collapse
|
12
|
Biscuits from Fermented Roasted Buckwheat Flour - Phenolics Profile and Bioaccessible Angiotensin Converting Enzyme Inhibitory Activity. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
The bioaccessible angiotensin converting enzyme (ACE) inhibitory activity of biscuits formulated from roasted common buckwheat flour after fermentation by select bacteria was studied. The same content of total phenolic compounds was found in fermented flour and in biscuits obtained from them. Generally, fermentation of flour did not changes the ACE inhibitory activity, whereas baking process significantly increased the ACE inhibitory activity of examined products. The potential bioaccessible ACE inhibitory activity from biscuits was very high. Phenolic acids such as protocatechuic, vanillic and syringic acids as well as flavonoids: kaempferol and epicatechin in the digested buckwheat biscuits have the highest impact on ACE inhibitory activity. A high significant correlations were found between IC50 and total phenolic compounds of fermented flours, biscuits before and after digestion. The data obtained in this study closely associates phenolic compounds with ACE inhibitory activity.
Collapse
|
13
|
Starowicz M, Lelujka E, Ciska E, Lamparski G, Sawicki T, Wronkowska M. The Application of Lamiaceae Lindl. Promotes Aroma Compounds Formation, Sensory Properties, and Antioxidant Activity of Oat and Buckwheat-Based Cookies. Molecules 2020; 25:molecules25235626. [PMID: 33260430 PMCID: PMC7729772 DOI: 10.3390/molecules25235626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022] Open
Abstract
Aroma plays an important role in designing innovative functional foods. This study aimed to study the influence of incorporating herbs from the Lamiaceae family (sage, mint, rosemary, oregano, thyme) on aroma compound formation and sensory properties in oat-buckwheat products. DPPH, FRAP and PCL have been used to describe possible antioxidant activity changes and reduce power of cookies after Lamiaceae Lindl. addition. The volatiles analysis by HS-SPME-GC/MS, has shown that Lamiaceae addition significantly influences the volatiles composition (29 molecules) with a predominance of molecules with a positive sensorial impression. Cookies elaborated with herbs were characterized by a greater share of monoterpenes (e.g., limonene, eucalyptol), in the volatile profile than in control cookies. These compounds’ occurrence was closely correlated with the appearance of herbal odor and taste among sensory attributes in cookies with herbs addition. In contrast, a decrease of negative oil aroma and the bitter aftertaste was noted by a sensory panel. Moreover, in cookies of mint and rosemary, hexanal share decreased about 13 and 9.7-times, respectively. Considering all presented experiments, rosemary addition was the most effective in forming a positive aroma profile with high sensory acceptance and increased functional properties.
Collapse
Affiliation(s)
- Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-784 Olsztyn, Poland; (E.C.); (M.W.)
- Correspondence: ; Tel.: +48-89523-46-39
| | - Ewa Lelujka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Ewa Ciska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-784 Olsztyn, Poland; (E.C.); (M.W.)
| | - Grzegorz Lamparski
- Sensory Laboratory, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury, 10-718 Olsztyn, Poland;
| | - Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-784 Olsztyn, Poland; (E.C.); (M.W.)
| |
Collapse
|
14
|
Koval D, Plocková M, Kyselka J, Skřivan P, Sluková M, Horáčková Š. Buckwheat Secondary Metabolites: Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11631-11643. [PMID: 32985180 DOI: 10.1021/acs.jafc.0c04538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research groups have put significant emphasis on the evaluation of nutritional, health-promoting, and other biological activities of secondary metabolites from buckwheat. Among these phytochemicals, phenolic and lipophilic antioxidants, particularly, phenolic acids, flavonoids, and tocopherols, have been the focus of the latest studies since antioxidant activity has recently been associated with the possibility of inhibiting fungal growth and mycotoxin biosynthesis. The mycotoxin contamination of cereal and pseudocereal grains caused primarily by Fusarium, Penicillium, and Aspergillus species poses a significant hazard to human health. Therefore, efforts to examine the involvement of plant antioxidants in the biosynthesis of mycotoxins at the transcriptional level have emerged. In addition, hydrophobic interactions of buckwheat phenolics with cell membranes could also explain their capacity to reduce fungal development. Eventually, possibilities of enhancing the biological activity of cereal and pseudocereal phytochemicals have been studied, and sourdough fermentation has been proposed as an efficient method to increase antioxidant activities. This effect could result in an increased antifungal effects of sourdough and bakery products. This review reports the main advances in research on buckwheat phenolics and other antioxidant phytochemicals, highlighting possible mechanisms of action and processes that could improve their biological activities.
Collapse
Affiliation(s)
- Daniel Koval
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Pavel Skřivan
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marcela Sluková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
15
|
|
16
|
Zieliński H, Honke J, Topolska J, Bączek N, Piskuła MK, Wiczkowski W, Wronkowska M. ACE Inhibitory Properties and Phenolics Profile of Fermented Flours and of Baked and Digested Biscuits from Buckwheat. Foods 2020; 9:E847. [PMID: 32610526 PMCID: PMC7404683 DOI: 10.3390/foods9070847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
The angiotensin converting enzyme (ACE) inhibitory activity and phenolics profile of fermented flours and of baked and digested buckwheat biscuits was studied. The fermentation of buckwheat flour by select lactic acid bacteria (LAB) caused a decrease in ACE inhibitory activity as compared to the non-fermented flour. The baking process significantly reduced the ACE inhibitory activity of biscuits obtained from fermented flours, whereas digestion significantly increased these properties. In non-fermented and fermented flours and buckwheat biscuits before and after in vitro digestion samples, ten phenolic acids and eight flavonoids were found. Highly significant correlations were found between sample concentration of 50% inhibition of ACE (IC50) and total phenolic compounds of fermented flour and biscuits before and after digestion for each applied LAB, thus indicating a link between phenolic compound content and ACE inhibitory activity. In the digested biscuits, the input to ACE inhibitory activity was provided by p-coumaric, sinapic, syringic, vanillic, and protocatechuic acids as well as by kaempherol, quercetin, apigenin, and orientin. Therefore, it can be concluded that cumulative action of those phenolic acids and flavonoids released after digestion is responsible, in part, for the bioaccessible ACE inhibitory activity of buckwheat biscuits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Division of Food Sciences, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (H.Z.); (J.H.); (J.T.); (N.B.); (M.K.P.); (W.W.)
| |
Collapse
|
17
|
Assessment of the glycaemic index, content of bioactive compounds, and their in vitro bioaccessibility in oat-buckwheat breads. Food Chem 2020; 330:127199. [PMID: 32563929 DOI: 10.1016/j.foodchem.2020.127199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 01/16/2023]
Abstract
This study addressed determinations of the glycaemic index (GI), antioxidant capacity (AC), and phenolics content (TPC) of oat, buckwheat, and mixed oat/buckwheat breads. The bioaccessibility of TPC and the AC of breads were studied after in vitro digestion. The lowest values of the GI were determined for oat bread, whereas breads with the highest content of buckwheat flour had the highest AC. The digestion of breads showed that most of the TPC were found in the soluble fraction, but the phenolic compounds were still present also in the insoluble fraction after digestion. It was concluded that the mixed oat-buckwheat breads may serve as products with a medium GI, as a source of TPC, and as products with a high AC. It should be noted that enzymatic digestion or fermentation by microbiota could potentially enhanced breads antioxidant activity during digestion in the gastrointestinal tract.
Collapse
|
18
|
Petrova P, Petrov K. Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients 2020; 12:E1118. [PMID: 32316499 PMCID: PMC7230154 DOI: 10.3390/nu12041118] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Grains are a substantial source of macronutrients and energy for humans. Lactic acid (LA) fermentation is the oldest and most popular way to improve the functionality, nutritional value, taste, appearance and safety of cereal foods and reduce the energy required for cooking. This literature review discusses lactic acid fermentation of the most commonly used cereals and pseudocereals by examination of the microbiological and biochemical fundamentals of the process. The study provides a critical overview of the indispensable participation of lactic acid bacteria (LAB) in the production of many traditional, ethnic, ancient and modern fermented cereals and beverages, as the analysed literature covers 40 years. The results reveal that the functional aspects of LAB fermented foods are due to significant molecular changes in macronutrients during LA fermentation. Through the action of a vast microbial enzymatic pool, LAB form a broad spectrum of volatile compounds, bioactive peptides and oligosaccharides with prebiotic potential. Modern applications of this ancient bioprocess include the industrial production of probiotic sourdough, fortified pasta, cereal beverages and "boutique" pseudocereal bread. These goods are very promising in broadening the daily menu of consumers with special nutritional needs.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str. Bl. 103, 1113 Sofia, Bulgaria
| |
Collapse
|
19
|
Zieliński H, Szawara-Nowak D, Wronkowska M. Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Zielińska D. The Bioaccessible Reducing Capacity of Buckwheat-Enhanced Wheat Breads Estimated by Electrochemical Method. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.84716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Zieliński H, Honke J, Bączek N, Majkowska A, Wronkowska M. Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Singh JP, Kaur A, Singh B, Singh N, Singh B. Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2205-2212. [PMID: 30996454 PMCID: PMC6443704 DOI: 10.1007/s13197-019-03703-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
This study analyzed the characteristics (physicochemical properties as well as antioxidant activity) of corn grit extrudates containing buckwheat flour at various levels (0, 10, 20 and 30% w/w) extruded at various temperatures (130, 150 and 170 °C). Effect of roasting (92 °C for 15 min) on the extrudates was also studied. Buckwheat incorporation at different levels mainly increased the diameter, a* value (indicating redness), phenolic content and antioxidant capacity, while decreased bulk density and water absorption index of the extruded products. On the other hand, increment in extrusion temperature primarily increased the L* values (lightness), a* values and antioxidant activity but decreased the phenolic content of extrudates. Roasting improved the flavor and texture of the extrudates which was desirable. Extrudates prepared from corn grit with incorporation of buckwheat up to 20% level and extrusion cooking at 150 °C showed best sensory scores.
Collapse
Affiliation(s)
- Jatinder Pal Singh
- Department of Food Processing and Preservation, Dev Samaj College for Women, Ferozepur City, Punjab 152002 India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002 India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Baljit Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141005 India
| |
Collapse
|
23
|
Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem 2019; 271:291-297. [DOI: 10.1016/j.foodchem.2018.07.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
|